忠智博,翟國亮,鄧忠*,蔡九茂,谷少委,王國棟
水氮施量對膜下滴灌棉花生長及水氮分布的影響
忠智博1,2,翟國亮1,鄧忠1*,蔡九茂1,谷少委1,2,王國棟3
(1.中國農(nóng)業(yè)科學(xué)院 農(nóng)田灌溉研究所/農(nóng)業(yè)農(nóng)村部節(jié)水農(nóng)業(yè)重點實驗室,河南 新鄉(xiāng) 453002;2.中國農(nóng)業(yè)科學(xué)院 研究生院,北京 100081;3.新疆農(nóng)墾科學(xué)院 農(nóng)田水利與土壤肥料研究所,新疆 石河子 832000)
【】探究北疆地區(qū)膜下滴灌棉花最優(yōu)水氮施量及土壤水氮分布特征。采用二因素完全隨機試驗,設(shè)置灌水量4個水平(W1:5 250 m3/hm2、W2:4 500 m3/hm2、W3:3 750 m3/hm2和W4:3 000 m3/hm2)和施氮量3個水平(N1:300 kg/hm2、N2:262.5 kg/hm2和N3:225 kg/hm2),研究了不同水氮施量對植株形態(tài)、土壤含水率分布及土壤氮素分布的影響。施氮量對植株形態(tài)指標(biāo)的影響程度低于灌水量,但植株形態(tài)指標(biāo)不能反映產(chǎn)量;棉花盛蕾期,表層土壤含水率較低,直至盛花期,表層土壤含水率穩(wěn)定在20%左右。且灌水量為3 750 m3/hm2時,更有利于土壤保持濕潤,并且向深層流失的水分較少;0~20 cm土層內(nèi)硝態(tài)氮和銨態(tài)氮量相對較高,隨著灌水量和施氮量的增加,氮素向深層土壤的淋移程度不斷增加,當(dāng)施氮量為262.5 kg/hm2時,根系層內(nèi)的硝態(tài)氮含量相對較高,尿素轉(zhuǎn)化的銨態(tài)氮也更多;當(dāng)施氮量為262.5 kg/hm2,灌水量為3 750 m3/hm2時,棉花產(chǎn)量達(dá)到最大,為6 460.5 kg/hm2。施氮量為262.5 kg/hm2,灌水量為3 750 m3/hm2,可作為該地區(qū)最優(yōu)水氮施量組合。
膜下滴灌;植株形態(tài);含水率;土壤硝態(tài)氮;土壤銨態(tài)氮
新疆是中國最大的棉花種植區(qū),在總產(chǎn)、單產(chǎn)、質(zhì)量等方面位居全國第一[1]。棉花是當(dāng)?shù)刂饕乃魑颷2],但極度干旱的氣候環(huán)境造成當(dāng)?shù)厮Y源短缺[3-4],水資源稀缺和土壤貧瘠導(dǎo)致棉花低產(chǎn)[5]。研究表明,避免缺乏水肥而產(chǎn)生協(xié)同效應(yīng)是提高產(chǎn)量的關(guān)鍵因素[6],還有研究指出過度灌溉是導(dǎo)致缺水地區(qū)的水分和養(yǎng)分利用率低下的原因之一[7],但一些地區(qū)仍將過度的施肥灌溉作為傳統(tǒng)農(nóng)業(yè)生產(chǎn)手段[8]。因此,無論是灌溉,還是施肥,都應(yīng)該遵循合理的制度,過度和不足均會導(dǎo)致負(fù)面效應(yīng)。有研究認(rèn)為,經(jīng)過優(yōu)化后的水肥制度可以最大限度地提高水和肥料的使用效率和作物產(chǎn)量[9],并且可以通過適當(dāng)?shù)牡?yīng)來提高水分利用效率[10],而如何確定適宜的施氮量是關(guān)鍵[11]。即便是施肥量的細(xì)微差異,也會對作物產(chǎn)量和土壤中的養(yǎng)分產(chǎn)生不同的影響[12],只有合理的水肥管理措施才能確保水肥利用的持續(xù)高效[13]。因此,采用合理的節(jié)水節(jié)肥技術(shù),是實現(xiàn)農(nóng)業(yè)可持續(xù)發(fā)展的重要手段[14]。
高效利用灌溉水是干旱地區(qū)農(nóng)業(yè)可持續(xù)發(fā)展的關(guān)鍵所在[15],研究表明,滴灌相比溝灌更有利于提高水分利用率,促進棉花生長[16]。在干旱地區(qū),滴灌確實具有較大的節(jié)水潛力[17-18],作物在滴灌條件下的水分利用效率更高[19],并且能使水肥同步到達(dá)作物根區(qū),使作物對養(yǎng)分的吸收更加高效[20-21]。而且滴灌還具有低流量、高頻率、長時間施水的特點[22],可以使施肥更加均勻。新疆棉田應(yīng)用最為廣泛的是膜下滴灌技術(shù),也就是滴灌技術(shù)結(jié)合覆膜種植,覆膜能有效保持土壤水分、調(diào)節(jié)土壤溫度、控制雜草和提高水分利用效率[23]。針對膜下滴灌技術(shù),前人研究了不同水肥條件下的水分利用效率和肥料利用率[24-29],還研究了不同施肥策略下的水氮鹽運移規(guī)律以及氮素的累積殘留等[30-42]。然而,在不同的生育階段,大田棉花營養(yǎng)生長與生殖生長之間的協(xié)調(diào)以及土壤中水分和養(yǎng)分的保持均與水氮施量有關(guān),將棉花生長與土壤水氮分布共同分析,更能體現(xiàn)最優(yōu)水氮施量的合理性。為此,本研究將在棉花不同生育階段通過監(jiān)測棉花生長特征及不同水氮施量下的土壤含水率和氮素分布規(guī)律,探索北疆膜下滴灌條件下最為合理的水氮施量組合。以期為新疆膜下滴灌棉花科學(xué)的水氮管理提供理論依據(jù)和技術(shù)支撐。
