陳琳,王健*,宋鵬帥,趙宇,馬玉紅
降雨對坡耕地地表結(jié)皮土壤水穩(wěn)性團(tuán)聚體變化研究
陳琳1,王健1*,宋鵬帥1,趙宇1,馬玉紅2
(1.西北農(nóng)林科技大學(xué),陜西 楊凌 712100;2.西安市水利水土保持工作總站,西安 710000)
【】探討降雨打擊下產(chǎn)生的不同坡面結(jié)皮土壤水穩(wěn)性團(tuán)聚體分布。采用人工模擬降雨,研究在降雨打擊作用下,地表結(jié)皮土壤水穩(wěn)性團(tuán)聚體的變化情況。受微地形影響,地表結(jié)皮性質(zhì)呈現(xiàn)差異,以坡面不同位置的地表結(jié)皮土壤水穩(wěn)性團(tuán)聚體為研究對象,以底部無結(jié)皮土壤樣品為對照,采用Yoder濕篩法探究不同類型結(jié)皮土壤團(tuán)聚體的變化。在降雨打擊作用下,以降雨時(shí)間5 min為例:①土壤水穩(wěn)性團(tuán)聚體都呈現(xiàn)大團(tuán)聚體比例較大的特點(diǎn),表現(xiàn)為結(jié)構(gòu)性結(jié)皮大團(tuán)聚體占比最大,其次為過渡帶、原狀土,沉積性結(jié)皮最小。原狀土、結(jié)構(gòu)性結(jié)皮、過渡帶、沉積性結(jié)皮土壤大團(tuán)聚體所占比例分別為37.69%、41.95%、37.05%、28.93%。隨降雨延續(xù),結(jié)構(gòu)性結(jié)皮和過渡帶土壤大團(tuán)聚體明顯增加,沉積性結(jié)皮土壤大團(tuán)聚體略有減少。②土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑和幾何平均直徑差異很大。原狀土、結(jié)構(gòu)性結(jié)皮、過渡帶、沉積性結(jié)皮的平均當(dāng)量直徑分別為:0.15、0.19、0.17、0.12 mm;幾何平均直徑分別為0.16、0.21、0.19、0.14 mm。結(jié)構(gòu)性結(jié)皮土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑和幾何平均直徑最大,其次為過渡帶、原狀土,沉積性結(jié)皮最小。③土壤水穩(wěn)性團(tuán)聚體分形維數(shù)不同但差異不顯著。原狀土、結(jié)構(gòu)性結(jié)皮、過渡帶、沉積性結(jié)皮土壤水穩(wěn)性團(tuán)聚體分形維數(shù)的大小分別為:2.725、2.705、2.725、2.737。沉積性結(jié)皮水穩(wěn)性團(tuán)聚體分形維數(shù)最大,其次為過渡帶、原狀土,結(jié)構(gòu)性結(jié)皮最小。降雨打擊作用使得土壤表層大團(tuán)聚體被分散,小團(tuán)聚體富集;大團(tuán)聚體量越高,土壤結(jié)構(gòu)越穩(wěn)定,抗蝕能力越強(qiáng);反之,抗蝕能力越弱。
土壤團(tuán)聚體;濕篩法;結(jié)皮;降雨歷時(shí)
土壤結(jié)皮是在降雨雨滴擊濺、徑流沖刷壓實(shí)以及灌溉條件下,干旱半干旱地區(qū)形成的1種常見的特殊地面表層結(jié)構(gòu)[1-2]。Chen等[3]研究發(fā)現(xiàn):土壤結(jié)皮具有2種不同形態(tài),為結(jié)構(gòu)性結(jié)皮和沉積性結(jié)皮。結(jié)構(gòu)性結(jié)皮是雨滴擊打作用下土壤表面團(tuán)聚體分散,產(chǎn)生的細(xì)小松散顆粒經(jīng)過重新排列組合后形成的一層具有低透水性的土層[4-6]。沉積性結(jié)皮是攜帶泥沙顆粒的徑流由于微地形或植物攔截作用,流速減慢,輸沙能力變小,在地勢較低的土壤表面發(fā)生泥沙顆粒堆積而形成的土層[7-8]。Bodnár[9]研究發(fā)現(xiàn):田間微地形位置不同時(shí)形成的結(jié)皮類型不同,地勢較高時(shí)形成的結(jié)皮為結(jié)構(gòu)性結(jié)皮,地勢較低的洼地形成的結(jié)皮為沉積性結(jié)皮。Shainberg[10]研究發(fā)現(xiàn):結(jié)構(gòu)性結(jié)皮的滲透系數(shù)高于沉積性結(jié)皮,其滲透能力比沉積性結(jié)皮要強(qiáng)。降雨條件下,2種類型的結(jié)皮對坡面土壤水分入滲量的影響因素主要是土壤水穩(wěn)性團(tuán)聚體組成的不同。
土壤水穩(wěn)性團(tuán)聚體是一種多孔結(jié)構(gòu),是礦物顆粒和有機(jī)物在凝聚、黏結(jié)和膠結(jié)作用下以及有機(jī)-礦質(zhì)膠體的復(fù)合作用下,并伴有生物參與下形成的多孔結(jié)構(gòu)[11]。土壤水穩(wěn)性團(tuán)聚體作為土壤結(jié)構(gòu)的基本單元,是調(diào)節(jié)土壤物理、化學(xué)和生物特性的重要因素[12-15]。土壤水穩(wěn)性團(tuán)聚體的不同粒級及所占比例不但影響土壤自身穩(wěn)定性還對土壤水的入滲、徑流、土壤肥力、碳儲存能力、土壤孔隙度、微生物活性等有一定影響[16-20]。
