• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    How to Interpret Machine Knowledge

    2020-03-21 16:58:52FashenLiLianLiJianpingYinYongZhangQingguoZhouKunKuang
    Engineering 2020年3期

    Fashen Li, Lian Li, Jianping Yin, Yong Zhang, Qingguo Zhou, Kun Kuang

    a Department of Physics, Lanzhou University, Lanzhou 430000, China

    b Department of Computer Science, Hefei University of Technology, Hefei 230009, China

    c Department of Computer Science, Dongguan University of Technology, Dongguan 523808, China

    d Department of Physics, Xiamen University, Xiamen 361005, China

    e Department of Computer Science, Lanzhou University, Lanzhou 430000, China

    f College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China

    Machine knowledge refers to the knowledge contained in artificial intelligence. This article discusses how to acquire machine knowledge, with a particular focus on the acquisition of causal knowledge. The latter is the process of interpreting machine knowledge. Through the analysis of certain research methods in the fields of physics and artificial intelligence, we propose principles and models for interpreting machine knowledge, and discuss specific methods including the automation of the interpretation process and local linearization.

    Human beings have now entered the four-dimensional society that comprises the natural world, human world, information world, and intelligent-agent world. The intelligent agent?has become an objective existence of our world. An intelligent agent can make predictions, make judgments, express emotions, and even actively adjust its behaviors to adapt to changes in the environment[1,2].Hence,we can think of an intelligent agent as a knowledge system with a knowledge structure and function, known as machine knowledge.

    To establish a generally accepted definition of knowledge, it is still necessary to continuously study it in depth. In this article,we first set forth the general definition that knowledge is the law of phenomena change. An intelligent agent can change the output from the input, or adjust the next output based on the previous output.This kind of input and output—as well as the law of change between output and output—is the law of change of the phenomenon, so it belongs to knowledge. This kind of knowledge is called primary knowledge. For example, placing all the changes in the phenomena into a table is an expression of knowledge (i.e.,exhaustive expression).However,the knowledge that people need is often not this primary form of knowledge,but rather one that is abstracted at a higher level—that is, the general and universal law that reflects the change of phenomena. This kind of knowledge is called advanced knowledge. Advanced knowledge can continue to be layered according to the degree of abstraction.Taking the work of Tycho Brahe and Johannes Kepler as an example, through detailed observations, Tycho listed a large amount of trajectory data of planetary operations,which only reflected the associations of phenomena(i.e.,planetary operations).Once Kepler successfully summed up the three laws and revealed the causal relationship of those phenomena, high-level knowledge of planetary operations was developed. Moreover, Newton’s second law is a yet higherlevel expression of knowledge. Both association and causal relationships are knowledge,but they are at different levels.In the process of humans acquiring knowledge,it is the most basic scientific activity to determine the association between phenomena through observation. To determine causality, it is necessary to analyze and summarize the phenomena behind the observed data. Causality plays an important role in the human science system, since humans always want to know—and persistently pursue—the‘‘why” behind a phenomenon change.

    In this paper, we focus on the question of whether people can obtain causal knowledge from intelligent agents, and how it may be done. This process involves the interpretation of machine knowledge.Through training,intelligent agents can complete very complicated work,and some of their achievements have exceeded humanity’s cultural accumulation over thousands of years. However, we still do not know how these agents are so successful.For example, for an intelligent agent such as neural network,excessive fitting training data does not make neural network more generalizable.We do not know where the boundaries of its success are. We do not know how to design the structure of a neural network to accomplish an intended task. We do not know whether it is possible to change the training set to make the neural network perform better. We do not even know what the neural network is based on for precise prediction—that is,whether it is based on data or on features. In a word, we do not understand the knowledge of an intelligent agent; hence, how can we trust it?

    Thus far, causality remains the fundamental cornerstone of human understanding of the natural world, and the association described by probabilistic thinking is the surface phenomenon that drives us to understand causal mechanisms in the world. As Pearl[3] said,In retrospect, my greatest challenge was to break away from probabilistic thinking and accept,first,that people are not probability thinkers but cause-effect thinkers and,second,that causal thinking cannot be captured in the language of probability; it requires a formal language of its own.