試驗于2018年4―10月在農(nóng)業(yè)部作物高效用水石河子科學(xué)觀測實驗站(45°38′N,86°09′E)進行,該區(qū)域具有典型干旱半干旱大陸性氣候,降水稀少、空氣干燥、光熱集中,年平均降雨量204 mm,蒸發(fā)量1 742 mm左右,年均氣溫8.6 ℃。試驗田土壤質(zhì)地為砂壤土(見表1),0~20 cm土層有機質(zhì)量平均值為7.14 g/kg,堿解氮量34.30 mg/kg,速效磷量18.08 mg/kg,速效鉀量130.46 mg/kg,土壤pH值8.2;0~40 cm土壤體積質(zhì)量均值1.4 g/cm3,田間質(zhì)量持水率17.7%。棉花生育期內(nèi)降雨量為109.4 mm,平均溫度為23.4 ℃;單日降雨量除5月7日(13.9 mm)和5月24日(20 mm)外,均未有超過10 mm的降雨。
供試棉花品種為“新陸早60號”,采用膜下滴灌技術(shù),覆膜寬2.05 m,小區(qū)長14 m,播幅2.3 m,小區(qū)面積102 m2。采用內(nèi)徑16 mm的聚乙烯樹脂內(nèi)鑲式薄壁迷宮滴灌帶,滴頭流量為2.0 L/h,滴頭間距為20 cm,小區(qū)灌水量以水表讀數(shù)為依據(jù)。該試驗地于上年11月進行傳統(tǒng)翻耕,作業(yè)深度30 cm,來年春季進行土地平整。之后,根據(jù)當(dāng)?shù)孛藁ǚN植模式,播種、覆膜和滴灌帶鋪設(shè)一次性完成,采用1膜3管6行種植方式,即1膜種植6行棉花。
表1 試驗地粒徑組成
試驗采用二因素完全隨機設(shè)計,根據(jù)北疆棉花生育期需水需肥特性,設(shè)置灌水量4個水平(W1:5 250 m3/hm2、W2:4 500 m3/hm2、W3:3 750 m3/hm2和W4:3 000 m3/hm2)和施氮量3個水平(N1:300 kg/hm2、N2:262.5 kg/hm2和N3:225 kg/hm2),磷、鉀肥各處理施量相同,總量為180 kg/hm2,氮、磷、鉀3種肥料全部作為追肥滴施。灌水次數(shù)、3種肥料的滴施次數(shù)和比例見表2。所施肥料為:尿素(N≥46%)、磷酸氫二銨(N 12.2%,P2O543.7%)、硫酸鉀肥(K2O 83%),均采用壓差式施肥罐隨水滴施,自現(xiàn)蕾期開始控制灌水施肥。試驗共計12個處理,每個處理3次重復(fù),總計36個小區(qū)。
表2 棉花各生育期灌水施肥次數(shù)和比例
1)植株形態(tài)指標(biāo)。在盛蕾期,盛花期和盛鈴期,每個小區(qū)隨機取3株長勢均勻的植株,記錄葉片數(shù)、果枝數(shù)、蕾數(shù)和鈴數(shù)。
2)棉花產(chǎn)量。試驗采用實產(chǎn)數(shù)據(jù),分小區(qū)人工拾測,并記錄各小區(qū)棉花總質(zhì)量,最終換算為每公頃產(chǎn)量。
3)土壤含水率。在盛蕾期,初花期,盛花期,盛鈴期,分別在灌水2 d后用土鉆采取土樣,每小區(qū)取3個點位,取樣點位于滴頭正下方,分別取0~10、10~20、20~40、40~60、60~80 cm土層土樣。采用烘干法測定土壤含水率。
4)土壤硝態(tài)氮質(zhì)量濃度。在盛花期和盛鈴期,分別在灌水2 d后用土鉆采取土樣,取樣點位和測定深度與土壤含水率的測定一致。根據(jù)GB/T 32737—2016《土壤硝態(tài)氮的測定紫外分光光度法》測定土壤硝態(tài)氮質(zhì)量濃度。
5)土壤銨態(tài)氮質(zhì)量濃度。取樣時間、取樣點位和測定深度與土壤硝態(tài)氮的測定一致。根據(jù)HJ634—2012《土壤氨氮、亞硝酸鹽氮、硝酸鹽氮的測定氯化鉀溶液提取-分光光度法》測定土壤銨態(tài)氮質(zhì)量濃度。
采用Excel2010和SPSS25.0軟件進行數(shù)據(jù)處理和統(tǒng)計分析,用Excel2010繪圖。對不同指標(biāo)先得出小區(qū)內(nèi)平均值,然后利用3個重復(fù),對二因素進行方差分析,如果差異顯著(<0.05),則進行Duncan新復(fù)極差法比較。
不同水氮施量下的棉花生長及產(chǎn)量特征如表3所示。
表3 不同水氮施量處理棉花生長情況及產(chǎn)量
由表3可以看出,相同灌水水平下,在盛蕾期和盛鈴期,不同施氮量處理的葉片數(shù)均無顯著差異。盛鈴期,N2處理的果枝數(shù)總是大于N1和N3處理,但差異也不顯著。棉花蕾數(shù)在盛蕾期雖已較高,但是直至盛花期,蕾數(shù)仍在增長。在W1灌水水平下,N1和N2處理的鈴數(shù)顯著大于N3處理,但在W3和W4灌水水平下,各施氮處理的鈴數(shù)差異均不顯著。還可以發(fā)現(xiàn),N2處理的產(chǎn)量總是顯著高于N3處理,且在W3灌水水平下,N2處理的產(chǎn)量顯著高于N1處理。綜上得出,在盛鈴期,相同灌水處理下,不同施氮處理對葉片數(shù)、果枝數(shù)無顯著影響;在W1灌水水平下,N3處理不利于鈴數(shù)的增長,降低灌水量后,各施氮處理的鈴數(shù)無顯著差異;最終產(chǎn)量在N2施氮處理下更為顯著。
不同灌水處理間比較得出,W1和W2處理下的葉片數(shù)、果枝數(shù)、蕾數(shù)和鈴數(shù)均明顯大于W3和W4處理,且W1、W2和W3處理下,鈴期的蕾鈴數(shù)之和小于花期,而W4處理下,盛鈴期的蕾數(shù)還在繼續(xù)增長,說明灌水量對棉花生長有顯著的影響,灌水量較高時,棉花的營養(yǎng)生長過盛,并在鈴期提前開始蕾鈴的脫落,而較低灌水量處理下的棉花營養(yǎng)生長與生殖生長則更為協(xié)調(diào)。此外,W3處理下的棉花產(chǎn)量明顯高于W1和W4處理,但與W2處理差異不大,說明較高或者較低的灌水量都不利于增產(chǎn),適當(dāng)?shù)墓嗨┓矢欣谧魑镂震B(yǎng)分,最終形成產(chǎn)量。