雨滴擊濺是降雨和土壤特性相互作用下產(chǎn)生的一種侵蝕作用[21]。降雨過程中,由于雨滴的擊濺作用,土壤表層水穩(wěn)性團(tuán)聚體被分散破壞,這是土壤侵蝕發(fā)生的初級階段[22-23]。隨著雨滴打擊過程的延長,產(chǎn)生的細(xì)小松散顆粒在沖刷作用下發(fā)生運(yùn)移,堵塞土壤表層孔隙,減少土壤表層孔隙數(shù)量,土壤的滲透能力變差,形成“板結(jié)”[24-25]。Woodbarn[26]研究發(fā)現(xiàn)隨著降雨歷時(shí)的增加,單位時(shí)間濺蝕量減小。Epstein[27]等研究發(fā)現(xiàn)當(dāng)降雨條件相同時(shí),砂土因?yàn)轲ちA孔畹投鵀R蝕量最多。團(tuán)粒黏結(jié)結(jié)構(gòu)越多,雨滴擊濺下土粒分散破壞程度越低。
黃土高原地區(qū)土壤有機(jī)質(zhì)量較低、粉砂量較高,水穩(wěn)性團(tuán)聚體穩(wěn)定性較差[28],存在大量土壤侵蝕,實(shí)踐中常采用地面耕作方式減少土壤侵蝕。地面耕作使得黃土高原地區(qū)產(chǎn)生微地形,受地面微地形影響,降雨條件下地表會(huì)形成結(jié)構(gòu)性結(jié)皮和沉積性結(jié)皮,伴隨著雨滴打擊作用,結(jié)皮厚度呈現(xiàn)線性遞增[29-31],直接影響結(jié)皮內(nèi)水穩(wěn)性團(tuán)聚體的分布,而針對土壤結(jié)皮內(nèi)團(tuán)聚體分布研究不多。因此,茲模擬耕作方式,將地表形成起伏變化的壟溝,降雨條件下,壟溝處形成結(jié)皮類型不同,所含土壤水穩(wěn)性團(tuán)聚體不同。系統(tǒng)測定不同類型結(jié)皮土壤水穩(wěn)性團(tuán)聚體的分布規(guī)律,分析降雨對結(jié)皮中水穩(wěn)性團(tuán)聚體的影響,以期探究結(jié)皮發(fā)育對于土壤抗侵蝕能力的影響及降雨-土壤互作過程中結(jié)皮和土壤的抗蝕性之間的關(guān)系。
試驗(yàn)于2018年6—9月在西北農(nóng)林科技大學(xué)水土保持與荒漠化防治教學(xué)實(shí)驗(yàn)基地徑流小區(qū)進(jìn)行。該區(qū)位于陜西關(guān)中平原中部,地理坐標(biāo)東經(jīng)107°59′—108°08′,北緯34°14′—34°20′,氣候類型為東亞暖溫帶半濕潤半干旱氣候。年均降水量635.1 mm,年均氣溫12.9 ℃,無霜期211 d。年均日照時(shí)間2 163.8 h,無霜期為211 d。試驗(yàn)土壤為楊凌0~20 cm耕層塿土。土壤顆粒的組成為:砂粒質(zhì)量分?jǐn)?shù)(>0.05 mm)3.97%,粉粒質(zhì)量分?jǐn)?shù)(0.005~0.05 mm)65.74%,黏粒質(zhì)量分?jǐn)?shù)(<0.005 mm)30.29%。中值粒徑13.31 μm,質(zhì)地為粉質(zhì)壤土,土壤比表面積1.17 m2/g。有機(jī)質(zhì)量較低,質(zhì)量分?jǐn)?shù)9.78 g/kg。
黃土高原地區(qū)常采用地面等高耕作,因此所設(shè)徑流小區(qū)耕作方式為等高耕作。將供試土壤填充于徑流小區(qū),在徑流小區(qū)內(nèi)垂直于坡面走向進(jìn)行橫向耕作,形成壟和溝,壟高20 cm,壟間距為30 cm。
人工降雨模擬降雨設(shè)備采用中國科學(xué)院水土保持研究所水保實(shí)驗(yàn)設(shè)備工廠設(shè)計(jì)制造的側(cè)噴式降雨機(jī),降雨供水壓強(qiáng)由閥門控制。降雨噴頭距地面6 m,有效降雨面積3 m×6 m,降雨均勻度達(dá)90%以上。設(shè)計(jì)降雨強(qiáng)度100 mm/h,降雨歷時(shí)分別采用5、10、15、20和30 min。降雨時(shí),在小區(qū)的4個(gè)邊角放置自記雨量計(jì),測定實(shí)際降雨強(qiáng)度和降雨量。降雨后,分別在壟上、壟溝邊壁和洼地表面3處取土壤結(jié)皮,分別為結(jié)構(gòu)性結(jié)皮、過渡帶結(jié)皮和沉積性結(jié)皮。由于降雨打擊作用,土壤表層形成一層致密土壤層,可以明顯看出與下部未受雨滴打擊土壤的緊實(shí)程度差異,因此取樣時(shí)將表皮剝離后,用毛刷刷掉底部土壤,將土壤樣品進(jìn)行風(fēng)干作為實(shí)驗(yàn)樣品,并以底部5 cm以下土壤為對照,如圖1所示。試驗(yàn)設(shè)置3個(gè)重復(fù)。采用Yoder[32]濕篩法對土壤水穩(wěn)性團(tuán)聚體量進(jìn)行測定,套篩孔徑依次為2、1、0.5、0.25、0.106和0.053 mm。分別取30 g土壤結(jié)皮放到鋁盒中浸潤進(jìn)行震蕩分析,每組樣品測定的震蕩時(shí)間為30 min,震蕩結(jié)束后將留在篩子上的各級團(tuán)聚體用去離子水沖入燒杯中,用濾紙過濾團(tuán)聚體,然后把濾紙和團(tuán)聚體一起放入烘箱55 ℃風(fēng)干,在空氣中平衡2 h,最后對不同粒級團(tuán)聚體的土樣分別進(jìn)行稱質(zhì)量。