    The first point is the fact that scientific knowledge is not expressed in the form of probabilistic thinking, but is expressed as causal thinking.The second point involves how to carry out causal thinking. Pearl believes that humans have not yet invented mathematical tools that portray causal thinking. Unfortunately,most currently favored agents are run in a probabilistic manner,and the relationships between the expressed phenomena are all associations. Can we interpret the causation contained in these associations? It is still a very challenging problem. If humans and agents cannot communicate and understand each other, or if humans cannot translate the knowledge of agents into a causal form,then the development of artificial intelligence will encounter great obstacles and may even bring hide danger [4].

    Physics is a typical science that interprets the natural world with causality. The natural world can also be a huge intelligent agent, with phenomena changing every moment. To recognize the changes in the natural world and their laws, humans always adopt a description form of causality. They hope to give clear and accurate expressions of the laws behind the phenomenon transformation. This is mainly done by adopting regular expressions and mathematical expressions, which not only make it possible for humans to describe what has happened, but also make it possible for them to predict what is likely to happen, where the latter is especially important. However, the actual operating laws of the natural world cannot be directly obtained: Humans can only‘‘guess” the laws that are inherent in natural phenomena through observations.It is very difficult to accurately and completely summarize the corresponding law even with a large amount of data on the phenomena. Therefore, humans use two principles (or beliefs)to interpret the natural world,which are clearly stated in Newton’s

    Mathematical Principles of Natural Philosophy,Volume III:On the System of the Universe [5]. These are the first two of the four ‘‘rules of reasoning in philosophy”:

    (1) The simplest description principle (i.e., Occam’s razor): We are to admit no more causes of natural things than such as are both true and sufficient to explain their appearances.

    (2) The functional similarity principle: Therefore, to the same natural effects we must,as far as possible,assign the same causes.

    For physics,some fundamental laws and principles not only are a high degree of abstraction and causal characterization of the laws of phenomena of the natural world, but also follow the two basic principles mentioned above, thus forming the current basics and cognitions for the natural world and building the structure of human natural science knowledge. For example, measurements cannot be used to accurately verify Newton’s second law, so why do we still accept it? We accept it because there is a well-established principle hidden inside.

    Let us return to the interpretation of the intelligent agent. In most cases,we can know the structure of the agent,but we cannot predict its behaviors, just as we cannot judge what our brain will do based on its neural connection structure. We can only observe the associations between its input and output—that is, the data.For any agent, if there are sufficient observations and a large amount of observational data, it is theoretically possible to obtain the causal relationship through inductive calculation,without considering the internal structure and operation mode of the agent. It is said that the causal relationship can be established if it is highly consistent with the external performance (i.e., function) of the agent. This is guaranteed by the functional similarity principle.This method is fully embodied in physics. For example, the universe can be said to be like a huge clock,where we can only guess its internal structure from the outside. With continuous observations that improve in accuracy,our guess will become increasingly consistent with the observed phenomenon. Yet we may never know the actual structure inside the cosmic ‘‘clock.” Despite this incomplete knowledge, physics promotes human social development and scientific progress.

    Humans have been exploring causal relationships for thousands of years,but the description of causality has remained at a qualitative and empirical stage for a long time—until the 1970s, when C.Granger, J. Pearl, and D. Rubin proposed a definition of causality based on mathematical expressions. At that point, humans began to establish quantitative research on causality. Pearl’s description and method of causality are systematic and algorithmic, and can therefore deal with confounding interference among variables,find the existence of implicit variables,and solve the problems of attribution such as counterfactuals. The research based on Pearl’s causality achieved excellent performance in many real applications and can be applied to address the causal paradox problem. Therefore,Pearl’s causality has become an important method in the theory and application of artificial intelligence. In principle, Pearl’s causality has the same scientific assumptions and mathematical foundations as Fisher’s experimental design;hence,Pearl’s causality has a solid mathematical foundation.