產(chǎn)量及不同生長階段棉株形態(tài)指標(biāo)的方差分析見表4。由表4可知,水氮交互作用對棉花產(chǎn)量的影響不顯著,但灌水處理和施氮處理的主效應(yīng)均顯著。施氮處理在各生育階段對棉株形態(tài)指標(biāo)的影響均不顯著。盛蕾期,灌水處理對葉片數(shù)的影響極顯著,水氮交互作用對果枝數(shù)和蕾數(shù)的影響顯著;盛花期,灌水處理對葉片數(shù)、果枝數(shù)和蕾數(shù)影響顯著,且水氮交互作用對葉片數(shù)的影響極顯著;盛鈴期,灌水處理對果枝數(shù)和鈴數(shù)的影響極顯著,且水氮交互作用對蕾數(shù)和鈴數(shù)影響顯著。綜上得出,灌水處理對植株形態(tài)指標(biāo)的影響效應(yīng)大于施氮處理,其中,水肥交互作用在盛蕾期促進了果枝和蕾的增長,在盛花期促進了葉片增長,在盛鈴期促進了蕾和鈴的增長,這也清晰的表明棉花各生育期營養(yǎng)生長與生殖生長之間的協(xié)調(diào)。
表4 產(chǎn)量及不同生長階段棉株形態(tài)指標(biāo)方差分析
注>0.05表示差異不顯著;0.01 <<0.05表示差異顯著,用*表示;<0.01表示差異極顯著,用**表示。
Note>0.05 means the difference is not significant; 0.01<<0.05 means the difference is significant, expressed by *;<0.01 means the difference is very significant, expressed by * *.
圖1中主要體現(xiàn)不同灌水量條件下,棉花不同生育階段下土壤含水率分布情況。在盛蕾期,土壤含水率隨著土層深度的增加而增加,在土壤表層,含水率在10%左右,初花期的表層含水率較盛蕾期增長了7%~11%,直到盛花期,土壤含水率分布范圍趨于穩(wěn)定,達(dá)到了20%左右。不同灌水處理比較得出,W3處理在各生長階段0~40 cm土層的土壤含水率均表現(xiàn)為持平或者上漲的趨勢。但在40~80 cm土層內(nèi),初花期和盛花期時,W3處理的含水率分布表現(xiàn)為下降趨勢,而W1和W2處理的含水率仍表現(xiàn)為增長趨勢。同時還發(fā)現(xiàn),在初花期至盛鈴期,W4處理的土壤含水率在20~80 cm土層土壤內(nèi)均表現(xiàn)為最低,甚至在盛花期后,含水率從表層往下逐漸降低。綜上,W1處理和W2處理會導(dǎo)致水分流失,W4處理的土壤較為干旱,而W3處理在各個時期更有利于保持土壤的濕潤,并且向深層流失的水分較少。
圖2為棉花不同生育階段土壤硝態(tài)氮分布情況,花鈴期是棉花生長的需水關(guān)鍵期。如圖2所示,在花鈴期,相同灌水量條件下,0~20 cm土層硝態(tài)氮量相對較高。在盛花期,W1和W2灌水量條件下,N1處理的土壤表層硝態(tài)氮量較高,在40~80 cm土層,3種施氮處理的硝態(tài)氮量差異不大,說明較高的灌水量條件下,氮肥隨著水分的下滲而流失,土壤所能保持的氮肥較少,較高施氮處理下的硝態(tài)氮含量相對較高。W3和W4灌水量條件下,土壤硝態(tài)氮量大致表現(xiàn)為N1處理>N2處理>N3處理,其中,N1處理下的硝態(tài)氮量在土壤深層累積較多,N3處理在土壤表層量相對較高,而N2處理在0~40 cm土層硝態(tài)氮量較大,40~80 cm量減少。由此說明,N2處理在根層內(nèi)的硝態(tài)氮量更高,并且向深層淋移較少,這有利于棉花對養(yǎng)分的吸收。在盛鈴期,土壤硝態(tài)氮量隨土層深度的增加表現(xiàn)為先減后增的趨勢,N2處理的土壤硝態(tài)氮量在0~80 cm土層均趨于穩(wěn)定,N1和N3處理波動較為明顯,存在肥力忽高忽低的情況,不利于根系對養(yǎng)分的吸收。綜上,在花鈴期,N2處理的硝態(tài)氮分布相對穩(wěn)定,在根系層內(nèi)的硝態(tài)氮量也相對較高,有利于棉花根系對養(yǎng)分的吸收。
圖1 不同生育階段土壤含水率分布變化
圖2 不同生育階段土壤硝態(tài)氮分布變化
不同水氮施量對土壤銨態(tài)氮分布情況如圖3所示。尿素水解生成銨態(tài)氮,少量的銨態(tài)氮轉(zhuǎn)化為硝態(tài)氮,在種植作物的土壤中銨態(tài)氮量明顯高于土壤硝態(tài)氮量[43]。相同灌水量條件下,表層土壤銨態(tài)氮量相對較高,這與硝態(tài)氮分布規(guī)律相似。在盛鈴期,N2處理的土壤銨態(tài)氮量大于其他施氮處理,說明在N2處理施氮量條件下,尿素轉(zhuǎn)化的銨態(tài)氮較多,可以被作物吸收利用的氮水平則相對較高,更利于棉花的生長。還發(fā)現(xiàn),在盛花期和盛鈴期,W1處理的土壤銨態(tài)氮分布規(guī)律大致表現(xiàn)為先減后增的趨勢,說明較高灌水量也會造成土壤銨態(tài)氮在深層積累。W4處理的土壤銨態(tài)氮量明顯低于其他灌水處理,這可能是由于較低的灌水量導(dǎo)致轉(zhuǎn)化的銨態(tài)氮量減少或者轉(zhuǎn)化速度減慢。綜上,N2處理能促進棉花對養(yǎng)分的吸收,但過量或較低的灌水量均會導(dǎo)致養(yǎng)分流失,甚至抑制棉花生長。
圖3 不同生育階段土壤銨態(tài)氮分布變化
