• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Towards a Fully Nonlinear Sharp Sobolev Trace Inequality

    2020-03-20 08:11:24JeffreyCaseandYiWang
    Journal of Mathematical Study 2020年4期

    Jeffrey S.Case and Yi Wang ?

    1 109 McAllister Building,Penn State University,University Park,PA 16802

    2 Department of Mathematics,Johns Hopkins University,Baltimore,MD 21218.

    Abstract. We classify local minimizers among all conformally flat metrics in the Euclidean(n+1)-ball,n=4 or n=5,for which the boundary has unit volume,subject to an ellipticity assumption. We also classify local minimizers of the analogous functional in the critical dimension n+1=4. If minimizers exist, this implies a fully nonlinear sharp Sobolev trace inequality. Our proof is an adaptation of the Frank–Lieb proof of the sharp Sobolev inequality, and in particular does not rely on symmetrization or Obata-type arguments.

    Key words: conformally covariant operator; boundary operator; σk-curvature;Sobolev trace inequality;fully nonlinear PDE.

    1 Introduction

    The first sharp Sobolev trace inequality was proven by Escobar[21]. In geometric terms,he showed that if g is any conformally flat metric on the Euclidean ball Bn+1?Rn+1,n>1,of radius one,then

    where ωnis the volume of the standard n-sphere, ι: Sn→Bn+1is the inclusion of Sn=?Bn+1,and Hgis the mean curvature of Sninduced by g,with the convention that Snhas mean curvature 1 with respect to the standard metric. Moreover,he showed that equality holds in (1.1) if and only if g is flat. His proof relies on an Obata-type argument which classifies all conformally flat,scalar flat metrics g on the ball for which the boundary has constant mean curvature. The inequality (1.1) plays a crucial role in studying a version of the boundary Yamabe problem;see[2,22,31–33]and references therein.

    In analytic terms,Eq. (1.1)states that

    Initial studies of the σk-curvature involved constructing minimizers of the total σkcurvature functional among all volume-normalized metrics in the positive k-cone (e.g.[29, 30, 37]). In the critical case of dimension four, Chang, Gursky and Yang [13] noted that one could instead work in the positive 1-cone provided the total σ2-curvature was positive.Later studies(e.g.[26,27,36])generalized this to show that one can minimize in the positive (k?1)-cone under a suitable integral assumption. For example, combining results of Guan and Wang[28]and Ge and Wang[26]yields sharp fully nonlinear Sobolev inequalities of closed n-spheres,n>4,stated in terms of the σ2-curvature and the positive 1-cone. Note that Obata’s argument generalizes to prove that any conformally flat metric of constant σk-curvature on the sphere has constant sectional curvature, subject to the above ellipticity condition[14,38].

    Given k∈N, S.Chen[18]defined the Hk-curvature of the boundary of a Riemannian manifold(Xn+1,g)in terms of elementary symmetric functions of the Schouten tensor of the interior and the second fundamental form of the boundary. The key points are that H1is the mean curvature;, g∈[g0],when written in terms of a fixed boundary metric g0,depends only on the tangential two-jet of u and the normal derivative of u along the boundary;and,provided k≤2 or g is locally conformally flat,

    In the critical dimension n+1=2k,one instead expects a Lebedev–Milin-type inequality stated in terms of the functional Fk(cf.[1, 5,35]). This is analogous to sharp Onofritype inequalities known on closed spheres(cf.[16,17,28,34,35]).

    with equality if and only if g is flat.

    Theorem 1.1. Let(Bn+1,dx2),n=4 or 5,be the closed unit ball in Euclidean(n+1)-space and suppose that g ∈C1is a local minimizer of S2: V →R. Then g=dx2up to the action of the conformal group of Bn+1.

    In comparison with our previous work [12], Theorem 1.1 removes the pinching assumption but imposes the stronger assumption that g∈C1is a local minimizer of S2: V→R,rather than just a critical point. We expect that the dimensional assumption n≤5 can be removed.

    Theorem 1.2. Let(B4,dx2)be the closed unit ball in Euclidean four-space. Suppose that g∈C1is a local minimizer of F2: V →R.Then g=dx2up to the action of the conformal group of B4.

    We remark that in Theorem 1.1 and Theorem 1.2 we assume g is a local minimizer of V as our proofs are based on the first and the second variation formulas. We also require g∈C1for ellipticity. We do not know whether a local minimizer of S2(or F2)on V ∩C1is a local minimizer on V,but hope to investigate this later.

    We prove Theorem 1.1 and Theorem 1.2 by adapting the rearrangement-free proof by Frank and Lieb[23]of Aubin’s sharp Sobolev inequality[3]. Indeed,this same technique gives a new proof of (1.1); see Subsection 5.1 for details. To the best of our knowledge,this is the first time the Frank–Lieb argument has been employed on manifolds with boundary.

    The Frank–Lieb argument exploits conformal covariance and a nice formula for the commutator of the conformal Laplacian on the sphere with a first spherical harmonic;similar properties allow Frank and Lieb to also prove sharp Sobolev inequalities on the CR spheres[24]. Our proof also exploits conformal invariance and nice commutator formulae,this time both in the interior and on the boundary of Bn+1. An intriguing question is whether our proofs can be adapted to CR manifolds.

    In another direction, we verify Conjecture 1.1 and Conjecture 1.2 when k=2 with nonsharp constants.

    Theorem 1.3. Let (Bn+1,dx2), n>3, be the closed unit ball in Euclidean (n+1)-space. Then there exists some constant C>0 such that

    for all g∈C1.

