• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Contribution of surface wave-induced vertical mixing to heat content in global upper ocean*

    2020-03-19 12:30:28CHENSiyuQIAOFangliHUANGChuanjiangSONGZhenya
    Journal of Oceanology and Limnology 2020年2期

    CHEN Siyu QIAO Fangli HUANG Chuanjiang SONG Zhenya

    1 Ocean University of China, Qingdao 266100, China

    2 First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China

    3 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

    4 Key Laboratory of Marine Sciences and Numerical Modeling, Ministry of Natural Resources, Qingdao 266061, China

    Abstract Compared with observations, the simulated upper ocean heat content (OHC) determined from climate models shows an underestimation bias. The simulation bias of the average annual water temperature in the upper 300 m is 0.2°C lower than the observational results. The results from our two numerical experiments, using a CMIP5 model, show that the non-breaking surface wave-induced vertical mixing can reduce this bias. The enhanced vertical mixing increases the OHC in the global upper ocean (65°S-65°N).Using non-breaking surface wave-induced vertical mixing reduced the disparity by 30% to 0.14°C. The heat content increase is not directly induced by air-sea heat f luxes during the simulation period, but is the legacy of temperature increases in the f irst 150 years. During this period, additional vertical mixing was initially included in the climate model. The non-breaking surface wave-induced vertical mixing improves the OHC by increasing the air-sea heat f luxes in the f irst 150 years. This increase in air-sea heat f luxes warms the upper ocean by 0.05-0.06°C. The results show that the incorporation of vertical mixing induced by nonbreaking surface waves in our experiments can improve the simulation of OHC in the global upper ocean.

    Keyword: surface wave-induced; vertical mixing; upper ocean heat content; air-sea heat f luxes; climate model

    1 INTRODUCTION

    The ocean plays a considerable part in the global energy budget because it is the primary heat reservoir for climate change (global warming), as it stores more than 90% of the excess heat (Palmer and McNeall,2014; Von Schuckmann et al., 2016). The variations of ocean heat content (OHC) are essential elements of the global and regional climate variability (Jin, 1997;Meehl et al., 2011; Roberts et al., 2015) and the transient response to climate change (Kuhlbrodt and Gregory, 2012; Geoff roy et al., 2013). The OHC variation has become an important indicator of climate change and its variability (Abraham et al.,2013).

    Changes in the OHC also represents the global energy imbalance caused by anthropogenic climate change, and thus projections of future changes in this quantity need to be as accurate as possible for the projection of future global temperature changes and sea level rises. However, numerical models, including ocean general circulation models, coupled climate models, and earth system models, have def iciencies in simulating the OHC (Gregory et al., 2004; Achutarao et al., 2007). Previous studies have suggested that including volcanic forcing (Church et al., 2005;Gleckler et al., 2006) and other variable climate forcings can improve the simulation of the climate models (Delworth et al., 2005). Numerous studies have shown an increase in the global OHC over the past few decades (Abraham et al., 2013).

    Involving the important physical processes of the real ocean is a part of the unremitting development of numerical models. The more attention of including the oceanic surface waves in the climate system has recently received (Huang et al., 2012, 2014; Qiao et al., 2013; Fan and Griffi es, 2014). Recent research found that wave-induced mixing can change the OHC in both ocean models (Stoney et al., 2018) and climate coupled models (Chen et al., 2018). Nevertheless, the vertical mixing does not create, but redistributes,heat.

    In the present study, we focus on understanding the mechanisms underlying the changes in OHC in the upper ocean caused by surface wave-induced vertical mixing (which we henceforth refer to simply as Bv,for convenience). Domingues et al. (2008) compared the linear trend in ocean heat content in the upper 700 m and 300 m, and found that 91% of it stored in the upper 300 m. Adopting the same def inition as used in previous studies (Domingues et al., 2008;Balmaseda et al., 2013; Williams et al., 2015), we consider 0-300 m as the object of study in this research. Using two identical numerical experiments,one with and one without Bv, we reveal how incorporating the eff ects of Bv improves the simulation of the OHC in the global upper ocean. The paper is organized as follows. The numerical models and data are described in Section 2. The results are presented in Sections 3, and the main conclusions are summarized in Section 4.