灌水量與施氮量間的相互協(xié)調(diào)至關(guān)重要,水氮的合理調(diào)控可以有效協(xié)調(diào)棉花營養(yǎng)生長和生殖生長的平衡[26],并保證土壤養(yǎng)分盡可能少的淋洗至根系層以下,提高肥料利用率。研究發(fā)現(xiàn),較高灌水量導(dǎo)致營養(yǎng)生長過盛,葉片過多使株間透氣性降低,從而導(dǎo)致蕾鈴脫落增加[44-45],最終導(dǎo)致產(chǎn)量下降,這與司轉(zhuǎn)運等[28]的研究結(jié)果相似。由此可見,營養(yǎng)生長過盛并不是形成產(chǎn)量的有利因素,只有通過合理水氮調(diào)控,才能有效促進棉花生長,進而提高產(chǎn)量。本試驗中,W3N2處理的水氮施量能有效促進棉花的葉片數(shù)、果枝數(shù)及蕾鈴數(shù)的增長,進而提高棉花產(chǎn)量??梢姡?dāng)灌水量為3 750 m3/hm2,施氮量為262.5 kg/hm2時,最有利于棉花生長。
不同土質(zhì)條件下,膜下滴灌棉田土壤含水率的空間結(jié)構(gòu)性不同[46],土壤含水量、土壤蓄水量也存在差異,黏土明顯強于沙土[47]。播種前,土壤經(jīng)過深松處理,打破了耕作犁底層,并提升了土壤通透性,在作物生長前半階段土壤含水率偏低[48]。本研究發(fā)現(xiàn),棉花生長前期,土壤表層含水率較低,隨著水分入滲,含水率也逐漸增大,分析原因,一是棉花根系較淺,吸收了淺層水分[49];二是40~80 cm土層多為犁底層,由于長期受到犁的擠壓和灌水時黏粒隨水沉積所致,土壤結(jié)構(gòu)較為穩(wěn)定。W4處理的土壤含水率隨土層深度的增加逐漸降低,不能滿足根系層所需的水分,這與王平等[40]的研究結(jié)果一致。由此可見,過量或者較低的灌水量都不利于棉花的生長,尤其在棉花生長前期,應(yīng)合理把控灌水量。
導(dǎo)致土壤氮素淋移的主要因素包括土壤中氮濃度較高[37]、過量灌溉[40]及土壤質(zhì)地[43]。有研究表明,土壤硝態(tài)氮分布主要集中在40~60 cm土層[36],這與本研究結(jié)果相悖。本研究中,0~20 cm土層硝態(tài)氮和銨態(tài)氮含量相對較高,分析原因,一是灌水量對銨態(tài)氮和硝態(tài)氮影響顯著,增加灌水有利于銨態(tài)氮的形成[50],進而促進了硝態(tài)氮的轉(zhuǎn)化;二是棉花生育期,耕層銨態(tài)氮含量明顯高于深層[51];三是尿素要在土壤脲酶的作用下水解為銨離子才能被植物吸收利用,但產(chǎn)生肥效慢,需要一定的時間[52]。W1處理的土壤銨態(tài)氮分布規(guī)律大致表現(xiàn)為先減后增的趨勢,分析原因,一是增加灌水量,促進了氮素在土壤中的移動,同時銨態(tài)氮的轉(zhuǎn)化也會發(fā)生在土壤深層;二是尿素肥料會隨灌水向下層土壤移動,且土壤質(zhì)地越黏重,對銨態(tài)氮的吸附力越強[53-55],該試驗土質(zhì)則表現(xiàn)為隨著土壤深度的增加,黏粒占比逐漸大于砂粒?;ㄢ徠?,土壤的保水性趨于穩(wěn)定,土壤中的硝態(tài)氮和銨態(tài)氮也能很好地被作物吸收利用,但N1處理的氮素仍在深層累積較多,應(yīng)適當(dāng)減少施氮量,盡量控制氮素在根系層供棉花吸收利用。
研究表明長期進行肥力試驗,才能闡明土壤與作物之間的聯(lián)系[20]。田間試驗中,土壤結(jié)構(gòu)及其肥力狀況易受到環(huán)境的影響,為確定土壤質(zhì)地的變化特征、棉花根系吸水特性及高效的灌溉施肥方案,有必要長期監(jiān)測土壤的物理化學(xué)特性,進而確定合理有效的灌水量和施氮量組合。棉花生長特性及水氮分布特征可以有效地體現(xiàn)灌水施肥的優(yōu)劣之處,因此,須長期進行此類研究。
土壤中氮素的分布特征影響著棉花對養(yǎng)分的吸收[44],不同深度的土壤氮素分布特征不但受到施氮量的影響[45],而且與施肥時段有關(guān)[31]。因此,還需要進一步開展不同施肥時段對棉花生長及水氮分布影響的田間試驗,并結(jié)合土壤質(zhì)地情況,合理有效地進行灌水施肥。
1)灌水處理對棉花生長及產(chǎn)量的影響效應(yīng)大于施氮處理,在較高灌水處理下,葉片數(shù)、果枝數(shù)、蕾數(shù)和鈴數(shù)都相對較高,但植株形態(tài)指標(biāo)不能反映產(chǎn)量,營養(yǎng)生長與生殖生長不協(xié)調(diào)嚴(yán)重影響產(chǎn)量的增長。
2)在棉花生長前期,土壤含水率隨著土層深度的增加而增大。盛蕾期表層土壤含水率僅為10%左右,直到盛花期,表層土壤含水率穩(wěn)定在20%左右。當(dāng)灌水量為3 750 m3/hm2時,土壤表現(xiàn)較為濕潤,且流失的水分較少。
3)0~20 cm土層硝態(tài)氮和銨態(tài)氮量相對較高,隨著施氮量的增加,氮素深層淋移程度不斷加深。其中,施氮量為262.5 kg/hm2時,土壤氮素量在各土層分布較均勻,更有利于根系吸收利用,但在灌水量為5 250 m3/hm2時,氮素被大量淋移至根系層以下,并在深層大量累積。因此,合理的水氮調(diào)控才能更好地保持土壤中的水分和養(yǎng)分,并協(xié)調(diào)好營養(yǎng)生長和生殖生長的平衡,促進棉花產(chǎn)量提高。
4)當(dāng)灌水量為3 750 m3/hm2,施氮量為262.5 kg/hm2時,不僅棉花的營養(yǎng)生長和生殖生長達(dá)到了較好平衡,土壤中的水分和養(yǎng)分也較好地滿足了棉花的生長,并獲得最大產(chǎn)量6 460.5 kg/hm2。
[1] 王平, 陳新平, 田長彥. 不同水氮管理對棉花產(chǎn)量、品質(zhì)及養(yǎng)分平衡的影響[J].中國農(nóng)業(yè)科學(xué), 2005 , 38(4) : 761-769 .