    However, Pearl’s causality still has certain issues that make it less than satisfactory for slightly more complicated problems. For example, Pearl’s causal algorithm requires a high degree of data distribution and quantity—requirements that cannot be met in many real applications. Furthermore, Pearl’s causality is very sensitive to hidden variables; hence, insufficient or inaccurate observational data will greatly affect the calculation results. There are still many uncertainties in constructing the causal structural equation model or causal structure diagram model required by Pearl’s causality and its algorithms.

    Subsequently, Imbens and Rubin [6] proposed another causal model,named the potential outcome model,to explore the underlying causal knowledge by studying the potential outcomes and phenomena associations reflected in the data.Rubin’s causal model has been widely used in practical problems, especially those that require causal knowledge to assist in decision-making, such as medical diagnosis and public policymaking.However,Rubin’s causal model also has some problems;for example,its assumptions on data are too strong,and some of those assumptions are not testable in practical problems.

    Although the causal methods of Pearl and Rubin are still being studied, other methods have also been developed. Even though the causal relationship cannot be directly calculated, it can still reveal profound relationships from the knowledge of the intelligent agent.Those methods come from research in physics and artificial intelligence. Physicists also apply machine learning methods in their research when it is difficult to draw a causal relationship to understand the natural world. For example, machine learning methods have been used to understand the Langevin equation for multibody systems and the Boltzmann description of Liouville’s equation (the Bogoliubov-Born-Green-Kirkwood-Yvon (BBKGY)truncation). Interpretation algorithms are also used in artificial intelligence to understand the intrinsic relationships among complex data or features. Using an intelligent agent to interpret an intelligent agent is a wonderful idea. In fact, the current variety of intelligent agents(or learning models)are hierarchical in transparency. That is, some agents are more transparent to humans,such as linear models and decision tree models,while other agents are more obscure to humans, such as neural networks and Monte Carlo search tree models. It is regrettable (but very interesting)that the more obscure an agent is, the stronger its learning ability is,and the more knowledge it contains.If it is difficult to interpret an agent directly, one can consider interpreting it through a more transparent agent. This process can be recursive, making the content of the interpretation more and more easily understood by humans [7].

    By calculating the influence function,the importance of the data or features in an intelligent agent can be analyzed, making it possible to analyze which factors(i.e.,causes)cause the agent to have such a performance. It is also possible to analyze the quality and distribution of the data to find better observational data, which is very meaningful in both medical diagnosis and physical observation.

    For a given input data, the intelligent agent will give the corresponding output (or the next action). By calculating the Shapley value of each input data feature,it is possible to estimate the contribution of different features to the output.Features with large contributions are likely to be causes for the behavior of the agent[8].

    For complex agents, according to the universal mathematical principle,the local behavior of the agent should be similar to a linear system.Hence,according to functional similarity,it is possible to consider replacing the original agent with a linear model (e.g.,linear regression) in a local range [9]. The linear model has good transparency for causality, and its causal relationship can be obtained by the appropriate processing of its regression coefficients.Simultaneously,through the analysis of residuals,the accuracy of this approximation can be determined, as well as the sensitivity of other factors to the main variables.

    Another straightforward approach is to use a more transparent model T to learn the obscure model V, in order to obtain the data labeled by (x, V(x)) by inputting the data x, where V(x) represents the output of V with respect to x. Then T is relearned based on those data. If T and V have basically the same behaviors, then,according to the functional similarity principle,T and V can be considered to have the same causal knowledge. This method has achieved good results in analyzing the internal defects of an agent and in black-box attacks.

    The emergence of artificial intelligence has opened more ways for humans to discover new knowledge.By interpreting the knowledge of intelligent agents, we can enrich our own knowledge systems and better serve human development. At present, the interpretation of the intelligent agent still requires further study.As the theory and methods continue to improve, humans and agents will achieve a higher level of harmony in their relationship and will achieve better communication and cooperation with each other. This will be a milestone in the history of human evolution.