    2 MODEL, DATA AND METHOD

    2.1 The setup of numerical experiments

    The FIO-ESM (First Institute of Oceanography Earth System Model), developed by Qiao et al. (2013),was used to carry out the numerical experiments in this paper. FIO-ESM comprises coupled physical climate and carbon cycle models. The details of the FIO-ESM can be found in Qiao et al. (2013).

    Two experiments, one with Bv and the other without, were performed to identify the contribution of Bv to the heat content in the global upper ocean.FIO-ESM was used for the two numerical experiments.Bv is expressed analytically as:

    whereαis a constant set to 1 following Qiao et al.(2013),E(k→) is the wave number spectrum,ωis the wave angular frequency,k→ is the wave number, andzis the vertical coordinate axis (upward positive) withz=0 at the mean surface.

    The experiment incorporating Bv adopts the numerical experiment design and forcing data recommended by the CMIP5 (Coupled Model Intercomparison Project Phase 5). A historical run was conducted for the 1850-2005 period to match the run period of the physical climate model. The other run was identical, except for Bv being not included.We chose the 20-year averaged model results (1986-2005) for the comparison of OHC simulations with Bv, and without Bv.

    2.2 Observation data

    The EN4 (Good et al., 2013) 1985-2006 objective analysis temperature data set was used to evaluate the upper ocean thermal content. In addition, we compared this climatological data with the World Ocean Atlas (2009) data (Locarnini et al., 2010); the results of the two data sets were almost the same.

    2.3 Method

    We calculated the upper OHC, integrated between the surface and the depth of 300 m, using:

    whereTis the potential temperature,xis the zonal dimension,yis the meridional dimension,zis height,tis time, andcpandρ0are the heat capacity and density of sea water, respectively. In spherical coordinates:

    whereRis the radius of the Earth,φis latitude, andθis longitude. The OHC can be intuitively characterized as the average temperature.

    The geographical distribution of OHC can be characterized by the vertically-integrated temperature(VIT, units: m°C). We calculated VIT using:

    whereTais the climatological monthly average temperature for the period 1986-2005.

    Fig.1 Climatological monthly average temperature of the upper ocean (0-300 m) between 65°S and 65°N during the simulation period (1986-2005)

    3 RESULT

    3.1 Eff ects of Bv on the simulation of OHC

    Here we investigated the OHC using the average temperature in the 0-300 m layer. Figure 1 shows the climatological monthly average temperature of the upper ocean over the simulation period (1986-2005).The mean of the EN4 data set was 12.90°C and the mean of the case without Bv was 12.70°C. The mean temperature rose to 12.76°C when Bv was included.The global average temperature of the upper ocean increased by almost 0.06°C when incorporating Bv,and was closer to the observational data. Thus, the simulation bias (0.2) was improved by 30% (to 0.14)when Bv was included.

    Figure 2 shows the VIT in the upper ocean (0-300 m), and illustrates the geographical distribution of the OHC. The simulation bias compared to the EN4 data is highly variable in space. Although it appears that, overall, there is a negative bias for the case without Bv (Fig.2b) and the case with Bv(Fig.2c). However, there are slight positive biases in regions along the coast of North America in the Pacif ic Ocean, the northern Indian Ocean, and in some places in the Southern Ocean. Figure 2d shows the diff erence in VIT for the cases with and without Bv. The VIT signif icantly increased because of the inclusion of Bv in most areas, but not in the tropical western Pacif ic Ocean. However, in the equatorial Indian Ocean and the western Pacif ic Ocean, the reduced VIT increased model errors.

    Fig.2 Vertically-integrated temperature and simulation biases (m°C)

    Fig.3 Diff erences in the zonally-averaged, verticallyintegrated temperature (0-300 m)

    Figure 3 shows the result of the zonally-averaged vertically-integrated temperature. From the f igure, we can see that the simulated OHC without BV is less than that in EN4. Because Bv typically increases the local OHC by changing the vertical mixing and stratif ication, improvements in the simulation tend to occur in those regions that have pre-existing negative biases. The latitude band between 13°S to 12°N is an exception to this rule. However, the reduced OHC in the latitude band between 7°N and 12°N seems to reduce the model errors of the case without Bv.