WANG Ping, CHEN Xinping, TIAN Changyan. Effect of Different Irrigation and Fertilization Strategies on Yield, Fiber Quality and Nitrogen Balance of High-Yield Cotton System[J]. Scientia Agricultura Sinica, 2005, 38(4):761-769.
[2] TIL FEIKE, LING YEE KHOR, YUSUYUNJIANG MAMITIMIN, et al. Determinants of cotton farmers’ irrigation water management in arid Northwestern China[J]. Agricultural Water Management, 2017, 187: 1-10.
[3] HAN Ming, ZHAO Chengyi, FENG Gary, et al. Evaluating the Effects of Mulch and Irrigation Amount on Soil Water Distribution and Root Zone Water Balance Using HYDRUS-2D[J].Water, 2015,7:2 622-2 640.
[4] WANG Haidong, WU Lifeng, CHENG Minghui, et al. Coupling effects of water and fertilizer on yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China[J]. Field Crops Research , 2018 , 219: 169-179.
[5] YUDHVEER Singh, SAJJAN Singh Rao, PANNA Lal Regar. Deficit irrigation and nitrogen effects on seed cotton yield, water productivity and yield response factor in shallow soils of semi-arid environment [J]. Agricultural Water Management, 2010, 97: 965-970.
[6] ZURWELLER B A, ROWLAND D L, MULVANEY M J, et al. Optimizing cotton irrigation and nitrogen management using a soil water balance model and in-season nitrogen applications [J]. Agricultural Water Management, 2019, 216: 306-314.
[7] KANG Yaohu, WANG Ruoshui, WAN Shuqin, et al. Effects of different water levels on cotton growth and water use through drip irrigation in an arid region with saline ground water of Northwest China[J]. Agricultural Water Management, 2012, 109: 117-126.
[8] 蘇永中, 張智慧, 楊榮. 黑河中游邊緣綠洲沙地農(nóng)田玉米水氮用量配合試驗[J].作物學(xué)報, 2007, 33(12):2 007-2 015.
SU Yongzhong, ZHANG Zhi, YANG Rong. Experiment on the amount of water and nitrogen in farmland of oasis sandy land in the middle reaches of Heihe River[J]. Acta Agronomica Sinica, 2007, 33(12): 2 007-2 015.
[9] HOU Zhenan, CHEN Weiping, LI Xiao, et al. Effects of salinity and fertigation practice on cotton yield and 15N recovery [J]. Agricultural Water Management, 2009, 96: 1 483-1 489.
[10] LI Wenrao, JIA Liguo, WANG Lei. Chemical signals and their regulations on the plant growth and water use efficiency of cotton seedlings under partial root-zone drying and different nitrogen applications[J]. Saudi Journal of Biological Sciences, 2017, 24:477-487.
[11] 朱兆良. 中國土壤氮素研究[J]. 土壤學(xué)報, 2008, 45(5):778-783.
ZHU Zhaoliang. Study on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5):778-783.
[12] POLYCHRONAKI E, DOUMA C, GIOURGA C, et al. Assessing Nitrogen Fertilization Strategies in Winter Wheat and Cotton Crops in Northern Greece[J]. Pedosphere, 2012, 22(5): 689-697.
[13] KOKOU Adambounou Amouzou, JESSE B. Naab, JOHN P A Lamers, et al. CROPGRO-Cotton model for determining climate change impacts on yield, water and N-use efficiencies of cotton in the Dry Savanna of West Africa[J]. Agricultural Systems, 2018, 165 : 85-96.
[14] YANG Yanmin, YANG Yonghui, HAN Shumin, et al. Prediction of cotton yield and water demand under climate change and future adaptation measures [J]. Agricultural Water Management, 2014, 144: 42-53.
[15] TANG Lisong, LI Yan, ZHANG Jianhua. Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area [J]. Agricultural Water Management, 2010, 97:1 527-1 533.
[16] AHMET Ertek, RIZA Kanber. Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton[J]. Agricultural Water Management, 2003, 60:1-11.
[17] AUJLA M S, THIND H S, BUTTAR G S, Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting [J]. Agricultural Water Management, 2005, 71:167-179.
[18] THIND H S, AUJLA M S, BUTTAR G S. Response of cotton to various levels of nitrogen and water applied to normal and paired sown cotton under drip irrigation in relation to check-basin[J]. Agricultural Water Management, 2008, 95:25-34.
[19] FAN Yubing, WANG Chenggang, NAN Zhibiao . Determining water use efficiency of wheat and cotton : A meta-regression analysis [J]. Agricultural Water Management , 2018, 199 : 48-60.