圖1 結(jié)皮土壤樣品采集部位示意圖
1.3.1 質(zhì)量百分比
不同粒級水穩(wěn)性團(tuán)聚體的質(zhì)量百分比[33]計(jì)算式為:
1.3.2 大團(tuán)聚體質(zhì)量百分比
水穩(wěn)性大團(tuán)聚體的質(zhì)量百分比[19]計(jì)算式為:
1.3.3 平均當(dāng)量直徑()
水穩(wěn)性團(tuán)聚體的土壤平均當(dāng)量直徑()[34]計(jì)算式為:
1.3.4 幾何平均直徑()
水穩(wěn)性團(tuán)聚體的土壤幾何平均直徑()[35]計(jì)算式為:
1.3.5 分形維數(shù)
土壤水穩(wěn)性團(tuán)聚體的質(zhì)量分形維數(shù)()[36],是基于假設(shè)不同粒級的土壤密度相同提出來的。水穩(wěn)性團(tuán)聚體的質(zhì)量分形維數(shù)()計(jì)算式為:
取以10 為底的對數(shù):
數(shù)據(jù)通過Excel 2010和SPSS 23軟件進(jìn)行處理。
土壤團(tuán)聚體具有調(diào)節(jié)土壤養(yǎng)分、改善土壤孔隙組成、改良土壤結(jié)構(gòu)功能、改善土壤水力學(xué)性質(zhì)等作用,不同粒徑的團(tuán)聚體具備的作用不同。粒徑>0.25 mm的土壤大團(tuán)聚體主要表征土壤結(jié)構(gòu)穩(wěn)定性,反應(yīng)土壤結(jié)構(gòu)的變化趨勢。粒徑>1 mm的團(tuán)聚體對調(diào)節(jié)土壤通氣與持水以及營養(yǎng)平衡釋放有著重要意義,是植物良好生長的結(jié)構(gòu)基礎(chǔ),其量與土壤肥力水平相關(guān)。半徑<0.053 mm為土壤水穩(wěn)性微團(tuán)聚體。因此以1、0.25、0.053 mm水穩(wěn)性團(tuán)聚體占比作為粒徑分布分析指標(biāo)。
試驗(yàn)測得不同位置土壤水穩(wěn)性團(tuán)聚體分布見表1。表中數(shù)據(jù)為降雨5 min時(shí)結(jié)構(gòu)性結(jié)皮、過渡帶結(jié)皮、沉積性結(jié)皮土壤團(tuán)聚體粒徑分布。由表1可知,不同位置結(jié)皮土壤水穩(wěn)性團(tuán)聚體粒徑分布不同,以原狀土為對照,隨著粒級減小,水穩(wěn)性團(tuán)聚體所占的百分比逐漸增大;結(jié)構(gòu)性結(jié)皮的增長幅度略小于原狀土,而沉積性結(jié)皮的增長幅度略大于原狀土。原狀土,>1 mm粒級的水穩(wěn)性團(tuán)聚體量最小,占6.72%,>0.25 mm粒級的水穩(wěn)性團(tuán)聚體量占37.69%,<0.053 mm粒級的水穩(wěn)性團(tuán)聚體量22.5%;結(jié)構(gòu)性結(jié)皮,>1 mm粒級的水穩(wěn)性團(tuán)聚體量占9.01%,>0.25 mm粒級的水穩(wěn)性團(tuán)聚體量占41.95%,<0.053 mm粒級的水穩(wěn)性團(tuán)聚體量占19.8%;沉積性結(jié)皮,>1 mm粒級的水穩(wěn)性團(tuán)聚體量占5.35%,>0.25 mm粒級的水穩(wěn)性團(tuán)聚體量占28.93%,<0.053 mm粒級的水穩(wěn)性團(tuán)聚體量占23.15%;過渡帶,>1 mm粒級的水穩(wěn)性團(tuán)聚體量占7.53%,>0.25 mm粒級的水穩(wěn)性團(tuán)聚體量占37.05%,<0.053 mm粒級的水穩(wěn)性團(tuán)聚體量最大,占22.2%。
表1 不同位置結(jié)皮土壤水穩(wěn)性團(tuán)聚體粒徑分布及其百分比
注 表中同列不同小寫字母分別表示同一粒徑不同位置的試驗(yàn)數(shù)據(jù)間差異顯著(<0.05)。
Note different small letters in the same column indicate significant differences between test data of the same particle size under the different crust position (<0.05).