    3.2 Mechanism by which Bv aff ects OHC simulation

    As is generally known, vertical mixing cannot generate heat but redistributes it vertically. In the coupled climate model, the air-sea heat f lux acts as part of the source of heat. We investigated the zonallyaveraged net surface heat f lux during the simulation period (Fig.4). We found that the zonally-averaged net surface heat f lux was very close for the two cases.The model is equilibrated, and the mean value of the diff erence of the annual mean net surface heat f lux is almost zero (0.02 W/m2). Therefore, it is reasonable that the values of the zonally-averaged net surface heat f lux for the two cases are close. However, in terms of heat content, the diff erence should be ref lected in the net surface heat f lux. Therefore, we consider that the change should be ref lected in the initial period when Bv is included.

    Fig.4 Zonally-averaged net surface heat f lux during the simulation period (1986-2005)

    The numerical experiment design and forcing data recommended by the CMIP5 were adopted in the experiment that includes Bv. A historical run for the period 1850-2005 was conducted to match the period of the climate model. The other run was identical,except that Bv was closed. A control run for the preindustrial period (before 1850 AD) integrates the coupled physical climate model for 1200 years with the constant forcing f ields of greenhouse gases,aerosol, and solar irradiance from 1850. Model year 701 was chosen as the initial state for the historical integration of 1850-2005 (Qiao et al., 2013). We chose the f irst 200 years of the control run, when Bv is f irst included.

    Figure 5 shows the time evolution of the diff erence in the global average net surface heat f lux between the cases with and without Bv in the f irst 200 years. We found that the global average net surface heat f lux increased when Bv was included in the f irst 150 years.For the following 50 years, the diff erence in net surface heat f lux f luctuates around zero.

    Fig.5 Time evolution of the diff erence in the global average net surface heat f lux

    Fig.6 Evolution of the annual-mean global averaged SST in the pre-industrial period according to the climate model

    Fig.7 Increases in upper ocean temperature caused by changes in the surface heat f lux

    In coupled climate models, the surface heat f lux has a negative feedback with the sea surface temperature (SST). Figure 6 shows the global annual mean SST over 0-200 years. We found that, when Bv was included, the SST was higher than when Bv was closed in the f irst 150 years, especially in the 50-150-year period. This occurs because the increased mixing can transport more heat from the surface to the subsurface, thereby cooling the SST. The lower SST leads to an increased surface heat f lux into the ocean,and the increased vertical mixing can transport the heat eff ectively, and warm the upper ocean. If the surface heat f lux increases continuously, then the OHC will increase linearly. This is not reasonable.The climate model is a coupled system, and after a 150-year adjustment, it adjusts to an equilibrium state. The SST reaches a dynamic equilibrium state,with small f luctuations around an average value of 17.73°C, which is close to the observed value of 17.88°C in 1850 obtained from the Hadley Centre Sea Ice and Sea Surface Temperature dataset (HadISST)(Rayner et al., 2006).

    The increase in the surface heat f lux induced increases in the upper ocean temperature as shown in Fig.7. The accumulated net heat f lux heats the upper 300 m of ocean by 0.05-0.06°C; this accords with the results shown in Fig.1.

    4 SUMMARY AND CONCLUSION

    In this study, we evaluated the contribution of Bv to the heat content in the global upper ocean. The mean temperature of the upper ocean was improved from 12.7°C to 12.76°C, and was closer to the EN4 observational results (12.9°C). By including Bv in the model, the diff erence in the upper ocean temperature was reduced from 0.2°C to 0.14°C. Thus, the inclusion of Bv reduced the diff erence for about 30%.

    We analyzed the net surface heat f lux for the simulation cases that included and without Bv during the experiment period, and the diff erence in the results is quite small. The increase in OHC by inclusion of Bv, however, was not caused by changing the surface heat f lux during the experiment period. We found that the surface heat f lux was higher for the f irst 150 years after Bv was initially included in the climate model.The surface heat f lux and SST then reached a dynamic equilibrium state. We integrated the increase of the surface heat f lux induced by the change of the upper ocean temperature. We found that the increase in the upper ocean temperature was 0.05-0.06°C, which is consistent with the increase from 1986-2005. Thus,the increase in the temperature in the system is the legacy of temperature increases in the f irst 150 years when Bv was initially included in the climate model.