[20] HADAS A, HADAS A, SAGIV B, et al. Agricultural practices, soil fertility management modes and resultant nitrogen leaching rates under semi-arid conditions[J]. Agricultural Water Management, 1999, 42(1): 81-95.
[21] 李雪琴, 曾勝河, 劉洪亮, 等. 石河子墾區(qū)棉花膜下滴灌施肥技術(shù)試驗與應(yīng)用[J].新疆農(nóng)墾科技, 2004 (2):37-38.
LI Xueqin, ZENG Shenghe, LIU Hongliang, et al. Experiment and Application of drip Irrigation and Fertilizer Technology under plastic Film in Shihezi Reclamation area[J]. Xinjiang Agricultural Reclamation Science and Technology, 2004(2):37-38.
[22] DA?DELEN N, BA?AL H, YILMAZ E, et al. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey[J]. Agricultural Water Management, 2009, 96(1): 111-120.
[23] QIN Wei, HU Chunsheng, OENEMA Oene. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis[J]. Scientific Reports,2015,16 210:1-13.
[24] 鄧忠, 翟國亮, 呂謀超, 等. 施肥策略對新疆棉花產(chǎn)量、品質(zhì)與水氮利用的影響[J].排灌機械工程學(xué)報, 2017, 35(10):897-902.
DENG Zhong, ZHAI Guoliang, LV Mouchao, et al. Effects of fertilizing strategies on cotton yield, quality and water and nitrogen utilization in Xinjiang[J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(10):897-902.
[25] 王肖娟, 危常州, 張君, 等. 灌溉方式和施氮量對棉田氮肥利用率及損失的影響[J].應(yīng)用生態(tài)學(xué)報, 2012, 23(10):2 751-2 758.
WANG Xiaojuan, WEI Changzhou, ZHANG Jun, et al. Effects of irrigation methods and nitrogen application rates on nitrogen use efficiency and loss in cotton fields[J]. Chinese Journal of Applied Ecology, 2012, 23(10):2 751-2 758.
[26] 謝志良, 田長彥. 膜下滴灌水氮耦合對棉花干物質(zhì)積累和氮素吸收及水氮利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(1):160-165.
XIE Zhiliang, TIAN Changyan. Effect of water and nitrogen coupling under the film drip irrigation on dry matter accumulation, nitrogen absorption and water and nitrogen utilization efficiency of cotton[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(1):160-165.
[27] 李鵬程, 董合林, 劉愛忠, 等. 施氮量對棉花功能葉片生理特性、氮素利用效率及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2015, 21(1):81-91.
LI Pengcheng, DONG Hulin, LIU Aizhong, et al. Effects of nitrogen application on physiological characteristics, nitrogen use efficiency and yield of cotton functional leaves[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(1):81-91.
[28] 司轉(zhuǎn)運, 高陽, 申孝軍, 等. 水氮供應(yīng)對夏棉產(chǎn)量、水氮利用及土壤硝態(tài)氮累積的影響[J].應(yīng)用生態(tài)學(xué)報, 2017, 28(12):3 945-3 954.
SI Zhuanyun, GAO Yang, SHEN Xiaojun, et al. Effects of Water Nitrogen Supply on Summer Cotton Yield, Water Nitrogen Utilization and Soil Nitrate Nitrogen Accumulation[J]. Chinese Journal of Applied Ecology, 2017, 28(12):3 945-3 954.
[29] MUHAMMAD shareef, DONGWEI gui, FANJIANG zeng, et al. Water productivity, growth, and physiological assessment of deficit irrigated cotton on hyperarid desert-oases in northwest China [J]. Agricultural Water Management, 2018,206:1-10.
[30] 麻瑋青, 范興科. 玉米滴灌過程中施肥時段對氮肥利用效率的影響研究[J].節(jié)水灌溉, 2018(1):14-18,23.
MA Weiqing, FAN Xingke. Study on the effect of Fertilizer period on nitrogen use efficiency during drip Irrigation in Maize[J]. Water Saving Irrigation, 2018(1):14-18,23.
[31] 陶垿, 呂新, 陳劍, 等. 不同滴灌施肥方式對棉田土壤含水率、硝態(tài)氮分布及對產(chǎn)量的影響[J].棉花學(xué)報, 2015, 27(4):329-336.
TAO Yun, LU Xin, CHEN Jian, et al. Effects of different drip irrigation and fertilizer methods on soil moisture content, nitrate distribution and yield in cotton field[J]. Cotton Science, 2015, 27(4):329-336.
[32] 周永萍, 田長彥, 王平. 不同水氮處理對棉田系統(tǒng)氮素吸收利用及殘留的影響[J].干旱區(qū)地理, 2010, 33(5):725-731.
ZHOU Yongping, TIAN Changyan, WANG Ping. Effects of different water and nitrogen treatments on nitrogen uptake and utilization and residues in cotton field[J]. Arid Land Geography, 2010, 33(5):725-731.
[33] YANG Rong, WANG Xuefeng. Effects of nitrogen fertilizer and irrigation rate on nitrate present in the profile of a sandy farmland in Northwest China[J]. Procedia Environmental Sciences, 2011, 11:726-732.
[34] 王旭洋, 范興科. 滴灌條件下施氮時段對土壤氮素分布的影響研究[J].干旱地區(qū)農(nóng)業(yè)研究, 2017, 35(3):182-189.
WANG Xuyang, FAN Xingke. The effect of nitrogen application on the distribution of nitrogen in soil under the condition of drip irrigation [J]. Agricultural Research in the Arid Areas, 2017, 35(3):182-189.
[35] 胡偉, 張炎, 胡國智, 等. 控釋氮肥對棉花植株N素吸收、土壤硝態(tài)氮累積及產(chǎn)量的影響[J].棉花學(xué)報, 2011, 23(3):253-258.
HU Wei, ZHANG Yan, HU Guozhi, et al. Effects of controlled release nitrogen fertilizer on N uptake, nitrate accumulation and yield of cotton plants [J]. Cotton Science, 2011, 23(3):253-258.
[36] 索俊宇, 馬興旺, 龔雙鳳, 等. 膜下滴灌棉田土壤氮素變化特征及合理施氮量[J].西北農(nóng)業(yè)學(xué)報, 2017, 26(5):738-744.