    Acknowledgements

    This article is based on the talks of participants at the Salon of Machine Knowledge and Human Cognition held by Lanzhou University in July 2019. All participants contributed to this article,we are greateful to other participants. They are experts in physics and computer science, including Liang Huang (Physics, Lanzhou University), Ning An (Computer Science, Hefei University of Technology), Lei Yang (Physics, Institute of Modern Physics, Chinese Academy of Sciences), Zhixi Wu (Physics, Lanzhou University), Li Liu (Computer Science, Chongqing University), Jialin Zhang (Computer Science, Institute of Computing Technology, Chinese Academy of Sciences), and Lianchun Yu (Physics, Lanzhou University).

    日韩欧美一区二区三区在线观看 | 欧美日韩福利视频一区二区| 成熟少妇高潮喷水视频| av电影中文网址| 亚洲精品在线美女| 另类亚洲欧美激情| 亚洲av日韩在线播放| 日本vs欧美在线观看视频| 国产日韩一区二区三区精品不卡| 在线观看www视频免费| 在线视频色国产色| 亚洲七黄色美女视频| 精品国产一区二区久久| 最新美女视频免费是黄的| 9热在线视频观看99| 在线观看一区二区三区激情| 国产有黄有色有爽视频| 色综合欧美亚洲国产小说| 91在线观看av| 搡老岳熟女国产| 亚洲九九香蕉| 国产区一区二久久| 免费在线观看视频国产中文字幕亚洲| 天天影视国产精品| 久久久水蜜桃国产精品网| 视频在线观看一区二区三区| 精品第一国产精品| 成人av一区二区三区在线看| 一本一本久久a久久精品综合妖精| 久久精品91无色码中文字幕| 久久国产精品人妻蜜桃| 飞空精品影院首页| 人人妻人人澡人人爽人人夜夜| 欧美日韩一级在线毛片| netflix在线观看网站| 久久人人97超碰香蕉20202| 在线天堂中文资源库| 欧美精品一区二区免费开放| 国产激情欧美一区二区| 国产高清视频在线播放一区| 黑丝袜美女国产一区| 一进一出抽搐动态| 一区二区三区国产精品乱码| 亚洲美女黄片视频| 亚洲黑人精品在线| 成人影院久久| 亚洲国产欧美日韩在线播放| 亚洲av电影在线进入| 黄色片一级片一级黄色片| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 欧美激情极品国产一区二区三区| 一区在线观看完整版| 高潮久久久久久久久久久不卡| 精品国产亚洲在线| 国产精品.久久久| 99久久国产精品久久久| 亚洲一区二区三区不卡视频| 日韩精品免费视频一区二区三区| 久久久久国内视频| 国产成人av激情在线播放| 热re99久久精品国产66热6| 日韩欧美三级三区| 欧美日韩视频精品一区| 国产成人精品久久二区二区免费| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| 久久热在线av| 亚洲精品在线美女| 大香蕉久久网| x7x7x7水蜜桃| 激情在线观看视频在线高清 | 久久久久久久久免费视频了| 亚洲成人免费电影在线观看| 久久久久精品人妻al黑| 99久久精品国产亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 