    We observed that the simulation of OHC was worse in the tropical regions (13°S-10°N) when Bv was included. In addition, the simulation of OHC when Bv was included was lower than that when Bv was closed. This may be because other physical processes dominate in the simulation of the tropical OHC in some regions. Because of the importance of OHC,further investigations are required to study the reasons for this discrepancy.

    5 DATA AVAILABILITY STATEMENT

    Data supporting this article are available by any users from http://data.f io.org.cn/qiaof l/CSY-JGR-2018.

    国产单亲对白刺激| 欧美潮喷喷水| 国产毛片a区久久久久| 男的添女的下面高潮视频| 免费播放大片免费观看视频在线观看 | 国产精品一区二区三区四区久久| 亚洲五月天丁香| 99在线视频只有这里精品首页| 亚洲精品一区蜜桃| 黄色日韩在线| 亚洲av男天堂| 国模一区二区三区四区视频| 直男gayav资源| 内射极品少妇av片p| 男人舔奶头视频| 国产亚洲午夜精品一区二区久久 | 欧美zozozo另类| 成年免费大片在线观看| 欧美激情国产日韩精品一区| 亚洲真实伦在线观看| 国产一区二区亚洲精品在线观看| 午夜激情欧美在线| 亚洲国产日韩欧美精品在线观看| 亚洲成人精品中文字幕电影| 日本av手机在线免费观看| 日韩一区二区三区影片| 99久久精品一区二区三区| 永久网站在线| 国产一区亚洲一区在线观看| av女优亚洲男人天堂| 丝袜喷水一区| 人妻夜夜爽99麻豆av| 最近最新中文字幕免费大全7| 国产精品久久久久久av不卡| av黄色大香蕉| 永久网站在线| 国产亚洲午夜精品一区二区久久 | 亚洲va在线va天堂va国产| 亚洲人成网站在线播| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说 | 国产一区有黄有色的免费视频 | 久久99精品国语久久久| 免费看美女性在线毛片视频| 国产精品一二三区在线看| 小蜜桃在线观看免费完整版高清| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 人妻系列 视频| 波多野结衣巨乳人妻| 欧美一区二区精品小视频在线| 亚洲av成人av| 大香蕉97超碰在线| 看片在线看免费视频| 成人毛片a级毛片在线播放| av又黄又爽大尺度在线免费看 | 网址你懂的国产日韩在线| 久久精品国产自在天天线| 岛国在线免费视频观看| 国产精品久久久久久久久免| 国产又色又爽无遮挡免| 日韩精品青青久久久久久| 国产一区二区在线av高清观看| 日韩亚洲欧美综合| 最近最新中文字幕大全电影3| 国产老妇女一区| 精品久久久久久电影网 | 永久网站在线| 日韩强制内射视频| 桃色一区二区三区在线观看| 看免费成人av毛片| 色吧在线观看| 好男人在线观看高清免费视频| 亚洲在线观看片| 日本黄大片高清| 又粗又硬又长又爽又黄的视频| 久久久久网色| 中国美白少妇内射xxxbb| 日本熟妇午夜| 久久精品国产亚洲av涩爱| 亚洲中文字幕日韩| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 