2.2.1 降水歷時(shí)對結(jié)皮土壤大團(tuán)聚體的影響
大團(tuán)聚體量的多少是土壤結(jié)構(gòu)的基本單元和肥力調(diào)節(jié)器,有著維持土壤水肥氣熱和疏松熟化層的功能,一定程度上反映著土壤的通氣性和抗侵蝕性。圖2為不同降雨歷時(shí)下土壤水穩(wěn)性團(tuán)聚體中大團(tuán)聚體量情況。以原狀土降雨時(shí)間0 min時(shí)所含有的大團(tuán)聚體量作為對照,可以看出結(jié)構(gòu)性結(jié)皮、過渡帶土壤水穩(wěn)性團(tuán)聚體中大團(tuán)聚體的量隨降雨時(shí)間的延長呈現(xiàn)增多的趨勢。30 min降雨作用下,結(jié)構(gòu)性結(jié)皮大團(tuán)聚體由原狀土的37.69%增加到55.96%,過渡帶增加到50.00%;而沉積性結(jié)皮大團(tuán)聚體隨降雨時(shí)間的延長略有降低,30 min降雨后大團(tuán)聚體降低到28.22%。3個(gè)位置處結(jié)皮大團(tuán)聚體量的大小變化為:結(jié)構(gòu)性結(jié)皮>過渡帶>沉積性結(jié)皮。
由于大團(tuán)聚體量影響土壤的抗侵蝕能力,土壤水穩(wěn)性團(tuán)聚體中大團(tuán)聚體量越高,土壤抗侵蝕能力越強(qiáng),顯然結(jié)構(gòu)性結(jié)皮的抗侵蝕能力大于原狀土,而沉積性結(jié)皮的抗侵蝕能力小于原狀土,因此結(jié)構(gòu)性結(jié)皮一定程度上提高了土壤的抗侵蝕能力。
圖2 不同降雨時(shí)間的土壤大團(tuán)聚體百分?jǐn)?shù)
圖3 不同降雨時(shí)間下土壤水穩(wěn)性團(tuán)聚體平均當(dāng)量直徑
2.2.2降雨歷時(shí)對結(jié)皮土壤水穩(wěn)性團(tuán)聚體平均當(dāng)量直徑的影響
土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑可以反映土壤穩(wěn)定性,土壤水穩(wěn)性團(tuán)聚體平均當(dāng)量直徑越大土壤越穩(wěn)定,土壤抗侵蝕性越強(qiáng)[37-38]。圖3為土壤水穩(wěn)性團(tuán)聚體平均當(dāng)量直徑隨降雨歷時(shí)的變化趨勢。原狀土平均當(dāng)量直徑為0.151 9 mm,結(jié)構(gòu)性結(jié)皮、過渡帶土壤水穩(wěn)性團(tuán)聚體平均當(dāng)量直徑隨降雨時(shí)間的延長呈現(xiàn)增大的趨勢;而沉積性結(jié)皮則隨降雨時(shí)間的延長平均當(dāng)量直徑略有降低。30 min雨滴打擊作用下,結(jié)構(gòu)性結(jié)皮的平均當(dāng)量直徑為0.240 9 mm,過渡帶為0.223 0 mm,沉積性結(jié)皮為0.126 9 mm。土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑大小變化為:結(jié)構(gòu)性結(jié)皮土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑最大,其次為過渡帶、原狀土,沉積性結(jié)皮最小。
2.2.3降雨歷時(shí)對結(jié)皮土壤水穩(wěn)性團(tuán)聚體幾何平均直徑的影響
土壤水穩(wěn)性團(tuán)聚體幾何平均直徑越大土壤越穩(wěn)定,土壤抗侵蝕性越強(qiáng)[39]。圖4為土壤水穩(wěn)性團(tuán)聚體幾何平均直徑隨降雨歷時(shí)的變化趨勢。由圖4可知,原狀土團(tuán)聚體幾何平均直徑為0.16 mm,結(jié)構(gòu)性結(jié)皮、過渡帶土壤水穩(wěn)性團(tuán)聚體幾何平均直徑隨降雨時(shí)間的延長而呈現(xiàn)出增大的趨勢,在30 min降雨打擊下,結(jié)構(gòu)性結(jié)皮、過渡帶土壤水穩(wěn)性團(tuán)聚體幾何平均直徑分別增長為0.31 mm和0.30 mm;而沉積性結(jié)皮土壤水穩(wěn)性團(tuán)聚體幾何平均直徑隨降雨時(shí)間的延長略有減少,30 min降雨后降低為0.14 mm。土壤水穩(wěn)性團(tuán)聚體的幾何平均直徑的大小變化為:結(jié)構(gòu)性結(jié)皮最大,其次為過渡帶、原狀土,沉積性結(jié)皮最小。
圖4 不同降雨時(shí)間下土壤水穩(wěn)性團(tuán)聚體幾何平均直徑
圖5 不同降雨時(shí)間下土壤水穩(wěn)性團(tuán)聚體分形維數(shù)
2.2.4降雨歷時(shí)對結(jié)皮土壤水穩(wěn)性團(tuán)聚體分形維數(shù)()的影響