    Theorem 1.4. Let (B4,dx2) be the closed unit ball in Euclidean four-space. Then there exists some constant C>0 such that,

    for all metric g∈C1,

    This article is organized as follows. In Section 2 we collect some useful background information on the σ2-and H2-curvatures. In Section 3 we prove Theorem 1.3 and Theorem 1.4. In Section 4 we explain how conformal invariance and the assumption of a local minimizer are used in the Frank–Lieb argument. In Section 5 we give a new proof of(1.1)and prove Theorem 1.1 and Theorem 1.2.

    2 Background

    Let(Xn+1,g)be a Riemannian manifold. The Schouten tensor is

    The first Newton tensor T1is the section of S2T?X given by

    A consequence of G?arding’s work on hyperbolic polynomials [25] is that if g is in the positive elliptic 2-cone,

    then T1>0;see[9]. Moreover,if then T1≥0. The importance of this observation comes from the conformal transformation formula for the σ2-curvature:

    which are differential in each of their inputs. These operators have two key properties.First,they are conformally covariant: If gu=u8

    n?3g,then

    Second,the pair(L4;B3)is formally self-adjoint: The map

    We require the following explicit formula for L4and B3under certain geometric conditions:

    Lemma 2.1. Let(Xn+1,g)be a Ricci flat manifold. Then

    where the fourth equality also uses the assumption that g is Ricci flat.

    Lemma 2.2. Let (Xn+1,g) be a Ricci flat manifold with umbilic boundary of constant mean curvature H. Then

    Proof. On the one hand,the conformal transformation law for the mean curvature implies that

    On the other hand,the assumptions that g is Ricci flat and ?X is umbilic imply,using(2.4),that

    Combining these formulae with the definition of B3yields the desired result.

    It will be useful to express L4and B3in alternative forms. To that end,we introduce some operators.

    Definition 2.1. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space,n/=3. We define σ1: C∞(B)→C∞(B),T1: C∞(B)→C∞(B;S2T?B),and H: C∞(B)→C∞(?B)by

    As suggested by our notation, the point of these operators is that they are closely related to the corresponding geometric objects defined with respect to the metric gu:=dx2,but with the extra benefit of being polynomial in u and its covariant derivatives.The relations to geometric objects defined with respect to guare given by the following lemma. This also indicates how to extend the definitions of σ1, T1, and H to general manifolds with boundary.

    Lemma 2.3. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space. Then

    where gu:=dx2. In particular,each of σ1,T1,and H is conformally covariant.

    Proof. The equations for σ1(u)and T1(u)follow from(2.4). The equation for H(u)follows from(2.5).

    A useful corollary of Lemma 2.3 is the following expression for T1(u)(η,η).

    Corollary 2.1. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space. Then

    Proof. On the one hand,Lemma 2.3 implies that

    On the other hand,it holds that

    Applying(2.6)yields the desired conclusion.

    Lemma 2.3 also implies the following useful formulas for L4and B3.

    Proposition 2.1. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space. Then

    for all u∈C∞(B).

    Combining this with(2.9)yields the formula for uL4(u,u,u).

    2.1 The four-dimensional case

    In dimension four, the behavior of σ2and H2under conformal change of metric is also controlled by conformally covariant polydifferential operators. The following result can also be derived from Lemma 2.1 and Lemma 2.2 by analytic continuation in the dimension.See[11]for a general discussion on closed manifolds.

    Then

    for all u∈C∞(X).

    Proof. We directly compute that

    for all integers 1≤j≤4,with the convention L4,4=0. Integrating along the path te2tug,t∈[0,1],yields(2.11).

    Since ?X is umbilic,we directly compute that

    for all integers 1≤j≤4,with the convention B3,4=0. Integrating along the path t2tug,t∈[0,1],yields(2.12).

    One important property of the operators L4,jand B3,jis their transformation under conformal change of metrics,generalizing(2.11)and(2.12),respectively.

    Corollary 2.2. Let (X4,g) be a Riemannian manifold with umbilic boundary. For any integer 1≤j≤3,it holds that

    Remark 2.1. One can easily show that Lemma 2.4 and Corollary 2.2 also hold in the nonumbilic case with only a slight change to the definition of B3,1.

    Proof. Using(2.11)to compute e4(Υ+tu)in two ways yields

    Equating coefficients of t and polarizing yields (2.13). The verification of (2.14) follows similarly from(2.12).

    Another important property of the operators L4,jand B3,jis that the pairs (L3,j;B3,j)are formally self-adjoint;i.e.the maps

    Lemma 2.5. Let(X4,g)be a compact Riemannian manifold with umbilic boundary. Then

    for all u,v∈C∞(X).

    Proof. It directly follows from Lemma 2.4 that

    Since ?X is umbilic, T1(η,?v)=〈?H,?v〉(see[10,Lemma 2.1]). The conclusion readily follows.

    Lemma 2.6. Let(X4,g)be a compact Riemannian manifold with umbilic boundary. Then

    for all u,v,w∈C∞(X).

    Proof. It follows directly from Lemma 2.4 that

    Since ?X is umbilic,

    (see[10,Lemma 2.3]). The conclusion readily follows.

    Lemma 2.7. Let(X4,g)be a compact Riemannian manifold with umbilic boundary. Then

    for all t,u,v,w∈C∞(X).

    Proof. This follows directly from Lemma 2.4.

    3 A non-sharp fully nonlinear Sobolev trace inequality

    The remainder of this article is concerned with the functional

    defined with respect to the unit ball in Euclidean (n+1)-space and its analogue when n=3. Note that,by the conformal invariance of L4and B3,

    for all positive u ∈C∞(B). The main result of this section is the following (non-sharp)fully nonlinear Sobolev trace inequality in

    Note that C1equals the set(1.5)under the correspondence u~=u8

    n?3dx2.Recall the statement of Theorem 1.3. We note that it is equivalent to the following theorem.