SUO Junyu, MA Xingwang, GONG Shuangfeng, et al. Characteristics of soil nitrogen change and reasonable nitrogen application rate in drip irrigation cotton field under plastic film [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(5):738-744.
[37] 馬革新, 張澤, 溫鵬飛, 等. 施氮對不同質(zhì)地滴灌棉田土壤硝態(tài)氮分布及棉花產(chǎn)量的影響[J].灌溉排水學(xué)報, 2017, 36(3):44-51.
MA Gexin, ZHANG Ze, WEN Pengfei, et al. Effect of nitrogen application on soil nitrate distribution and cotton yield in drip irrigation cotton field with different texture [J]. Journal of Irrigation and Drainage, 2017, 36(3):44-51.
[38] 侯秀玲, 張炎, 李磐, 等. 施氮對南疆潮土硝態(tài)氮分布的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2006, 24(6):73-77,84.
HOU Xiuling, ZHANG Yan, LI Pan, et al. Effect of nitrogen application on nitrate distribution in tidal soils in southern Xinjiang [J]. Agricultural Research in the Arid Areas, 2006, 24(6):73-77,84.
[39] 黎會仙, 王文娥, 胡笑濤, 等. 水肥一體化膜下滴灌水肥及速效氮分布特征研究[J].灌溉排水學(xué)報, 2018, 37(3):51-57.
LI Huixian, WANG Wene, HU Xiaotao, et al. Study on the distribution characteristics of drip irrigation and available nitrogen under the integrated film of water and fertilizer [J]. Journal of Irrigation and Drainage, 2018, 37(3):51-57.
[40] 王平, 陳新平, 張福鎖, 等. 不同水氮處理對棉田氮素平衡及土壤硝態(tài)氮移動的影響[J].中國農(nóng)業(yè)科學(xué), 2011, 44(5):946-955.
WANG Ping, CHEN Xinping, ZHANG Fuzhao, et al. Effects of different water and nitrogen treatments on nitrogen balance and soil nitrate movement in cotton field [J]. Scientia Agricultura Sinica, 2011, 44(5):946-955.
[41] 侯振安, 李品芳, 呂新, 等. 不同滴灌施肥方式下棉花根區(qū)的水、鹽和氮素分布[J].中國農(nóng)業(yè)科學(xué), 2007, 40(3):549-557.
HOU Zhenan, LI Pinfang, LV Xin, et al. Distribution of water, salt and nitrogen in cotton root zone under different drip irrigation and fertilizer methods [J]. Scientia Agricultura Sinica, 2007, 40(3):549-557.
[42] WANG Ruoshui, KANG Yaohu , WAN Shuqin. Effects of different drip irrigation regimes on saline–sodic soil nutrients and cotton yield in an arid region of Northwest China[J]. Agricultural Water Management, 2015,153:1-8.
[43] 曾科, 楊蘭芳, 于婧, 等. 不同類型作物生長對土壤有效氮構(gòu)成和氮肥轉(zhuǎn)化利用的影響[J].河南農(nóng)業(yè)科學(xué), 2017, 46(1):58-63.
ZENG Ke, YANG Lanfang, YU Jing, et al. Effects of different types of crop growth on soil available nitrogen composition and nitrogen fertilizer transformation and utilization [J]. Journal of Henan Agricultural Sciences, 2017, 46(1):58-63.
[44] 鄧忠, 翟國亮, 王曉森, 等. 灌溉和施氮策略對滴灌施肥棉花蕾鈴脫落的影響[J].灌溉排水學(xué)報, 2017, 36(8):1-6.
DENG Zhong, ZHAI Guoliang, WANG Xiaosen, et al. Effects of irrigation and nitrogen application strategies on bud and boll shedding of cotton under drip irrigation [J]. Journal of Irrigation and Drainage, 2017, 36(8):1-6.
[45] 鄧天宏, 朱自璽, 方文松, 等. 土壤水分對棉花蕾鈴脫落和纖維品質(zhì)的影響[J].中國農(nóng)業(yè)氣象, 1998, 19(3):8-13.
DENG Tianhong, ZHU Zixi, FANG Wensong, et al. Effects of soil moisture on bud and boll shedding and fiber quality of cotton [J]. Chinese Journal of Agrometeorology, 1998, 19(3):8-13.
[46] 楊泉, 羅浩. 不同土壤質(zhì)地的土壤含水率的空間變異性[J].吉林水利, 2010,11:30-32.
YANG Quan, LUO Hao. Spatial variability of soil moisture content with different soil texture [J]. Jilin Water Resources, 2010, 11:30-32.
[47] 侯剛.膜下滴灌棉田土壤水分動態(tài)化研究[J].安徽農(nóng)業(yè)科學(xué), 2007, 35(26):8 287-8 289.
HOU Gang. Study on soil moisture dynamics of drip irrigation cotton field under plastic film [J]. Journal of Anhui Agricultural Sciences, 2007, 35(26):8 287-8 289.
[48] 杜艷偉, 趙晉鋒, 王高鴻, 等. 耕作方式對春玉米田間雜草土壤容重和含水率的影響[J].安徽農(nóng)業(yè)科學(xué), 2019, 47(16):21-24.
DU Yanwei, ZHAO Jinfeng, WANG Gaohong, et al. Effects of farming methods on soil bulk density and moisture content of weeds in spring corn field [J]. Journal of Anhui Agricultural Sciences, 2019, 47(16):21-24.
[49] 崔靜, 王海江, 馬富裕, 等. 膜下滴灌棉田不同質(zhì)地土壤水分的動態(tài)變化[J].西北農(nóng)業(yè)學(xué)報, 2010, 19(11):192-196.
CUI Jing, WANG Haijiang, MA Fu, et al. Dynamic changes of soil moisture in different texture of drip irrigation cotton field under plastic film [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2010, 19(11): 192-196.
[50] 賈正茂, 崔遠(yuǎn)來, 劉方平, 等. 不同水肥耦合下棉花土壤氮素轉(zhuǎn)化規(guī)律[J].武漢大學(xué)學(xué)報, 2013, 46(2):164-169.