土壤水穩(wěn)性團(tuán)聚體的分形維數(shù)越小,土壤的穩(wěn)定性越好[40]。圖5為土壤水穩(wěn)性團(tuán)聚體分形維數(shù)隨降雨歷時(shí)的變化趨勢。由圖5可知,所測原狀土分形維數(shù)為降雨歷時(shí)0 min的數(shù)據(jù),原狀土的分形維數(shù)為2.725,結(jié)構(gòu)性結(jié)皮、過渡帶土壤的分形維數(shù)隨降雨歷時(shí)的增加而呈現(xiàn)減少的趨勢,在30 min降雨作用下,分別降到2.52和2.54;而沉積性結(jié)皮的分形維數(shù)略有增加,在30 min降雨作用下,增長到2.75。土壤水穩(wěn)性團(tuán)聚體分形維數(shù)的大小變化為:沉積性結(jié)皮水穩(wěn)性團(tuán)聚體分形維數(shù)最大,其次為過渡帶、原狀土,結(jié)構(gòu)性結(jié)皮最小。
1)受微地形影響,降雨打擊搬運(yùn)能力的差異使得土壤結(jié)皮性質(zhì)呈現(xiàn)不同,一般而言隆起位置的細(xì)小顆粒被帶走,使得結(jié)構(gòu)性結(jié)皮土壤水穩(wěn)性團(tuán)聚體中細(xì)顆粒偏少;而在低洼部位細(xì)小顆粒的堆積則使沉積性結(jié)皮土壤水穩(wěn)性團(tuán)聚體中細(xì)顆粒偏多。
2)雨滴打擊作用下,土壤水穩(wěn)性團(tuán)聚體中,大團(tuán)聚體部分遭到破壞,小團(tuán)聚體富集,這些研究結(jié)果與付玉等[11]的研究結(jié)果相同,在坡面微地形條件下,降雨作用除了打擊搬運(yùn)作用之外,還受到沉積作用的影響,使得土壤水穩(wěn)性團(tuán)聚體分布在空間上表現(xiàn)出了較大差異。
3)土壤水穩(wěn)性團(tuán)聚體的分形維數(shù)值越大,團(tuán)聚體的分散度越大,土壤結(jié)構(gòu)穩(wěn)定性越差。沉積性結(jié)皮的分形維數(shù)最大,說明在沉積過程中有細(xì)顆粒的帶入。吳承禎等[41]研究得出的團(tuán)粒結(jié)構(gòu)越好、結(jié)構(gòu)越穩(wěn)定,則土壤分形維數(shù)值越小,結(jié)構(gòu)性結(jié)皮的土壤分形維數(shù)值小于原狀土,說明其穩(wěn)定性逐漸增強(qiáng),抗侵蝕能力有了一定提高;沉積性結(jié)皮穩(wěn)定性減弱,抗侵蝕能力降低。
4)影響土壤水穩(wěn)性團(tuán)聚體的因素較多,除了本文研究的結(jié)皮影響之外,還受土壤有機(jī)質(zhì)、植被覆蓋、土地利用方式、管理措施、氣候條件等的影響[42],本研究僅限于對楊凌塿土的研究,所以試驗(yàn)結(jié)果不可應(yīng)用到其他土壤中;試驗(yàn)采用的雨強(qiáng)只有100 mm/h,還有待于對其他雨強(qiáng)做進(jìn)一步的對比分析;研究土壤初始處于干燥狀態(tài),土壤初始含水量的大小是否對結(jié)論有影響還需進(jìn)一步試驗(yàn)分析。
1)雨滴擊打和徑流搬運(yùn)作用下,土壤表層顆粒被分散沖刷,結(jié)構(gòu)性結(jié)皮中與土壤穩(wěn)定性相關(guān)的>0.25 mm粒級的水穩(wěn)性大團(tuán)聚體占全部粒徑團(tuán)聚體的41.95%,高于沉積結(jié)皮、過渡帶和原狀土,<0.053 mm粒級的微團(tuán)聚體占比為19.8%,低于沉積結(jié)皮、過渡帶和原狀土。
2)結(jié)構(gòu)性結(jié)皮、過渡帶土壤水穩(wěn)性大團(tuán)聚體隨降雨歷時(shí)呈現(xiàn)出增多的趨勢,30 min降雨作用下,結(jié)構(gòu)性結(jié)皮水穩(wěn)性大團(tuán)聚體由原狀土的37.69%增加到55.96%,而沉積性結(jié)皮土壤水穩(wěn)性大團(tuán)聚體則隨降雨時(shí)間的延長略有降低。
3)降雨打擊作用使大團(tuán)聚體分散并發(fā)生運(yùn)移,在微地形低洼處沉積聚集,從而使微地形不同位置的結(jié)皮類型有所差異,因此土壤水穩(wěn)性團(tuán)聚體組成也存在一定的差異性。此現(xiàn)象造成結(jié)皮土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑、幾何平均直徑以及分形維數(shù)的變化。在地勢低洼處的沉積性結(jié)皮土壤水穩(wěn)性團(tuán)聚體的平均當(dāng)量直徑與幾何平均直徑明顯小于結(jié)構(gòu)性結(jié)皮以及過渡帶結(jié)皮,而分形維數(shù)要大于二者。
[1] 吳秋菊, 吳佳, 王林華, 等. 黃土區(qū)坡耕地土壤結(jié)皮對入滲的影響[J].土壤學(xué)報(bào), 2015, 52(2): 303-311.
WU Qiuju, WU Jia, WANG Linhua, et al. Effects of soil crusts on infiltration in slope land in the loess area [J]. Acta Pedologica Sinica, 2015, 52 (2): 303-311.