    Theorem 3.1. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space. Then

    Proof. We first derive a general formula for E4(u)making no assumptions on u. Proposition 2.1 implies that

    To simplify this,first note that

    where the second equality uses Definition 2.1 and the fact that ?B is umbilic with second fundamental form II=ι?dx2. We conclude that

    where the second equality uses Corollary 2.1. Combining this with (3.2) and using the definition of H(u)yields

    Using Corollary 2.1 again yields Combining this with(3.3)yields

    3.1 The four dimensional case.

    We omit the superscript g when the background metric is clear from context. We require the following equivalent formula for F2.

    Lemma 3.1. Let(X4,g)be a compact Riemannian manifold with umbilic boundary. Then

    Proof. Lemma 2.4 immediately implies that

    The conclusion readily follows.

    The functional F2is conformally invariant,in the sense that it satisfies the following cocycle condition(cf.[7]).

    Lemma 3.2. Let(X4,g)be a compact Riemannian manifold with umbilic boundary. Then

    for all u,v∈C∞(X).

    Proof. This follows directly from Corollary 2.1 and Lemma 3.1.

    Adapting an argument of Chang and Yang[16]yields the following specialization of Lemma 3.2 to the Euclidean four-ball.

    Corollary 3.1. Let(B4,dx2)be the closed unit ball in Euclidean four-space. Then

    for all u∈C∞(B)and all Φ∈Conf(B4;S3),the group of conformal diffeomorphisms of B4which fix the boundary,where|JΦ|is the Jacobian determinant,dvolΦ?dx2=|JΦ|dvoldx2.

    Proof. First observe that(3.7)yields

    for all t∈[0,1]. Inserting this into(3.9)yields

    where the last equality uses the fact that VolΦ?tdx2(S3)is constant. In particular,

    Inserting this into(3.8)yields the desired conclusion.

    It is more useful to write F2(u) after integration by parts. Given our focus in this article,we restrict our attention to the unit ball in Euclidean four-space.

    Lemma 3.3. Let(B4,dx2)be the closed unit ball in Euclidean four-space. Then

    for all u∈C∞(B).

    Proof. First observe that dx2is Ricci flat,and hence Tdx21 =0,and S3=?B4is umbilic and has constant mean curvature H=1. The conclusion follows from Lemma 2.5,Lemma 2.6,Lemma 2.7 and Lemma 3.1.

    To establish our Lebedev–Milin-type inequality,we again need to restrict to the conformal metrics of nonnegative scalar curvature and positive mean curvature. To that end,define σ1: C∞(B4)→C∞(B4)and H: C∞(B4)→C∞(S3)by

    Note that

    justifying our notation. Set

    Note that C1equals the set(1.5)under the correspondence u~=e2udx2used in(3.6).

    Our Lebedev–Milin-type inequality establishes a uniform lower bound on the functional G2: C1→R,

    Among the key properties of G2are that it is scale in and conformally invariant. These properties allow us study G2in the subspace S∩C1,where

    and x1,...,x4denote the standard Cartesian coordinates on B4. Our Lebedev–Milin-type inequality then follows from an improved Moser–Trudinger trace inequality for functions u∈S involving the L4-norm of ?u in the interior(cf.[4]). The remainder of this subsection is devoted to explaining these points.

    We begin by establishing the conformal and scale invariance of G2.

    Lemma 3.4. Let(B4,dx2)be the closed unit ball in Euclidean four-space, let c∈R be constant,and let Φ∈Conf(B4;S3)be a conformal diffeomorphism of B4. Then

    for all u∈C∞(B4),where

    Proof. It is clear that G2(u)=G2(u+c)for all u∈C∞(M)and all c∈R. Since Φ is conformal,we see that dvolΦ?ι?dx2=|JΦ|3/4dvolι?dx2. Thus,by change of variables,

    Combining this display with Corollary 3.1 yields G2(uΦ)=G2(u). The desired conclusion follows from these two observations.

    Lemma 3.4 implies that the infima of G2: C1→R and G2: S∩C1→R agree.

    Lemma 3.5. Let (B4,dx2) be the closed unit ball in Euclidean four-space and let u ∈C∞(M).Then there is a Φ∈Conf(B4;S3)such that uΦ∈S,where uΦis defined by(3.12). In particular,

    Proof. Applying [23, Lemma B.1]x to the function e3u?ι on ?B yields an elementΦ ∈Conf(S3)such thatu:=u?ι?Φ+13log|JΦ|satisfies

    When restricted to elements of the set(3.11)of balanced functions,the constant 128ω3/81 in Proposition 3.1 improves by a factor of almost two. A similar phenomenon for closed manifolds was first observed by Aubin [4]. Our proof below adapts ideas of Aubin[4]and of Branson,Chang and Yang[6].

    Proposition 3.2. Let (B4,dx2) be the closed unit ball in Euclidean four-space. For any ε>0,there is a constant C=C(ε)such that

    Given an integer 1≤i≤4,denote

    Combining(3.15)–(3.17),and(3.23)with suitable choices of η and ε1yields(3.14).

    We are now able to prove our Lebedev–Milin-type inequality. Recall the statement of Theorem 1.4 and note that it is equivalent to the following form:

    Theorem 3.2. Let(B4,dx2)be the closed unit ball in Euclidean four-space. Then

    Proof. By Lemma 3.5,it suffices to prove that

    Applying Proposition 3.2 with ε=5/27 yields(3.24).

    4 A spectral inequality at local minimizers

    The Frank–Lieb argument[23]proving sharp Hardy–Littlewood–Sobolev inequalities begins with a spectral inequality satisfied by any local minimizer of the problem in question. When n≥4,we are concerned with the local minimizers of E2: V →R for

    Now,since u is a critical point of E2: V →R,it satisfies

    Combining this with(4.2)yields

    Now apply the assumption that u is a local minimizer of E2: V →R.

    Define the commutators of L4and B3with multiplication operators by

    The core of the Frank–Lieb argument is contained in the following estimate.