91成人精品电影| 国产精品av久久久久免费| 操美女的视频在线观看| 国产乱人伦免费视频| 80岁老熟妇乱子伦牲交| 亚洲一区二区三区欧美精品| 国产99久久九九免费精品| 国产高清视频在线播放一区| 午夜亚洲福利在线播放| 国产成人啪精品午夜网站| 亚洲色图av天堂| 丰满的人妻完整版| 久久久国产成人免费| 一级毛片精品| 国产成人系列免费观看| 亚洲精品自拍成人| 一级毛片精品| 乱人伦中国视频| 极品教师在线免费播放| 免费av中文字幕在线| 亚洲专区国产一区二区| 久久精品aⅴ一区二区三区四区| 亚洲精华国产精华精| 黑人猛操日本美女一级片| 中文亚洲av片在线观看爽 | 成人精品一区二区免费| 久久国产乱子伦精品免费另类| 中文字幕另类日韩欧美亚洲嫩草| 亚洲avbb在线观看| 久久香蕉精品热| 国产精品国产av在线观看| 亚洲精华国产精华精| 成人18禁高潮啪啪吃奶动态图| 精品一区二区三区视频在线观看免费 | 亚洲午夜精品一区,二区,三区| 久久久精品免费免费高清| 又大又爽又粗| 色综合婷婷激情| 波多野结衣av一区二区av| 99国产精品一区二区蜜桃av | 国产一区二区三区综合在线观看| 99久久国产精品久久久| 女性被躁到高潮视频| 黄色女人牲交| 久9热在线精品视频| 热re99久久国产66热| 在线视频色国产色| 黄片大片在线免费观看| 色播在线永久视频| 精品久久久久久,| 欧美日韩乱码在线| 国产精品永久免费网站| 丝瓜视频免费看黄片| 性色av乱码一区二区三区2| 老司机福利观看| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 欧美不卡视频在线免费观看 | 亚洲五月天丁香| 亚洲情色 制服丝袜| 日韩免费av在线播放| 日韩欧美免费精品| 久久久久久久久免费视频了| 欧美精品高潮呻吟av久久| a级毛片在线看网站| 午夜免费鲁丝| 大型黄色视频在线免费观看| 天天操日日干夜夜撸| www.熟女人妻精品国产| 999精品在线视频| 精品久久久久久久毛片微露脸| 色综合欧美亚洲国产小说| 麻豆乱淫一区二区| 日韩欧美免费精品| xxxhd国产人妻xxx| 国产不卡一卡二| 国产精品偷伦视频观看了| 国精品久久久久久国模美| 亚洲伊人色综图| 51午夜福利影视在线观看| 国产激情久久老熟女| 亚洲中文字幕日韩| 国产一区二区三区在线臀色熟女 | 欧美日韩瑟瑟在线播放| 深夜精品福利| 99热网站在线观看| 亚洲精品在线美女| 亚洲av日韩在线播放| 最新美女视频免费是黄的| 自线自在国产av| 满18在线观看网站| 精品第一国产精品| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频 | av线在线观看网站| 亚洲人成电影观看| 国精品久久久久久国模美| 亚洲国产精品sss在线观看 | 国产单亲对白刺激| 欧美日韩亚洲高清精品| 国产精品久久久久久人妻精品电影| 国产日韩一区二区三区精品不卡| 涩涩av久久男人的天堂| 波多野结衣一区麻豆| 日韩免费高清中文字幕av| 另类亚洲欧美激情| 免费在线观看亚洲国产| 黑人巨大精品欧美一区二区mp4| av有码第一页| 久久影院123| 嫩草影视91久久| 久久久久久久精品吃奶| 看免费av毛片| 在线永久观看黄色视频| 女人精品久久久久毛片| 日韩中文字幕欧美一区二区| 亚洲av日韩在线播放| 高潮久久久久久久久久久不卡| 精品久久久久久,| 久久精品亚洲av国产电影网| 又黄又爽又免费观看的视频| 国产精品自产拍在线观看55亚洲 | 女性生殖器流出的白浆| 国产精品 欧美亚洲| 三上悠亚av全集在线观看| 男女免费视频国产| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 在线av久久热| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| 午夜91福利影院| 18禁国产床啪视频网站| 成人三级做爰电影| 国产1区2区3区精品| 男女午夜视频在线观看| 午夜精品久久久久久毛片777| 岛国在线观看网站| 