[2] 冉啟華, 錢群, 許月萍. 降雨因素對土壤表面結(jié)皮發(fā)育的影響[J]. 清華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2011, 51(6): 770-776.
RAN Qihua, QIAN Qun, XU Yueping. Effects of rainfall factors on soil-surface seal formation[J]. Journal of Tsinghua University (Science and Technology), 2011, 51 (6): 770-776.
[3] CHEN J, TARCHITZKY J, BROUWER J, et al. Scanning electron microscope observations on soil crusts and their formation[J]. Soil Science, 1980,130: 49-55.
[4] AGASSI M, SHAINBERG I, MORIN J. Effect of electrolyte concentration and soil sodicity on infiltration rate and crust formation[J]. Soil Science Society of America Journal, 1981, 45: 848-851.
[5] ONOFIOK O, SINGER MJ. Scanning electron microscope studies of surface crusts formed by simulated rainfall[J]. Soil Science Society of America Journal, 1984, 48: 1 137-1 143.
[6] 胡霞, 蔡強(qiáng)國, 劉連友, 等. 人工降雨條件下幾種土壤結(jié)皮發(fā)育特征[J].土壤學(xué)報(bào), 2005, 42(3): 504-507.
HU Xia, CAI Qiangguo, LIU Lianyou, et al. Development of soil crust through simulated rainfall in laboratory [J]. Acta Pedologica Sinica, 2005, 42 (3): 504-507.
[7] ARSHAD M A, MERMUT A R. Micromorphological and physico-chemical characteristics of soil crust types in northwestern Alberta, Canada[J]. Soil Science Society of America Journal, 1988, 52: 724-729.
[8] VALENTIN C, BRESSON L M. Morphology, genesis and classification of surface crusts in loamy and sandy soils[J]. Geoderma, 1992, 55: 225-245.
[9] F. BODNáR, HULSHOF J. Soil crusts and deposits as sheet erosion indicators in southern Mali[J]. Soil Use and Management, 2006, 22(1):102-109.
[10] SHAINBERG I, SINGER M J. Effect of electrolytic concentration on the hydraulic properties of depositional crust[J]. Soil Science Society of America Journal, 1985, 49: 1 260-1 263.
[11] 付玉, 李光錄, 鄭騰輝, 等. 雨滴擊濺對耕作層土壤團(tuán)聚體粒徑分布的影響[J].農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(3): 155-160.
FU Yu, LI Guanglu, ZHENG Tenghui, et al. Effects of raindrop splash on aggregate particle size distribution of soil plough layer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (3): 155-160.
[12] 劉曉利, 何園球. 不同利用方式和開墾年限下紅壤水穩(wěn)性團(tuán)聚體及養(yǎng)分變化研究[J]. 土壤學(xué)報(bào), 2009, 41(1): 84-89.
LIU Xiaoli, HE Yuanqiu. Water-stable aggregates and nutrients in red soil under different reclamation years [J]. Acta Pedologica Sinica, 2009, 41 (1): 84-89.
[13] JASINSKA E, WETZEL H, BAUMGARTL T, et al. Heterogeneity of physico-chemical properties in structured soils and its consequences[J]. Pedosphere, 2006,16(3): 284-296.
[14] HUANG L, WANG C Y, TAN W F, et al. Distribution of organic matter in aggregates of eroded Ultisols, Central China[J]. Soil & Tillage Research, 2010, 108(1-2): 59-67.
[15] FALSONE G, BONIFACIO E, ZANINI E. Structure development in aggregates of poorly developed soils through the analysis of the pore system[J], Catena, 2012, 95(1): 169-176.
[16] 劉曉利, 何園球, 李成亮, 等. 不同利用方式旱地紅壤水穩(wěn)性團(tuán)聚體及其碳?氮?磷分布特征[J]. 土壤學(xué)報(bào), 2009, 46(2): 254-262.
LIU Xiaoli, HE Yuanqiu, LI Chengliang, et al. Distribution of soil water-stable aggregates and soil organic c, n and p in upland red soil [J]. Acta Pedologica Sinica, 2009, 46 (2): 254-262.
[17] 韓新生, 馬璠, 郭永忠, 等. 土地利用方式對表層土壤水穩(wěn)性團(tuán)聚體的影響[J]. 干旱區(qū)資源與環(huán)境, 2018, 32(2): 114-120.
HAN Xinsheng, MA Pan, GUO Yongzhong, et al. Effects of surface-layer soil water-stable aggregates under land use patterns. Journal of Arid Land Resources and Environment, 2018, 32(2),114-120.
[18] 陸鑄疇, 包忻怡, 張海玲, 等. 應(yīng)用Le Bissonnais法研究三峽庫區(qū)消落帶土壤水穩(wěn)性團(tuán)聚體穩(wěn)定性[J]. 灌溉排水學(xué)報(bào), 2018, 37(5):115-120.
LU Zhuchou, BAO Xinyi,ZHANG Hailing, et al. Stability of soil aggregates in riparian zone of the three gorges reservoir studied using the le bissonnais method [J]. Journal of Irrigation and Drainage, 2018, 37(5):115-120.
[19] 陳學(xué)軍, 姜寶良, 張曉偲. 應(yīng)用三維圖像和數(shù)學(xué)模型對土壤團(tuán)聚體內(nèi)外溶質(zhì)的交換速率的研究[J]. 灌溉排水學(xué)報(bào), 2017, 36(8):39-45, 52.