    Corollary 4.1. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space and let u be a local minimizer of E2: V →R. Suppose additionally that

    The conclusion now follows from(4.3)and the definitions of the commutators.

    One typically calls functions u which satisfy (4.4) balanced. It is well-known [15,23]that this condition can always be achieved by a suitable M¨obius transformation. For conformally covariant problems, this means that local minimizers, if they exist,can always be taken to be balanced. Specifically:

    Proposition 4.2. Let(Bn+1,dx2)be the closed unit ball in Euclidean(n+1)-space and let u be a local minimizer of E2: V →R. Then there is a Φ∈Conf(Bn+1;Sn)such that

    is a balanced local minimizer of E2: V →R.

    Proof. First observe that,by change of variables,u∈V if and only if uΦ∈V. Moreover,by the diffeomorphism invariance of E2,we see that

    for all u∈C∞(B)and all Φ∈Conf(Bn+1;Sn). In fact,Eq. (3.1)implies that

    4.1 The four-dimensional case

    When n=3, the relevant functional G2is (3.10). This functional is scale invariant (see Lemma 3.4), so there is no need to impose an additional volume normalization. The analogue of Proposition 4.1 when n=3 is as follows:

    Proposition 4.3. Let(B4,dx2)be the closed unit ball in Euclidean four-space and let u be a local minimizer of G2: C∞(B)→R. Then

    for all v∈C∞(B)such that

    Proof. It follows from Lemma 2.5,Lemma 2.6 and Lemma 2.7 that

    for all u,v ∈C∞(B). The conclusion follows by assuming that u is a local minimizer of G2: C∞(B)→R and v satisfies(4.7).

    Note that the operators L4,j, B3,j, j=1,2,3,annihilate constants,in the sense that they give the zero function if at least one of their inputs is constant. This will make it relatively easy to apply the following immediate consequence of Proposition 4.3 for balanced minimizers.

    Corollary 4.2. Let (B4,dx2) be the closed unit ball in Euclidean four-space and let u be a local minimizer of G2: C∞(B)→R. Suppose additionally that u ∈S for S as in (3.11).Then

    As in the higher-dimensional case(cf.Proposition 4.2),one can always assume that a local minimizer of G2: C∞(B)→R satisfies the balancing condition u∈S.

    Proposition 4.4. Let(B4,dx2)be the closed unit ball in Euclidean four-space and let u be a local minimizer of G2: C∞(B)→R. Then there is a Φ ∈Conf(B4;S3) such that uΦ, as defined by(3.12),is a local minimizer of G2: C∞(B)→R and satisfies uΦ∈S.

    Proof. Let u be a local minimizer of G2: C∞(B)→R. Lemma 3.5 yields a Φ∈Conf(B4;S3)such that uΦ∈S. Lemma 3.4 implies that G2(uΦ)=G2(u). It follows that uΦis a balanced local minimizer of G2: C∞(B)→R.

    5 Classification of local minimizers

    As indicated in Section 4, it remains to compute the commutators [L4,xi] and [B3,xi].To illustrate this strategy in a simple case, we first give a new proof that the only local minimizers of Escobar’s sharp Sobolev trace inequality (1.2) are the constant functions and their images under the action of the conformal group.

    5.1 Escobar’s functional

    The analogue of Corollary 4 is that

    for all positive balanced local minimizers u of

    in the set

    where a function u is balanced if

    for all integers 1≤i≤n+1. Here we use the standard correspondenceubetween functions on Bn+1and conformally flat metrics.

    It is straightforward to compute that

    Inserting this into(5.1)and using the formula

    yields

    where r2is the squared distance from the origin. Since u is a local minimizer of E1: V1→R,it satisfies L2u=0. Integrating this against(1?r2)u yields

    Combining this with(5.2)yields

    Therefore u is constant.

    5.2 The functional E2

    Our objective is to classify local minimizers of the functional

    defined on the set

    We assume our minimizers are in the nonnegative cone

    Note that local minimizers of E2: V →R are such that the first variation vanishes and the second variation is nonnegative.

    Our first task is to compute the commutators[L4,xi]and[B3,xi]. This is accomplished in the following two lemmas.

    Lemma 5.1. Let Bn+1be the closed unit ball in (n+1)-dimensional Euclidean space and let x denote a Cartesian coordinate in Rn+1. Then

    Proof. It follows immediately from Lemma 2.1 that

    Expanding this out yields

    Rewriting this using Definition 2.1 yields the desired result.

    Lemma 5.2. Let Bn+1be the closed unit ball in (n+1)-dimensional Euclidean space and let x denote a Cartesian coordinate in Rn+1. Then

    Proof. Recall that ?B is umbilic with constant mean curvature 1. It follows from Lemma 2.2 that

    The final conclusion follows from Definition 2.1 and Corollary 2.1.

    Analogous to Subsection 5.1,the application of the commutator formula in Lemma 5.1 will produce an interior integral involving T1(?u,?r2). Our second task is to find a useful estimate for this integral.

    Lemma 5.3. Let(Bn+1,dx2)be the closed unit ball in(n+1)-dimensional Euclidean space and let r2∈C∞(B)denote the squared-distance from the origin. Then

    Proof. On the one hand,it follows from(2.8)and the identities ?2r2=2dx2and trT1(u)=nσ1(u)that

    On the other hand,it follows from Definition 2.1 that

    Combining these displays yields

    The final conclusion follows from(3.4).

    We now have the ingredients in place to classify local minimizers of E2: V →R in dimension n+1≤6.

    Proof of Theorem 1.1. Let u be a local minimizer of E2: V →R.Proposition 4.2 implies that,by using the action of Conf(Bn+1;Sn) if necessary, we may assume that u satisfies (4.4).