久久国产精品大桥未久av| 国产高清videossex| 乱人伦中国视频| 亚洲五月天丁香| 亚洲av片天天在线观看| 99re6热这里在线精品视频| 少妇的丰满在线观看| 国产99白浆流出| 最近最新中文字幕大全免费视频| 日日摸夜夜添夜夜添小说| avwww免费| 日韩有码中文字幕| 丰满饥渴人妻一区二区三| 99精国产麻豆久久婷婷| 亚洲色图综合在线观看| 成年动漫av网址| 国产成人一区二区三区免费视频网站| 国产无遮挡羞羞视频在线观看| 一夜夜www| 亚洲 欧美一区二区三区| 国产精品香港三级国产av潘金莲| 国产精品久久视频播放| 国产aⅴ精品一区二区三区波| 日日爽夜夜爽网站| 免费女性裸体啪啪无遮挡网站| 女人精品久久久久毛片| 亚洲专区国产一区二区| 日韩熟女老妇一区二区性免费视频| 久久这里只有精品19| 欧美 亚洲 国产 日韩一| av天堂在线播放| 男女下面插进去视频免费观看| 欧美精品av麻豆av| 丝袜在线中文字幕| 国产精品自产拍在线观看55亚洲 | 激情视频va一区二区三区| 老司机影院毛片| 国产亚洲欧美精品永久| 色老头精品视频在线观看| 日本五十路高清| 男女下面插进去视频免费观看| 我的亚洲天堂| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| svipshipincom国产片| 999久久久精品免费观看国产| 狠狠狠狠99中文字幕| 国产成人免费无遮挡视频| 久久精品国产清高在天天线| 国产单亲对白刺激| 亚洲美女黄片视频| 免费不卡黄色视频| 嫩草影视91久久| 国产色视频综合| 成年版毛片免费区| 亚洲一码二码三码区别大吗| 国产精品久久久久成人av| 成年人免费黄色播放视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久国产精品人妻aⅴ院 | 国产成人啪精品午夜网站| 啦啦啦视频在线资源免费观看| 日韩中文字幕欧美一区二区| 视频在线观看一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 精品高清国产在线一区| 欧美日本中文国产一区发布| 人人澡人人妻人| 久久精品aⅴ一区二区三区四区| 最新在线观看一区二区三区| 久久久久久久国产电影| 成人黄色视频免费在线看| av免费在线观看网站| 亚洲av第一区精品v没综合| 精品卡一卡二卡四卡免费| 亚洲久久久国产精品| 成人18禁在线播放| 亚洲精品久久成人aⅴ小说| 久久久国产成人精品二区 | 一个人免费在线观看的高清视频| 人人妻人人添人人爽欧美一区卜| 午夜福利,免费看| 国产精品 欧美亚洲| 丁香欧美五月| 可以免费在线观看a视频的电影网站| 日韩制服丝袜自拍偷拍| 三级毛片av免费| 在线观看免费视频日本深夜| 天堂动漫精品| a级片在线免费高清观看视频| 国产精品 国内视频| 免费在线观看日本一区| 在线观看一区二区三区激情| 丝袜人妻中文字幕| 国产成人精品久久二区二区免费| ponron亚洲| 久久久久久久精品吃奶| 亚洲国产精品合色在线| 国产成人精品久久二区二区91| 咕卡用的链子| 大陆偷拍与自拍| 在线观看免费高清a一片| www.999成人在线观看| 高清在线国产一区| 热99久久久久精品小说推荐| 久久久久精品国产欧美久久久| 国产一区在线观看成人免费| 亚洲综合色网址| 极品少妇高潮喷水抽搐| 国产97色在线日韩免费| av中文乱码字幕在线| 国产精品美女特级片免费视频播放器 | bbb黄色大片| 婷婷成人精品国产| 成人黄色视频免费在线看| 黄网站色视频无遮挡免费观看| 色精品久久人妻99蜜桃| 在线观看66精品国产| 欧美在线一区亚洲| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 成年人午夜在线观看视频| 中文字幕人妻丝袜制服| 女性被躁到高潮视频| 狠狠婷婷综合久久久久久88av| 精品卡一卡二卡四卡免费| 成人免费观看视频高清| 亚洲av片天天在线观看| 丝袜美腿诱惑在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美在线一区亚洲| 