午夜免费男女啪啪视频观看| 97人妻精品一区二区三区麻豆| 搡老妇女老女人老熟妇| 午夜精品国产一区二区电影 | 亚洲国产精品久久男人天堂| 色网站视频免费| 久久久久久伊人网av| 一级毛片我不卡| 久久人妻av系列| 人妻夜夜爽99麻豆av| 久久精品综合一区二区三区| 成人鲁丝片一二三区免费| 亚洲在久久综合| www日本黄色视频网| 六月丁香七月| 99热精品在线国产| 亚洲成人精品中文字幕电影| 日韩欧美精品免费久久| 秋霞伦理黄片| 人人妻人人澡欧美一区二区| 精品免费久久久久久久清纯| 午夜久久久久精精品| 日本-黄色视频高清免费观看| 中文精品一卡2卡3卡4更新| 简卡轻食公司| 两性午夜刺激爽爽歪歪视频在线观看| 色综合亚洲欧美另类图片| 亚洲av免费高清在线观看| 午夜视频国产福利| eeuss影院久久| 日日啪夜夜撸| 久久精品久久精品一区二区三区| 国产在线一区二区三区精 | 性插视频无遮挡在线免费观看| 色尼玛亚洲综合影院| 插逼视频在线观看| 国产精品日韩av在线免费观看| 三级国产精品片| 两性午夜刺激爽爽歪歪视频在线观看| 五月伊人婷婷丁香| 国产片特级美女逼逼视频| 亚洲成av人片在线播放无| 久久国产乱子免费精品| 亚洲精品影视一区二区三区av| 老师上课跳d突然被开到最大视频| 日本-黄色视频高清免费观看| 一级毛片电影观看 | 欧美一区二区精品小视频在线| 欧美性猛交╳xxx乱大交人| 中文字幕制服av| 欧美日韩综合久久久久久| 国产欧美另类精品又又久久亚洲欧美| 日韩 亚洲 欧美在线| 欧美日本视频| 国产成人91sexporn| 一本一本综合久久| 久久久久久久久中文| 亚洲精品成人久久久久久| 日日摸夜夜添夜夜爱| 高清在线视频一区二区三区 | 亚洲精品影视一区二区三区av| 亚洲在线观看片| 2022亚洲国产成人精品| 性插视频无遮挡在线免费观看| 成人美女网站在线观看视频| 亚洲精品日韩在线中文字幕| 久久午夜福利片| 国产日韩欧美在线精品| 久久99蜜桃精品久久| 六月丁香七月| 亚洲国产日韩欧美精品在线观看| 美女黄网站色视频| 亚洲一区高清亚洲精品| .国产精品久久| 亚洲国产欧洲综合997久久,| 一级av片app| 在线观看66精品国产| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 欧美三级亚洲精品| 国产黄色小视频在线观看| 亚洲不卡免费看| 日本黄大片高清| 久久综合国产亚洲精品| 啦啦啦观看免费观看视频高清| 国产午夜精品久久久久久一区二区三区| 丝袜美腿在线中文| 99久久精品一区二区三区| 五月伊人婷婷丁香| 久久精品夜色国产| 少妇高潮的动态图| 国产一区二区亚洲精品在线观看| 高清在线视频一区二区三区 | 久久久色成人| 国内精品一区二区在线观看| 丰满乱子伦码专区| av黄色大香蕉| 日本色播在线视频| 最近手机中文字幕大全| 国产成人freesex在线| 99久久中文字幕三级久久日本| 国产黄色视频一区二区在线观看 | 亚洲四区av| 18+在线观看网站| 五月伊人婷婷丁香| 非洲黑人性xxxx精品又粗又长| 一个人看的www免费观看视频| 亚洲熟妇中文字幕五十中出| 精品99又大又爽又粗少妇毛片| 国产午夜福利久久久久久| 最近视频中文字幕2019在线8| 国产精品久久电影中文字幕| 男人舔奶头视频| 国产精品久久视频播放| 日韩国内少妇激情av| 丰满人妻一区二区三区视频av| 非洲黑人性xxxx精品又粗又长| 人人妻人人澡人人爽人人夜夜 | 欧美激情在线99| 久久久精品大字幕| 成人国产麻豆网| 99在线视频只有这里精品首页| 久久久久国产网址| 亚洲国产欧美在线一区| 男人狂女人下面高潮的视频| 久久热精品热| 性色avwww在线观看| 日韩成人伦理影院| 久久精品影院6| 