    On the one hand,Corollary 4.1 states that

    On the other hand,Lemma 5.1 and Lemma 5.2 imply that

    Combining these displays using(3.4)and Lemma 5.4 yields

    Combining this with Lemma 5.3 yields

    Since n ≤5, we see that the right-hand side is nonnegative, and hence equality holds in(5.3). Therefore u is constant.

    5.3 The functional G2

    We conclude by considering local minimizers u ∈C1of the functional G2: C∞(B4)→R defined by(3.10). Our first task is to compute L4,j(x,u,...,u)and B3,j(x,u,...,u).

    Lemma 5.5. Let (B4,dx2) be the closed unit ball in Euclidean four-space and let x denote a Cartesian coordinate in R4. Then

    for all u∈C∞(B).

    Proof. By direct computation,

    Expanding this using the fact ?2x=0 yields(5.4). By direct computation again,

    We deduce(5.5)from the facts that dx2is flat and ?2x=0.

    Lemma 5.6. Let (B4,dx2) be the closed unit ball in Euclidean four-space and let x denote a Cartesian coordinate in R4. Then

    for all u∈C∞(B).

    Proof. Recall that ??x=3x. The conclusion follow by direct computation.

    We obtain the following analogue of Lemma 5.3. Define the Γ(?2T?S3)-valued differential operator T1by

    Proof. First observe that

    Therefore

    Second observe that

    Combining these results with the Divergence Theorem yields the desired conclusion.

    We now can classify local minimizers of G2: C∞(B4)→R which are in C1.

    Proof of Theorem 1.2. Note that u ∈C∞(B4) is a local minimizer of G2: C∞(B)→R if and only if u+c is a local minimizer of F: V →R, where the constant c is chosen such that u+c∈V.

    Let u ∈C1be a local minimizer of G2: C∞(B)→R. Proposition 4.4 implies that, by using the action of Conf(B4;S3) if necessary, we may assume that u ∈S. Combining Corollary 4.2,Lemma 5.5,Lemma 5.6 and(5.10)yields

    Combining this with Lemma 5.7 yields

    which implies

    and in the meanwhile,

    As a result,

    Thus equality holds in both steps.We conclude that u is constant,as desired.

    Acknowledgments

    The authors would like to thank Sun-Yung Alice Chang for her helpful comments on this work.They are also grateful to the referees for their valuable suggestions and comments.JSC was partially supported by a grant from the Simons Foundation(Grant No.524601).YW was partially supported by NSF CAREER Award DMS-1845033.