777久久人妻少妇嫩草av网站| 亚洲国产精品一区二区三区在线| 亚洲专区字幕在线| 日本a在线网址| 欧美 亚洲 国产 日韩一| 国产有黄有色有爽视频| 国产亚洲精品一区二区www | 一边摸一边做爽爽视频免费| 国产精品偷伦视频观看了| 亚洲中文字幕日韩| 在线观看免费日韩欧美大片| 国产成人欧美| 国产国语露脸激情在线看| 午夜视频精品福利| 视频区图区小说| 成人国产一区最新在线观看| e午夜精品久久久久久久| 国产日韩欧美亚洲二区| 少妇的丰满在线观看| 亚洲欧美色中文字幕在线| 狂野欧美激情性xxxx| 久久国产乱子伦精品免费另类| 亚洲免费av在线视频| 国产男靠女视频免费网站| x7x7x7水蜜桃| 精品久久久久久,| 免费观看a级毛片全部| 妹子高潮喷水视频| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区蜜桃| 国产成人免费观看mmmm| 国产xxxxx性猛交| 婷婷丁香在线五月| 久热这里只有精品99| 午夜成年电影在线免费观看| 欧美老熟妇乱子伦牲交| 国产99久久九九免费精品| 19禁男女啪啪无遮挡网站| 免费一级毛片在线播放高清视频 | 日本精品一区二区三区蜜桃| 国精品久久久久久国模美| 五月开心婷婷网| 色综合婷婷激情| 黄色视频,在线免费观看| 热re99久久国产66热| 黑丝袜美女国产一区| 国产亚洲精品一区二区www | 亚洲专区国产一区二区| 久久性视频一级片| 一进一出抽搐gif免费好疼 | 两性午夜刺激爽爽歪歪视频在线观看 | a在线观看视频网站| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 精品电影一区二区在线| 老司机午夜十八禁免费视频| 波多野结衣av一区二区av| 色综合欧美亚洲国产小说| 午夜福利乱码中文字幕| 国产精品一区二区免费欧美| 女人久久www免费人成看片| 在线国产一区二区在线| 亚洲七黄色美女视频| 精品福利观看| 欧美乱妇无乱码| 飞空精品影院首页| 99热网站在线观看| 国产淫语在线视频| 成人18禁高潮啪啪吃奶动态图| 99国产精品免费福利视频| 国精品久久久久久国模美| 一个人免费在线观看的高清视频| 99国产精品一区二区三区| av网站免费在线观看视频| 麻豆成人av在线观看| 中文欧美无线码| 免费在线观看影片大全网站| 亚洲成a人片在线一区二区| 国产精品久久久av美女十八| 久久久久精品国产欧美久久久| 99热只有精品国产| 少妇猛男粗大的猛烈进出视频| 极品教师在线免费播放| 久久久久国产精品人妻aⅴ院 | 欧美+亚洲+日韩+国产| 免费不卡黄色视频| 亚洲精品久久成人aⅴ小说| 国产aⅴ精品一区二区三区波| 亚洲av成人av| 搡老熟女国产l中国老女人| 亚洲精品中文字幕一二三四区| 水蜜桃什么品种好| 后天国语完整版免费观看| 老熟妇仑乱视频hdxx| e午夜精品久久久久久久| 精品国产一区二区三区四区第35| 欧美大码av| 久久久水蜜桃国产精品网| 韩国av一区二区三区四区| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 亚洲精品中文字幕一二三四区| 久久午夜综合久久蜜桃| 美女高潮喷水抽搐中文字幕| 国产成人精品久久二区二区免费| 国产成人精品久久二区二区91| 亚洲精品成人av观看孕妇| 亚洲熟女精品中文字幕| 国产男靠女视频免费网站| 亚洲精品国产一区二区精华液| 欧美激情 高清一区二区三区| 亚洲精品av麻豆狂野| 99国产综合亚洲精品| 美女国产高潮福利片在线看| 久久九九热精品免费| 老熟女久久久| 99久久综合精品五月天人人| 黄片小视频在线播放| 国产成人免费无遮挡视频| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 成人手机av| 国产精品影院久久| 午夜成年电影在线免费观看| 在线天堂中文资源库| 亚洲专区字幕在线| 亚洲人成电影观看| 嫩草影视91久久| 色综合欧美亚洲国产小说| 欧美老熟妇乱子伦牲交| 