JIA Zhengmao, CUI Yuanlai, LIU Fangping, et al. Nitrogen transformation in cotton soil under different coupling of water and fertilizer [J]. Engineering Journal of Wuhan University, 2013, 46(2):164-169.
[51] 戴翠榮, 姜益娟, 鄭德明. 膜下滴灌和地下滴灌棉田土壤NH4+-N空間分布特征研究[J].新疆農(nóng)業(yè)科學(xué), 2007, 44(5):608-612.
DAI Cuirong, JIANG Yijuan, ZHENG Deming. Study on the spatial distribution characteristics of NH4+-N in cotton field under plastic film drip irrigation and underground drip irrigation [J]. Xinjiang Agricultural Sciences, 2007, 44(5):608-612.
[52] 高志建, 尹飛虎, 劉瑜, 等. 滴灌棉花光合特性、生物量及產(chǎn)量對銨態(tài)氮、酰胺態(tài)氮的響應(yīng)研究[J].新疆農(nóng)業(yè)科學(xué), 2015, 52(1):1-6.
GAO Zhijian, YIN Feihu, LIU Yu, et al. Studies on the response of photosynthetic characteristics, Biomass and yield to ammonium nitrogen and Amine nitrogen in drip Irrigation Cotton [J]. Xinjiang Agricultural Sciences, 2015, 52(1):1-6.
[53] 劉宗衡, 羅亦云, 邢竹, 等. 尿素肥料在土壤中分解、轉(zhuǎn)化、移動規(guī)律的研究[J].土壤肥料, 1980, 3:36-39.
LIU Zongheng, LUO Yiyun, XING Zhu, et al. Study on decomposition, transformation and movement of urea fertilizer in soil [J]. Soil and Fertilizers, 1980, 3:36-39.
[54] 馬騰飛, 危常州, 王娟, 等. 不同灌溉方式下土壤中氮素分布和對棉花氮素吸收的影響[J].新疆農(nóng)業(yè)科學(xué), 2010, 47(5):859-864.
MA Tengfei, WEI Changzhou, WANG Juan, et al. Distribution of nitrogen in soil and its effect on nitrogen uptake by cotton under different irrigation methods [J]. Xinjiang Agricultural Sciences, 2010, 47(5):859-864.
[55] 李嶸, 孫西歡, 馬娟娟, 等. 灌溉施肥條件下土壤水氮運移特性研究綜述[J]. 技術(shù)與應(yīng)用, 2009, 5:55-57.
LI Rong, SUN Xihuan, MA Juanjuan, et al. A review on the transport characteristics of soil water and nitrogen under irrigation and fertilizer conditions [J]. Technology and Application, 2009, 5:55-57.
The Impact of N Application and Drip Irrigation Amount on Cotton Growth and Water and N Distributions in Soil Mulched with Film
ZHONG Zhibo1,2, ZHAI Guoliang1, DENG Zhong1*, CAI Jiumao1, GU Shaowei1,2, WANG Guodong3
(1. Farmland Irrigation Research Institute, Chinese Academy of Agricultural Institute/ Key Laboratory of Water-saving Irrigation Engineering, Ministry of Agriculture and Rural Affairs, Xinxiang 453002, China; 2. Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China; 3. Institute of Water and Soil Fertilizer, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China)
【】The purpose of this paper is to experimentally determine the optimal water and nitrogen application for cotton grown in soil mulched with film and under drip irrigation.【】The experiment was conducted with four irrigation amounts: W1:5 250 m3/hm2,W2:4 500 m3/hm2,W3:3 750 m3/hm2and W4:3 000 m3/hm2; and three nitrogen applications: N1:300 kg/hm2, N2:262.5 kg/hm2and N3:225 kg/hm2. All treatments were organized in the two-factor randomized plots in the field. In each treatment, we measured plant morphology, soil water and soil nitrogen.【】Irrigation amount affected plant morphological traits more than nitrogen application, but the morphological traits were not closely related to cotton yield. Water content in the top soil decreased asymptotically to 20% from the budding stage to the flowering stage. It was found that irrigating 3 750 m3/hm2of water was the best comprise to keep soil moist while not losing too much water to percolation. Nitrate and ammonium content in the top 0~20 cm soil was comparatively high, and with increase in irrigation amount and nitrogen application, nitrogen leaching increased monotonically. When the nitrogen application amount was 262.5 kg/hm2, nitrate in root zone was comparatively high due to the apparently enhanced nitrification. The yield peaked at 6 460.5 kg/hm2when nitrogen application and irrigation amount were 262.5 kg/hm2and 3 750 m3/hm2respectively. 【】In terms of affecting cotton growth and water and nitrogen distribution in soil, applying 262.5 kg/hm2of nitrogen and irrigating 3 750 m3/hm2of water was optimal for cotton grown in the studied area.
drip irrigation; film mulching; plant morphology; soil water; soil nitrate; soil ammonium
S274.1;S275.6
A
10.13522/j.cnki.ggps.2019154
1672 - 3317(2020)01 - 0067 - 10
2019-08-01
中國農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費項目(Y2018PT72, Y2019LM15);經(jīng)濟作物水肥一體化技術(shù)模式研究與應(yīng)用項目(2017YFD0201506)
忠智博(1994-),男,新疆塔城人。碩士研究生,主要從事節(jié)水灌溉理論與技術(shù)研究。E-mail:zhong2933@126.com
鄧忠(1976-),男,甘肅武威人。副研究員,主要從事節(jié)水灌溉理論與技術(shù)研究。E-mail:dengzhong1976@126.com
忠智博, 翟國亮, 鄧忠, 等. 水氮施量對膜下滴灌棉花生長及水氮分布的影響[J]. 灌溉排水學(xué)報, 2020, 39(1):67-76.
ZHONG Zhibo, ZHAI Guoliang, DENG Zhong, et al. The impact of N application and drip irrigation amount on cotton growth and water and n distributions in soil mulched with film [J]. Journal of Irrigation and Drainage, 2020, 39(1): 67-76.
責(zé)任編輯:韓 洋