CHEN Xuejun, JIANG Baoliang, ZHANG Xiaocai. Calculating mass transfer between waters inside and between aggregates in aggregated soils using tomography and pore-scale modelling[J]. Journal of Irrigation and Drainage, 2017, 36 (8): 39-45, 52.
[20] PINHEIRO E F M, PEREIRA M G, ANJOS L H C. Aggregate distribution and soil organic matter under different tillage systems for vegetable crops in a Red Latosol from Brazil[J]. Soil & Tillage Research, 2004, 77: 79-84.
[21] 范云濤, 雷廷武, 蔡強(qiáng)國. 濕潤速度對土壤表面強(qiáng)度和土壤團(tuán)聚體結(jié)構(gòu)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2008, 24(5): 46-50.
FAN Yuntao, LEI Tingwu, CAI Qiangguo. Effects of wetting rate on soil surface strength and aggregate stability [J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24 (5): 46-50.
[22] 胡波, 王玉杰, 王彬,等. 自然降雨條件下結(jié)皮層團(tuán)聚體穩(wěn)定性變化特征研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017, 48(6): 225-231.
HU Bo, WANG Yujie, WANG Bin, et al. Dynamics of stability of soil crust under natural rainfall event [J]. Journal of the Chinese Society of Agricultural Machinery, 2017, 48 (6): 225-231.
[23] 王秀穎, 高曉飛, 劉和平, 等. 土壤水穩(wěn)性大團(tuán)聚體測定方法綜述[J]. 中國水土保持科學(xué), 2011, 9(3):106-113.
WANG Xiuying, GAO Xiaofei, LIU Heping et al. Review of analytical methods for aggregate size distribution and waterstability of soil macro-aggregates [J]. China Soil and Water Conservation Science, 2011, 9 (3): 106-113.
[24] FU Y, LI G, ZHENG T, et al. Impact of raindrop characteristics on the selective detachment and transport of aggregate fragments in the loess plateau of china[J]. Soil Science Society of America Journal, 2016, 80(4):1 071-1 077.
[25] FU Y, LI G L, ZHENG T H, et al. Splash detachment and transport of loess aggregate fragments by raindrop action[J]. CATENA, 2017, 150: 154-160.
[26] WOODBARN R. The effect of structural condition on soil detachment by raindrop action[J]. Agricultural Engineering, 1958, 29: 154-158.
[27] EPSTEIN E, GRANT W J. Soil losses and crust formation as related to some soil physical properties[J]. Soil Science Society of America Proceedings,1967, 31(4): 547-550.
[28] 吳秋菊, 吳發(fā)啟, 王林華. 土壤結(jié)皮坡面流水動(dòng)力學(xué)特征[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(1) : 73-80.
WU Qiuju, WU Faqi, WANG Linhua. Hydrodynamic characteristics of overland flow under soil crusts condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30 (1): 73-80.
[29] YAN Y, WU L, XIN X, et al. How rain-formed soil crust affects wind erosion in a semi-arid steppe in northern China[J]. Geoderma, 2015, 249-250: 79-86.
[30] FENG G, SHARRATT B, VADDELLA V. Windblown soil crust formation under light rainfall in a semiarid region[J]. Soil and Tillage Research, 2013, 128: 91-96.
[31] 路培, 王林華, 吳發(fā)啟, 等. 不同降雨強(qiáng)度下土壤結(jié)皮強(qiáng)度對侵蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2017, 33(8): 141-146.
LU Pei, WANG Linhua, WU Faqi, et al. Effect of soil crust strength on erosion under different rainfall intensity [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33 (8): 141-146.
[32] YODER R E. A direct method of aggregate analysis of soils and a study of the physical nature of erosion losses[J]. Journal of the American Society of Agronomy, 1936, 28(5): 337-351.
[33] ZHOU H, LU Y Z, YANG Z C, LI B G. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Scientia Agricultura Sinica, 2007, 40(9): 1 973-1 979.
[34] 田慎重, 王瑜, 李娜, 等. 耕作方式和秸稈還田對華北地區(qū)農(nóng)田土壤水穩(wěn)性團(tuán)聚體分布及穩(wěn)定性的影響[J]. 生態(tài)學(xué)報(bào), 2013, 33(22):7 116-7 124.
TIAN Shenzhong, WANG Yu, LI Na, et al. Effects of tillage and straw returning on the distribution and stability of soil water-stable aggregates in farmland in north china[J]. Acta Ecologica Sinica, 2013, 33(22):7 116-7 124.
[35] BARRETO R C, MADARI B E, MADDOCK J E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2in the surface layer of a Rhodic Ferralsol in Southern Brazil[J]. Agriculture, Ecosystems & Environment, 2009, 132: 243-251.
[36] 陳禎, 崔遠(yuǎn)來, 劉方平, 等. 不同灌溉施肥模式對水稻土物理性質(zhì)的影響[J]. 灌溉排水學(xué)報(bào), 2013, 32(5): 38-41.
CHEN Zhen, CUI Yuanlai, LIU Fangping, et al. Effects of different irrigation and fertilization modes on paddy soil physical property[J]. Journal of Irrigation and Drainage, 2013, 32 (5): 38-41.
[37] 馬仁明, 蔡崇法, 李朝霞, 等. 前期土壤含水率對紅壤團(tuán)聚體穩(wěn)定性及濺蝕的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(3): 95-103.
MA Renming, CAI Chongfa, LI Zhaoxia., et al. Effect of antecedent soil moisture on aggregate stability and splash erosion of krasnozem. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3),95-103.