亚洲国产欧美网| 欧美在线一区亚洲| 亚洲国产欧美日韩在线播放| 国产单亲对白刺激| 午夜福利,免费看| 丝袜美足系列| 免费女性裸体啪啪无遮挡网站| 久久国产精品影院| 99久久国产精品久久久| 成年动漫av网址| xxxhd国产人妻xxx| 51午夜福利影视在线观看| 一边摸一边做爽爽视频免费| 很黄的视频免费| 一级a爱片免费观看的视频| 精品第一国产精品| 叶爱在线成人免费视频播放| 国产精品免费视频内射| 国产精品美女特级片免费视频播放器 | 国产成+人综合+亚洲专区| av超薄肉色丝袜交足视频| 一进一出抽搐gif免费好疼 | 97人妻天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 无遮挡黄片免费观看| 正在播放国产对白刺激| 色94色欧美一区二区| 欧美不卡视频在线免费观看 | 免费一级毛片在线播放高清视频 | 国产精品av久久久久免费| 久热爱精品视频在线9| 操出白浆在线播放| 一区福利在线观看| 日日夜夜操网爽| 最近最新中文字幕大全免费视频| 久久婷婷成人综合色麻豆| 成人国语在线视频| 深夜精品福利| 又黄又粗又硬又大视频| 国产精品偷伦视频观看了| 涩涩av久久男人的天堂| 久久人妻av系列| 天天添夜夜摸| 亚洲成人免费电影在线观看| 国产区一区二久久| 久久中文看片网| 女人爽到高潮嗷嗷叫在线视频| 18在线观看网站| 日本五十路高清| 成人影院久久| 亚洲性夜色夜夜综合| 黑人操中国人逼视频| 久久精品人人爽人人爽视色| 激情在线观看视频在线高清 | 中文字幕制服av| 午夜老司机福利片| 搡老岳熟女国产| 成人18禁高潮啪啪吃奶动态图| 精品人妻熟女毛片av久久网站| xxxhd国产人妻xxx| 午夜福利在线免费观看网站| 后天国语完整版免费观看| 国产精品国产高清国产av | 亚洲精品中文字幕一二三四区| 亚洲专区国产一区二区| 亚洲一区二区三区欧美精品| 亚洲三区欧美一区| 大香蕉久久网| 成年女人毛片免费观看观看9 | 国产精品 国内视频| 在线观看免费视频日本深夜| 亚洲黑人精品在线| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产 | xxxhd国产人妻xxx| 成年人免费黄色播放视频| 中文字幕精品免费在线观看视频| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 美女福利国产在线| av超薄肉色丝袜交足视频| 日韩欧美国产一区二区入口| 国产人伦9x9x在线观看| 国产一区二区激情短视频| 国产精品99久久99久久久不卡| 国产麻豆69| 亚洲第一青青草原| 亚洲自偷自拍图片 自拍| 免费观看a级毛片全部| av欧美777| 亚洲国产欧美网| 男人的好看免费观看在线视频 | 亚洲av第一区精品v没综合| 欧美 日韩 精品 国产| 美女扒开内裤让男人捅视频| 亚洲av日韩精品久久久久久密| 女同久久另类99精品国产91| 国产欧美日韩综合在线一区二区| 在线永久观看黄色视频| 日韩免费高清中文字幕av| 后天国语完整版免费观看| avwww免费| 9191精品国产免费久久| 久久九九热精品免费| 美女午夜性视频免费| 少妇猛男粗大的猛烈进出视频| 久久精品成人免费网站| 村上凉子中文字幕在线| 免费观看精品视频网站| 国产精品 国内视频| 国产日韩欧美亚洲二区| 精品少妇久久久久久888优播| 欧美在线一区亚洲| 亚洲精品在线观看二区| 久久人人爽av亚洲精品天堂| cao死你这个sao货| av天堂在线播放| 国产成人av激情在线播放| 亚洲av欧美aⅴ国产| 极品少妇高潮喷水抽搐| 精品国产乱子伦一区二区三区| 人成视频在线观看免费观看| 99国产极品粉嫩在线观看| 91老司机精品| cao死你这个sao货| 十八禁高潮呻吟视频| 亚洲在线自拍视频| 母亲3免费完整高清在线观看| 日韩欧美国产一区二区入口| 91老司机精品| 亚洲国产欧美一区二区综合| 午夜免费成人在线视频| 夜夜躁狠狠躁天天躁| a级毛片在线看网站| 亚洲国产毛片av蜜桃av| 一级毛片精品| 桃红色精品国产亚洲av|