国产精品久久久久久久久免| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 老司机影院毛片| 一级毛片电影观看 | 3wmmmm亚洲av在线观看| 中文字幕精品亚洲无线码一区| 白带黄色成豆腐渣| 天美传媒精品一区二区| 男女那种视频在线观看| 在线观看一区二区三区| 青春草国产在线视频| 色网站视频免费| 免费看美女性在线毛片视频| 赤兔流量卡办理| 亚洲美女视频黄频| 久久久国产成人精品二区| 免费观看在线日韩| 少妇裸体淫交视频免费看高清| 国产高清三级在线| 久久精品久久久久久噜噜老黄 | 3wmmmm亚洲av在线观看| 国产亚洲一区二区精品| 成人毛片60女人毛片免费| 一个人观看的视频www高清免费观看| 赤兔流量卡办理| 色吧在线观看| 亚洲精品一区蜜桃| 男女下面进入的视频免费午夜| 国产人妻一区二区三区在| 色综合色国产| 免费观看人在逋| 免费人成在线观看视频色| 亚洲怡红院男人天堂| 99热全是精品| 日韩av不卡免费在线播放| 性色avwww在线观看| 国产午夜精品论理片| 亚洲精品色激情综合| 免费看日本二区| 两个人的视频大全免费| 亚洲国产最新在线播放| 亚洲在久久综合| 成年女人永久免费观看视频| 啦啦啦观看免费观看视频高清| 久久亚洲精品不卡| 老司机福利观看| 精品人妻偷拍中文字幕| 99久国产av精品国产电影| 免费无遮挡裸体视频| a级毛片免费高清观看在线播放| 国产综合懂色| 国产精品av视频在线免费观看| 日本一本二区三区精品| 国产精品一区www在线观看| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 亚洲一区高清亚洲精品| 自拍偷自拍亚洲精品老妇| 大香蕉97超碰在线| 高清午夜精品一区二区三区| 一夜夜www| 少妇的逼水好多| 亚洲av.av天堂| 亚洲欧美精品综合久久99| 波多野结衣高清无吗| 春色校园在线视频观看| 欧美最新免费一区二区三区| 一区二区三区四区激情视频| 国产伦一二天堂av在线观看| 国产视频首页在线观看| 中文字幕av在线有码专区| 国产精品,欧美在线| 欧美另类亚洲清纯唯美| 国产不卡一卡二| 久久精品国产亚洲网站| 身体一侧抽搐| 国产精华一区二区三区| 在线a可以看的网站| 一区二区三区四区激情视频| 国产精品乱码一区二三区的特点| 欧美一区二区亚洲| kizo精华| 国产精品精品国产色婷婷| 欧美97在线视频| av免费在线看不卡| 老师上课跳d突然被开到最大视频| 黄片wwwwww| 人妻系列 视频| 中文天堂在线官网| 熟女人妻精品中文字幕| 日本免费一区二区三区高清不卡| 好男人在线观看高清免费视频| 美女脱内裤让男人舔精品视频| 91在线精品国自产拍蜜月| 日日摸夜夜添夜夜添av毛片| 综合色av麻豆| 波多野结衣巨乳人妻| 久久人人爽人人爽人人片va| 成人美女网站在线观看视频| 国产精品一区二区三区四区久久| 亚洲在线观看片| 日日撸夜夜添| 观看免费一级毛片| 97超视频在线观看视频| 国产成人a区在线观看| 九九久久精品国产亚洲av麻豆| 中文字幕亚洲精品专区| 男女下面进入的视频免费午夜| 婷婷色av中文字幕| 国产午夜精品久久久久久一区二区三区| 最近的中文字幕免费完整| 国产一级毛片七仙女欲春2| 一区二区三区免费毛片| .