    日本黄色日本黄色录像| 亚洲av成人一区二区三| 国产av一区二区精品久久| 国产男女内射视频| 岛国毛片在线播放| 国产无遮挡羞羞视频在线观看| 少妇猛男粗大的猛烈进出视频| 日韩熟女老妇一区二区性免费视频| 亚洲欧美一区二区三区久久| 精品熟女少妇八av免费久了| 久久人妻福利社区极品人妻图片| 亚洲少妇的诱惑av| 热re99久久国产66热| 黄色丝袜av网址大全| 中国美女看黄片| 天天添夜夜摸| 热99国产精品久久久久久7| 校园春色视频在线观看| 国产欧美日韩一区二区精品| 亚洲性夜色夜夜综合| 久久精品国产a三级三级三级| 久热爱精品视频在线9| 久久影院123| 视频区图区小说| 大香蕉久久成人网| 在线天堂中文资源库| 十八禁高潮呻吟视频| 久久精品亚洲熟妇少妇任你| 老司机午夜十八禁免费视频| 午夜亚洲福利在线播放| 亚洲成av片中文字幕在线观看| 国产淫语在线视频| 国产深夜福利视频在线观看| 亚洲欧美精品综合一区二区三区| 亚洲av成人一区二区三| 久久ye,这里只有精品| 久久性视频一级片| 男女免费视频国产| 一进一出好大好爽视频| 亚洲精品一卡2卡三卡4卡5卡| 成人永久免费在线观看视频| 视频区图区小说| 欧美人与性动交α欧美精品济南到| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久5区| 亚洲精品美女久久久久99蜜臀| 亚洲,欧美精品.| 在线观看免费视频网站a站| av中文乱码字幕在线| 天天躁夜夜躁狠狠躁躁| 一级a爱视频在线免费观看| 亚洲中文日韩欧美视频| 伦理电影免费视频| av网站在线播放免费| 99久久国产精品久久久| 一区在线观看完整版| 最近最新免费中文字幕在线| 在线看a的网站| 99热只有精品国产| 精品久久久久久,| 少妇粗大呻吟视频| 亚洲欧美精品综合一区二区三区| 成年版毛片免费区| 看免费av毛片| www.熟女人妻精品国产| 大码成人一级视频| 久久久国产成人精品二区 | 亚洲中文日韩欧美视频| 午夜免费鲁丝| 美女扒开内裤让男人捅视频| 69精品国产乱码久久久| 亚洲国产精品一区二区三区在线| 国产亚洲精品久久久久5区| 满18在线观看网站| 在线永久观看黄色视频| 女人被躁到高潮嗷嗷叫费观| 国产乱人伦免费视频| 天天躁日日躁夜夜躁夜夜| 国产99久久九九免费精品| 国产片内射在线| www.精华液| 精品午夜福利视频在线观看一区| 国产成人免费无遮挡视频| 亚洲成国产人片在线观看| 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 亚洲欧美色中文字幕在线| 一区二区三区激情视频| 亚洲午夜理论影院| 国产精品电影一区二区三区 | 欧美日韩av久久| 国产精品免费大片| 亚洲成国产人片在线观看| 久久精品成人免费网站| 午夜福利一区二区在线看| 窝窝影院91人妻| 人妻丰满熟妇av一区二区三区 | 免费av中文字幕在线| 热99re8久久精品国产| 国产欧美日韩综合在线一区二区| 欧美亚洲 丝袜 人妻 在线| 深夜精品福利| tube8黄色片| 日韩成人在线观看一区二区三区| 午夜激情av网站| 久久精品亚洲精品国产色婷小说| 精品久久久精品久久久| 真人做人爱边吃奶动态| www.熟女人妻精品国产| e午夜精品久久久久久久| 1024视频免费在线观看| 亚洲一区二区三区欧美精品| 精品福利永久在线观看| 99国产精品一区二区蜜桃av | 怎么达到女性高潮| 一区在线观看完整版| 国产成人影院久久av| 一二三四社区在线视频社区8| 一二三四社区在线视频社区8| 一区福利在线观看| 一区二区日韩欧美中文字幕| 一进一出好大好爽视频| 深夜精品福利| 国产一区二区三区综合在线观看| 久久精品国产a三级三级三级| 久久国产乱子伦精品免费另类| 精品少妇一区二区三区视频日本电影| 777久久人妻少妇嫩草av网站| 久热爱精品视频在线9| 久久香蕉精品热| 日日爽夜夜爽网站| 50天的宝宝边吃奶边哭怎么回事| 我的亚洲天堂| 国产高清国产精品国产三级| 成年女人毛片免费观看观看9 | 亚洲国产欧美网| 亚洲午夜理论影院| 亚洲色图综合在线观看| 国产激情久久老熟女| 久久久久国内视频| 国产成人精品无人区| 欧美在线一区亚洲| 久久性视频一级片| 女警被强在线播放| 极品人妻少妇av视频| 操美女的视频在线观看| 在线av久久热| 国产亚洲欧美精品永久| 亚洲精品国产一区二区精华液| 男女高潮啪啪啪动态图| 很黄的视频免费| 日本一区二区免费在线视频| 免费在线观看亚洲国产| 在线观看免费午夜福利视频| 99精国产麻豆久久婷婷| 欧美老熟妇乱子伦牲交| 亚洲成av片中文字幕在线观看| a级片在线免费高清观看视频| 久久久国产欧美日韩av| 美女午夜性视频免费| 精品一区二区三卡| 婷婷精品国产亚洲av在线 | 欧美乱妇无乱码| 亚洲黑人精品在线| 亚洲国产精品一区二区三区在线| 欧美精品人与动牲交sv欧美| 亚洲七黄色美女视频| 大香蕉久久网| 精品乱码久久久久久99久播| 岛国毛片在线播放| 成人亚洲精品一区在线观看| 国产精品自产拍在线观看55亚洲 | 中文字幕人妻丝袜制服| 日本精品一区二区三区蜜桃| 99精品欧美一区二区三区四区| 在线视频色国产色| 国产成+人综合+亚洲专区| 看片在线看免费视频| 日日摸夜夜添夜夜添小说| 天天躁日日躁夜夜躁夜夜| 欧美 亚洲 国产 日韩一| 麻豆成人av在线观看| 欧美日韩黄片免| 日韩制服丝袜自拍偷拍| 黑人巨大精品欧美一区二区蜜桃| 久久久国产欧美日韩av| 国产精品香港三级国产av潘金莲| av欧美777| 亚洲成人免费av在线播放| 精品一区二区三区视频在线观看免费 | 99久久国产精品久久久| 一区在线观看完整版| 91国产中文字幕| 电影成人av| 久久精品91无色码中文字幕| 亚洲黑人精品在线| 夜夜爽天天搞| 91av网站免费观看| 亚洲一码二码三码区别大吗| 麻豆av在线久日| 亚洲久久久国产精品| 99精国产麻豆久久婷婷| 1024视频免费在线观看| 三级毛片av免费| 久久久久国产一级毛片高清牌| 欧洲精品卡2卡3卡4卡5卡区| 婷婷丁香在线五月| 