[38] AMELUNG W, ZECH W. Organic species in ped surface and core fractions along a climosequence in the prairie, North America [J]. Geomerma, 1996, 74(3): 193-206.
[39] 王清奎, 汪思龍. 土壤團(tuán)聚體形成與穩(wěn)定機(jī)制及影響因素[J]. 土壤通報(bào), 2005, 36(3): 415-421.
WANG Qingkui, WANG Silong. Forming and stable mechanism of soil aggregate and influencing factors [J]. Chinese Journal of Soil Science, 2005, 36 (3): 415-421.
[40] 蘇靜, 趙世偉. 土壤團(tuán)聚體穩(wěn)定性評價(jià)方法比較[J]. 水土保持通報(bào), 2009, 29(5): 114-117.
SU Jing, ZHAO Shiwei. Comparison of the analysis methods for soil aggregate stability. Bulletin of Soil and Water Conservation, 2009, 29(5): 114-117.
[41] 吳承禎, 洪偉. 不同經(jīng)營模式土壤團(tuán)粒結(jié)構(gòu)的分形特征研究[J]. 土壤學(xué)報(bào), 1999, 36(2): 162-167.
WU Chengzhen, HONG Wei. Study on fractal features of soil aggregate structure under different management patterns[J]. Acta Pedologica Sinica, 1999, 36 (2): 162-167.
[42] 謝均強(qiáng). 紫色土坡地團(tuán)聚體穩(wěn)定性特征及對侵蝕過程的影響[D]. 重慶:西南大學(xué), 2009.
XIE Junqiang. Stability characteristics of aggregates in purple soil slopes and their effects on erosion process[D]. Chongqing: Southwest University, 2009.
Effect of Rainfall on Water Stability Aggregates of Crust Soil on Slope Surface
CHEN Lin1, WANG Jian1*, SONG Pengshuai1, ZHAO Yu1, MA Yuhong2
(1.Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China; 2.Xi’an Water Conservancy and Soil Conservation General Station, Xi’an 710000, China)
【】The purpose of this paper is to explore the difference of aggregate distribution and soil erosion resistance in the surficial soil crusts under micro-terrain.【】Some experiments were conducted. Artificial rainfall simulation was used to study the change of water-stable aggregates in crust soil under the impact of rainfall.Influenced by micro-topography, surface crust properties show differences.The water-stable aggregates of surface crust soils at different locations on slopes were studied, and the soil samples without crust at the bottom were taken as controls.Study on the Change of Soil Aggregates in Different Crust Types by Yoder Wet Screening Method. 【】Under the impact of rainfall, taking 5 minutes of rainfall as an example, crusts at different locations ①Soil water-stable aggregates are characterized by large aggregates proportion.Structural crust contains the largest aggregates, followed by transitional zone and undisturbed soil, and sedimentary crust is the smallest.The proportion of macroaggregates in undisturbed soil, structural crust, transitional zone and sedimentary crust were 37.69%, 41.95%, 37.05% and 28.93% respectively.With the continuation of rainfall, soil macroaggregates in structural crusts and transitional zones increased significantly, while those in sedimentary crusts decreased slightly. ②Average equivalent diameter and geometric average diameter of soil water-stable aggregates vary greatly.The average equivalent diameters of undisturbed soil, structural crust, transitional zone and sedimentary crust are 0.15, 0.19, 0.17 and 0.12 mm, respectively.The geometric average diameters are 0.16, 0.21, 0.19 and 0.14 mm, respectively.The average equivalent diameter and geometric average diameter of water-stable aggregates in structured crust soil are the largest, followed by transition zone and undisturbed soil, and sedimentary crust is the smallest. ③The fractal dimensionof soil water-stable aggregates is different, but the difference is not significant.The fractal dimensionsof water-stable aggregates in undisturbed soil, structural crust, transitional zone and sedimentary crust are 2.725, 2.705, 2.725 and 2.737, respectively.The fractal dimension of water-stable aggregates in sedimentary crusts is the largest, followed by transitional zone and undisturbed soil, and structural crusts are the smallest.【】Rainfall strikes disperse large aggregates and enrich small aggregates in the soil surface.The higher the content of macroaggregates, the more stable the soil structure, the stronger the anti-erosion ability; on the contrary, the weaker the anti-erosion ability.
soil aggregates; wet screening method; crust; rainfall duration
A
10.13522/j.cnki.ggps.2019028
1672 - 3317(2020)01 - 0098 - 08
2019-04-22
國家自然科學(xué)基金項(xiàng)目(41771308,41371273)
陳琳(1996-),女。碩士研究生,主要從事土壤侵蝕方面研究。E-mail:ccchen_lin@163.com
王?。?973-),男。教授,博士生導(dǎo)師,主要從事土壤侵蝕與流域管理方面研究。E-mail:wangjian@nwsuaf.edu.cn
陳琳, 王健, 宋鵬帥, 等. 降雨對坡耕地地表結(jié)皮土壤水穩(wěn)性團(tuán)聚體變化研究[J]. 灌溉排水學(xué)報(bào), 2020, 39(1):98-105.
CHEN Lin,WANG Jian,SONG Pengshuai, et al. Effect of rainfall on water stability aggregates of crust soil on slope surface [J]. Journal of Irrigation and Drainage, 2020, 39(1): 98-105.
責(zé)任編輯:趙宇龍