国产精品久久| 日韩av在线大香蕉| 亚洲成色77777| 国产免费视频播放在线视频 | 久久热精品热| 热99re8久久精品国产| 两个人的视频大全免费| 乱系列少妇在线播放| 欧美日韩一区二区视频在线观看视频在线 | 久久欧美精品欧美久久欧美| 亚洲最大成人手机在线| 大话2 男鬼变身卡| 国产人妻一区二区三区在| 人妻夜夜爽99麻豆av| 国内精品宾馆在线| 亚洲精品aⅴ在线观看| 在现免费观看毛片| 插逼视频在线观看| 亚洲av免费高清在线观看| 日本免费在线观看一区| 精品欧美国产一区二区三| 国产av码专区亚洲av| 最后的刺客免费高清国语| 在线观看66精品国产| 亚洲五月天丁香| 一个人看的www免费观看视频| 亚洲aⅴ乱码一区二区在线播放| 日本熟妇午夜| 国产免费视频播放在线视频 | 少妇丰满av| 老司机福利观看| 日韩中字成人| 精品99又大又爽又粗少妇毛片| 日韩中字成人| 在线播放国产精品三级| 国产成人免费观看mmmm| 成人美女网站在线观看视频| 日本猛色少妇xxxxx猛交久久| 欧美一级a爱片免费观看看| 亚洲伊人久久精品综合 | 91aial.com中文字幕在线观看| 久久99热6这里只有精品| 欧美日本亚洲视频在线播放| 超碰97精品在线观看| 亚洲欧美精品专区久久| 久久精品国产99精品国产亚洲性色| 久久99精品国语久久久| 欧美成人精品欧美一级黄| 国产一区二区在线观看日韩| 国产乱人偷精品视频| 久久这里只有精品中国| 级片在线观看| 欧美精品国产亚洲| av专区在线播放| 男女国产视频网站| 欧美人与善性xxx| 69人妻影院| 天天一区二区日本电影三级| 亚洲aⅴ乱码一区二区在线播放| 少妇高潮的动态图| 插阴视频在线观看视频| 国产一级毛片七仙女欲春2| 在现免费观看毛片| 亚洲精品亚洲一区二区| 国产视频内射| 免费观看a级毛片全部| 欧美极品一区二区三区四区| 热99在线观看视频| 天堂影院成人在线观看| 国产精品人妻久久久影院| 国产成人a区在线观看| 国产国拍精品亚洲av在线观看| 国产探花在线观看一区二区| 国产高清国产精品国产三级 | 亚洲综合精品二区| 日本黄大片高清| 午夜爱爱视频在线播放| 国产三级在线视频| 欧美成人免费av一区二区三区| 欧美日韩精品成人综合77777| 特大巨黑吊av在线直播| 亚洲怡红院男人天堂| 久久人妻av系列| 久久精品影院6| 小蜜桃在线观看免费完整版高清| 青春草亚洲视频在线观看| 91狼人影院| 天美传媒精品一区二区| 夫妻性生交免费视频一级片| 老司机影院成人| 成人毛片a级毛片在线播放| 秋霞在线观看毛片| 精品人妻视频免费看| 国产91av在线免费观看| 国产私拍福利视频在线观看| 国产欧美日韩精品一区二区| 青春草亚洲视频在线观看| 免费看光身美女| 亚洲精品影视一区二区三区av| 美女脱内裤让男人舔精品视频| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 久久人人爽人人片av| 亚洲乱码一区二区免费版| 国产精品久久久久久久久免| 高清日韩中文字幕在线| 啦啦啦韩国在线观看视频| 一级毛片电影观看 | 久久久久久大精品| 久久鲁丝午夜福利片| 两个人视频免费观看高清| 国产精品.久久久| av国产久精品久网站免费入址| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| 日日啪夜夜撸| 免费黄网站久久成人精品| 美女国产视频在线观看| 亚洲三级黄色毛片| 亚洲av一区综合| 精品酒店卫生间| 一边摸一边抽搐一进一小说| 日本免费一区二区三区高清不卡| 国产精品伦人一区二区| 久久久成人免费电影| 日本一本二区三区精品| 嫩草影院精品99| 伊人久久精品亚洲午夜| av国产久精品久网站免费入址| av在线蜜桃| 在线免费观看不下载黄p国产| 中文欧美无线码| 国产成人a∨麻豆精品| 国产白丝娇喘喷水9色精品| 午夜老司机福利剧场| 国产精品综合久久久久久久免费| 一级av片app| 亚洲国产精品专区欧美| 国产淫语在线视频| 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 国产亚洲av嫩草精品影院| 日韩av在线免费看完整版不卡| 一级av片app| 美女国产视频在线观看| 精品久久久久久久人妻蜜臀av| 一夜夜www| 99视频精品全部免费 在线| 中文乱码字字幕精品一区二区三区 | 国产精品福利在线免费观看| 蜜桃久久精品国产亚洲av| 日韩欧美三级三区| 亚洲国产日韩欧美精品在线观看| 嫩草影院入口| 国产乱人视频| 欧美成人免费av一区二区三区| 最近最新中文字幕免费大全7| 午夜视频国产福利| 免费搜索国产男女视频| 男的添女的下面高潮视频| 国产精品伦人一区二区| 黑人高潮一二区| 亚洲人成网站在线观看播放| 卡戴珊不雅视频在线播放| 国产精品一区二区性色av| 欧美3d第一页| 亚洲av.av天堂| 午夜免费男女啪啪视频观看| 亚洲av熟女| 永久网站在线| 国产精品伦人一区二区| 黑人高潮一二区| 91狼人影院| 国语对白做爰xxxⅹ性视频网站| 亚洲精品亚洲一区二区| 亚洲图色成人| 91久久精品国产一区二区三区| 久久鲁丝午夜福利片| 午夜精品在线福利| 日本与韩国留学比较| 国产精品永久免费网站| 综合色av麻豆| 亚洲成人av在线免费| 成人av在线播放网站| www日本黄色视频网| 黄色欧美视频在线观看| 69人妻影院| 国产成人精品久久久久久| 99热这里只有是精品在线观看| 亚洲欧洲国产日韩| 欧美潮喷喷水| 少妇猛男粗大的猛烈进出视频 | 精品熟女少妇av免费看| 国产中年淑女户外野战色| 在线观看一区二区三区| 国产精品野战在线观看| 日日摸夜夜添夜夜爱| 亚洲精品aⅴ在线观看| 中文字幕精品亚洲无线码一区| 亚洲美女视频黄频| 国产成人午夜福利电影在线观看| 免费搜索国产男女视频| 日韩人妻高清精品专区| 别揉我奶头 嗯啊视频| 色综合站精品国产| 夫妻性生交免费视频一级片| 免费在线观看成人毛片| 免费电影在线观看免费观看| 国产亚洲精品av在线| 插阴视频在线观看视频| 国产精品无大码| 亚洲在线观看片| 69人妻影院| 国产高潮美女av| 国产精品久久电影中文字幕| 亚洲一级一片aⅴ在线观看| 国产精品不卡视频一区二区| 亚洲va在线va天堂va国产| 日本与韩国留学比较| 国产一区有黄有色的免费视频 | 亚洲精品国产av成人精品| 亚洲精品久久久久久婷婷小说 | 久久精品久久久久久噜噜老黄 | 一个人观看的视频www高清免费观看| 22中文网久久字幕| 色尼玛亚洲综合影院| 激情 狠狠 欧美| 小说图片视频综合网站| 日韩一区二区三区影片| 99久久中文字幕三级久久日本| 色5月婷婷丁香| 亚洲欧美清纯卡通| 国产精品无大码| 啦啦啦观看免费观看视频高清| av视频在线观看入口| 国产乱人视频| 午夜久久久久精精品| 我要搜黄色片| 永久免费av网站大全| 亚洲av不卡在线观看| 精品久久久久久久久av| 夫妻性生交免费视频一级片| 建设人人有责人人尽责人人享有的 | 亚洲va在线va天堂va国产| 中文欧美无线码| 联通29元200g的流量卡| 亚洲婷婷狠狠爱综合网| 亚洲乱码一区二区免费版| 黄色欧美视频在线观看| 久久韩国三级中文字幕| 国产极品天堂在线| 成人美女网站在线观看视频| 亚洲国产精品成人综合色| 婷婷色麻豆天堂久久 | 日韩强制内射视频| 欧美三级亚洲精品| 欧美极品一区二区三区四区| 91久久精品国产一区二区三区| 亚洲中文字幕日韩| 中文字幕制服av| 日韩强制内射视频| 永久网站在线| 内地一区二区视频在线| 国产视频首页在线观看| 日本-黄色视频高清免费观看| 亚洲av电影不卡..在线观看| 成年女人永久免费观看视频| 国产av码专区亚洲av| 女的被弄到高潮叫床怎么办| 国产视频首页在线观看| 国产极品精品免费视频能看的| 久久久久久久国产电影| 听说在线观看完整版免费高清| 国内精品美女久久久久久| 日本三级黄在线观看| 超碰av人人做人人爽久久| 人妻夜夜爽99麻豆av| 亚洲精品一区蜜桃| 国产黄色小视频在线观看| 日韩一本色道免费dvd| 十八禁国产超污无遮挡网站| 69av精品久久久久久| 亚洲精品乱码久久久久久按摩| 中文在线观看免费www的网站| 两个人视频免费观看高清|