成人影院久久| 男男h啪啪无遮挡| 亚洲国产精品合色在线| 欧美成人午夜精品| 黄色 视频免费看| 午夜福利视频在线观看免费| 国产精品国产av在线观看| 两个人免费观看高清视频| 天天躁狠狠躁夜夜躁狠狠躁| avwww免费| 色94色欧美一区二区| 免费人成视频x8x8入口观看| 中文字幕人妻熟女乱码| 国产色视频综合| 国产成人免费观看mmmm| 99久久国产精品久久久| 欧美黄色淫秽网站| 欧美久久黑人一区二区| 日日摸夜夜添夜夜添小说| 激情在线观看视频在线高清 | 少妇裸体淫交视频免费看高清 | 欧美不卡视频在线免费观看 | 亚洲av日韩在线播放| 在线观看午夜福利视频| 老司机午夜十八禁免费视频| 久久这里只有精品19| av一本久久久久| 丁香六月欧美| 天天躁日日躁夜夜躁夜夜| 热re99久久精品国产66热6| 涩涩av久久男人的天堂| 国产一区二区三区综合在线观看| 免费人成视频x8x8入口观看| 99香蕉大伊视频| svipshipincom国产片| 日日夜夜操网爽| 色播在线永久视频| 美女国产高潮福利片在线看| 亚洲国产欧美日韩在线播放| 国产亚洲精品第一综合不卡| 久久亚洲精品不卡| 国产精品.久久久| 交换朋友夫妻互换小说| 国产成人影院久久av| 无人区码免费观看不卡| 黑人猛操日本美女一级片| 美国免费a级毛片| 婷婷成人精品国产| 国产一区在线观看成人免费| 国产精品九九99| 亚洲欧美一区二区三区黑人| 一级作爱视频免费观看| 日本wwww免费看| 三级毛片av免费| 精品久久久久久久久久免费视频 | 最近最新中文字幕大全免费视频| 桃红色精品国产亚洲av| 成人三级做爰电影| 看免费av毛片| 在线观看免费视频日本深夜| 每晚都被弄得嗷嗷叫到高潮| 午夜91福利影院| 每晚都被弄得嗷嗷叫到高潮| 91av网站免费观看| 18禁裸乳无遮挡动漫免费视频| 日日摸夜夜添夜夜添小说| 高清欧美精品videossex| 少妇粗大呻吟视频| 美女午夜性视频免费| 亚洲中文av在线| 亚洲九九香蕉| 天堂中文最新版在线下载| 久99久视频精品免费| 久久ye,这里只有精品| 国产在视频线精品| 亚洲欧美日韩另类电影网站| 身体一侧抽搐| 国产真人三级小视频在线观看| 国产欧美亚洲国产| 最近最新中文字幕大全免费视频| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 国产精品乱码一区二三区的特点 | a在线观看视频网站| 性少妇av在线| 精品少妇久久久久久888优播| 精品福利观看| 精品一区二区三卡| 99在线人妻在线中文字幕 | 丰满迷人的少妇在线观看| 热99国产精品久久久久久7| 亚洲伊人色综图| 国产精品二区激情视频| 色精品久久人妻99蜜桃| aaaaa片日本免费| 亚洲精品久久午夜乱码| 午夜激情av网站| 午夜福利欧美成人| 日韩三级视频一区二区三区| av超薄肉色丝袜交足视频| 又大又爽又粗| 国产极品粉嫩免费观看在线| 久久午夜综合久久蜜桃| 97人妻天天添夜夜摸| 在线观看一区二区三区激情| 岛国毛片在线播放| 一区二区三区精品91| 国产精品永久免费网站| av电影中文网址| 精品人妻1区二区| 国产免费现黄频在线看| 69精品国产乱码久久久| 夜夜躁狠狠躁天天躁| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 亚洲精品美女久久av网站| av福利片在线| 成人精品一区二区免费| 黑人巨大精品欧美一区二区蜜桃| 露出奶头的视频| 99热国产这里只有精品6| 久久久久精品国产欧美久久久| 亚洲精品一卡2卡三卡4卡5卡| 一a级毛片在线观看| 大陆偷拍与自拍| 色婷婷av一区二区三区视频| 黑人操中国人逼视频| 女人高潮潮喷娇喘18禁视频| 日韩视频一区二区在线观看| 精品无人区乱码1区二区| 一区二区三区国产精品乱码| 国产深夜福利视频在线观看| 老司机影院毛片| 亚洲一区高清亚洲精品| 超碰成人久久| 午夜福利乱码中文字幕| 一边摸一边抽搐一进一小说 | 免费看a级黄色片| 成在线人永久免费视频| 国产成人欧美在线观看 | 国产男靠女视频免费网站| 国产免费现黄频在线看| 一区在线观看完整版| 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 五月开心婷婷网| 免费不卡黄色视频| 美女福利国产在线| 欧美日韩黄片免| 国产精品九九99| 精品熟女少妇八av免费久了| 成人精品一区二区免费| 久久国产乱子伦精品免费另类| 天堂中文最新版在线下载| 亚洲avbb在线观看| 女同久久另类99精品国产91| 美女午夜性视频免费| 18禁裸乳无遮挡免费网站照片 | av福利片在线| 亚洲va日本ⅴa欧美va伊人久久| 美女午夜性视频免费| 午夜福利在线观看吧| 精品国产乱子伦一区二区三区| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| 制服诱惑二区| 色播在线永久视频| 精品久久久久久,| 一级片免费观看大全| 久久热在线av| 人人妻,人人澡人人爽秒播| 国产成人精品无人区| 最新美女视频免费是黄的| 午夜视频精品福利| 俄罗斯特黄特色一大片| av网站在线播放免费| 97人妻天天添夜夜摸| 91精品三级在线观看| 美女 人体艺术 gogo| 久久热在线av| 韩国精品一区二区三区| 黄色视频,在线免费观看| 精品午夜福利视频在线观看一区| 一级黄色大片毛片| 亚洲精品美女久久久久99蜜臀| 国产成人影院久久av| 王馨瑶露胸无遮挡在线观看| 国产野战对白在线观看| 夜夜爽天天搞| 怎么达到女性高潮| 十八禁高潮呻吟视频| 国产精品 国内视频| 亚洲精品久久午夜乱码| videos熟女内射| 大型av网站在线播放| 中出人妻视频一区二区| 国产激情欧美一区二区| 黑人巨大精品欧美一区二区mp4| 国产日韩欧美亚洲二区| 99国产精品免费福利视频| 免费高清在线观看日韩| 欧美色视频一区免费| 99久久国产精品久久久| 制服人妻中文乱码| 99国产精品一区二区三区| 欧美性长视频在线观看| 欧美日韩黄片免| 亚洲国产精品sss在线观看 | 精品无人区乱码1区二区| 亚洲精品久久成人aⅴ小说| 亚洲中文av在线| 丝袜人妻中文字幕| 国产在线精品亚洲第一网站| 免费日韩欧美在线观看| av欧美777| 人人妻人人爽人人添夜夜欢视频| 成年人免费黄色播放视频| 日本vs欧美在线观看视频| 国产区一区二久久| 操出白浆在线播放| av不卡在线播放| 日韩免费高清中文字幕av| 成年动漫av网址| 香蕉丝袜av| 大码成人一级视频| 高清欧美精品videossex| 久热这里只有精品99| 亚洲精品美女久久av网站| 成年人黄色毛片网站| 怎么达到女性高潮| 亚洲专区字幕在线| 亚洲视频免费观看视频| 99re6热这里在线精品视频| 亚洲五月婷婷丁香| 大片电影免费在线观看免费| 成人18禁高潮啪啪吃奶动态图| 色老头精品视频在线观看| 乱人伦中国视频| 国产精品免费一区二区三区在线 | 黄片小视频在线播放| 亚洲aⅴ乱码一区二区在线播放 | 99精国产麻豆久久婷婷| 久久精品成人免费网站| 免费观看精品视频网站| 欧美激情久久久久久爽电影 | 少妇 在线观看| 无遮挡黄片免费观看| 1024视频免费在线观看| 国产成人欧美在线观看 | 美女视频免费永久观看网站| 1024香蕉在线观看| 黄色片一级片一级黄色片| 成熟少妇高潮喷水视频| 9热在线视频观看99| 男人舔女人的私密视频| 久久久精品免费免费高清| 高潮久久久久久久久久久不卡| 18禁观看日本| 90打野战视频偷拍视频| 中文字幕人妻熟女乱码| 亚洲第一欧美日韩一区二区三区| 国产精品一区二区免费欧美| 一区二区三区国产精品乱码| 国产一区有黄有色的免费视频| 久久精品人人爽人人爽视色| 人妻久久中文字幕网| 在线播放国产精品三级| 国产在线一区二区三区精| 宅男免费午夜| 99国产精品一区二区蜜桃av | 欧美中文综合在线视频| 欧美日韩亚洲国产一区二区在线观看 | 一级作爱视频免费观看| 黑人猛操日本美女一级片| 一二三四在线观看免费中文在| 欧美+亚洲+日韩+国产| 亚洲精品美女久久久久99蜜臀| 丰满的人妻完整版| 亚洲av成人一区二区三| 欧美亚洲日本最大视频资源| 国产91精品成人一区二区三区| 国产欧美日韩一区二区精品| xxxhd国产人妻xxx| 妹子高潮喷水视频| 黄色视频不卡| av超薄肉色丝袜交足视频| 亚洲七黄色美女视频| 国产99久久九九免费精品| 国产成+人综合+亚洲专区| 国产精品亚洲一级av第二区| 国产精品香港三级国产av潘金莲| 操出白浆在线播放| 窝窝影院91人妻| 一级毛片女人18水好多| 国产日韩欧美亚洲二区| 亚洲九九香蕉| 久久久国产成人免费| 国产成人免费无遮挡视频| 美女午夜性视频免费| 欧美激情高清一区二区三区| 久久中文字幕人妻熟女| 成年女人毛片免费观看观看9 | 国产高清激情床上av| 丁香欧美五月| 久久久久久久精品吃奶| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 国产成人系列免费观看| 亚洲精品美女久久av网站| 日本wwww免费看| 国产视频一区二区在线看| 天堂√8在线中文| 成人18禁高潮啪啪吃奶动态图| 欧美精品亚洲一区二区| 丝袜美腿诱惑在线| 中文字幕人妻熟女乱码| 国产精品久久电影中文字幕 | 国产一区在线观看成人免费| 一级,二级,三级黄色视频| 精品熟女少妇八av免费久了| 熟女少妇亚洲综合色aaa.| 黄色丝袜av网址大全| 国精品久久久久久国模美| 无限看片的www在线观看| 岛国在线观看网站| 天天躁夜夜躁狠狠躁躁| 成人亚洲精品一区在线观看| 国产精品电影一区二区三区 | 国产97色在线日韩免费| 亚洲欧洲精品一区二区精品久久久| 又紧又爽又黄一区二区| 免费在线观看影片大全网站| 五月开心婷婷网| 99热网站在线观看| 水蜜桃什么品种好| 日本a在线网址| 色综合欧美亚洲国产小说| 757午夜福利合集在线观看| 男男h啪啪无遮挡| 亚洲视频免费观看视频| 丝袜人妻中文字幕| 精品国内亚洲2022精品成人 | 亚洲第一av免费看| 亚洲性夜色夜夜综合| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 亚洲av电影在线进入| 两人在一起打扑克的视频| 亚洲一区二区三区不卡视频| 久热这里只有精品99| 婷婷丁香在线五月| 身体一侧抽搐| 亚洲国产中文字幕在线视频| 精品国产亚洲在线| 69av精品久久久久久| 欧美最黄视频在线播放免费 | 首页视频小说图片口味搜索| 热99国产精品久久久久久7| 日韩视频一区二区在线观看| 欧美在线一区亚洲| 如日韩欧美国产精品一区二区三区| 久久精品国产综合久久久| netflix在线观看网站| 欧美 日韩 精品 国产| 51午夜福利影视在线观看| 日韩欧美在线二视频 | 久久青草综合色| 女人高潮潮喷娇喘18禁视频| 18禁国产床啪视频网站| 欧美老熟妇乱子伦牲交| 母亲3免费完整高清在线观看| av不卡在线播放| 一级a爱片免费观看的视频| 男女午夜视频在线观看| 超碰97精品在线观看| 亚洲五月色婷婷综合| 一边摸一边做爽爽视频免费| 变态另类成人亚洲欧美熟女 | 国产三级在线视频| 国产亚洲精品综合一区在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲无线在线观看| 日韩欧美精品免费久久 | 国产免费av片在线观看野外av| 成人鲁丝片一二三区免费| 啦啦啦观看免费观看视频高清| 18禁国产床啪视频网站| 国产精品av视频在线免费观看| 69av精品久久久久久| 99久国产av精品| 午夜日韩欧美国产| 十八禁网站免费在线| av女优亚洲男人天堂| 好看av亚洲va欧美ⅴa在| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 一区二区三区高清视频在线| 久久久国产精品麻豆| 午夜福利成人在线免费观看| av天堂中文字幕网| 午夜亚洲福利在线播放| 久久久久久久久中文| 午夜免费成人在线视频| 亚洲欧美激情综合另类| 制服人妻中文乱码| 久久精品国产亚洲av涩爱 | 久久精品综合一区二区三区| 99热这里只有精品一区|