晏浩哲,馬 駟
基于多線耦合的城市軌道交通時刻表仿真評估
晏浩哲1,2,馬 駟1
(1. 西南交通大學(xué),交通運輸與物流學(xué)院,成都 611756;2. 四川省交通運輸發(fā)展戰(zhàn)略和規(guī)劃科學(xué)研究院,成都 610031;)
時刻表的設(shè)置對于城市軌道交通系統(tǒng)的運營有著重要影響, 為了使城市軌道交通系統(tǒng)的時刻表制定更加靈活可控, 提出一種基于Anylogic仿真的多線耦合狀態(tài)下時刻表協(xié)調(diào)評估的新方法。通過Anylogic軟件將線路間隔與首趟列車到達時刻作為變量建立多線耦合的網(wǎng)絡(luò)仿真模型, 并以成都地鐵網(wǎng)絡(luò)為實例結(jié)合現(xiàn)行時刻表建立不同備選方案, 利用熵權(quán)法與加權(quán)平均法結(jié)合的評價模型對不同方案站臺區(qū)域密度與平均候車時間兩項指標進行對比評價, 最終得出較優(yōu)時刻表, 并分析其特點得出線路間隔與首趟列車到達時刻間的協(xié)調(diào)優(yōu)化關(guān)系。
城市軌道交通網(wǎng)絡(luò);Anylogic仿真;時刻表協(xié)調(diào)評估優(yōu)化;網(wǎng)絡(luò)運輸組織優(yōu)化
隨著城市軌道交通系統(tǒng)的不斷發(fā)展,我國城市軌道交通系統(tǒng)運營逐漸由單線步入網(wǎng)絡(luò)化模式,城市軌道交通系統(tǒng)多線耦合一般指不同線路在換乘站交織所逐步形成的網(wǎng)絡(luò)化狀態(tài)。在網(wǎng)絡(luò)化背景下乘客換乘行為越發(fā)復(fù)雜,傳統(tǒng)單線運輸組織模式很難滿足網(wǎng)絡(luò)條件下的客流需求,而列車時刻表作為組織列車運行的基礎(chǔ),其協(xié)調(diào)與否將直接影響整個網(wǎng)絡(luò)的運營效果。
目前國內(nèi)關(guān)于時刻表協(xié)調(diào)優(yōu)化評估的研究大多通過建立靜態(tài)數(shù)學(xué)模型的方法求解,存在著一定的缺陷,主要的研究思路為通過建立整數(shù)規(guī)劃模型對網(wǎng)絡(luò)中單個換乘站時刻表進行評估優(yōu)化[1-7]。而國外相關(guān)研究起步早,隨著相關(guān)理論的完善,研究重點逐漸向節(jié)能[8]、智能數(shù)據(jù)采集[9]、系統(tǒng)仿真[10]等方面發(fā)展。既有研究在評估優(yōu)化過程中對客流的隨機變化、軌道交通的網(wǎng)絡(luò)效應(yīng)、數(shù)據(jù)的動態(tài)輸出等因素都未能充分考慮,在規(guī)模和方法上都是可以改進的。
因此,考慮到目前研究的局限性,本文選擇Anylogic軟件仿真的方法基于多線耦合狀態(tài)對時刻表協(xié)調(diào)評估進行研究,選擇工作日早高峰(8:00~8:30)的數(shù)據(jù)建立城市軌道交通網(wǎng)絡(luò)模型,將列車間隔與首趟列車到達時刻綜合考慮,設(shè)置不同的備選方案并輸出站臺密度、換乘等待時間指標,采用熵權(quán)法與加權(quán)平均法結(jié)合的評估模型對不同方案進行分析并得出時刻表協(xié)調(diào)的內(nèi)在關(guān)系。
時刻表協(xié)調(diào)評估模型的構(gòu)建主要分為時刻表協(xié)調(diào)指標選取、指標權(quán)重確定、綜合評價方法的確定三步。
已有研究中時刻表協(xié)調(diào)指標包括客流密度、候車時間、設(shè)施設(shè)備利用率等[11-16],但最終各個指標都需要從乘客的角度來反映車站服務(wù)水平。結(jié)合運營實際與既有研究,本文選擇站臺區(qū)域密度與平均換乘時間兩項時刻表協(xié)調(diào)指標。
站臺區(qū)域密度能直接反映站臺擁擠程度,作為乘客候車的集中區(qū)域,其密度過大會直接影響車站的客運組織,同時會造成嚴重的安全隱患。乘客候車時間既可以從乘客體驗的角度反映車站的服務(wù)水平,也可以從網(wǎng)絡(luò)的角度反映時刻表的協(xié)調(diào)性。由于本文所選協(xié)調(diào)時段為工作日早高峰,在高峰期間車站客流壓力大,首要任務(wù)是完成乘客的集散,因此以站臺區(qū)域密度為主要指標進行評估,在保證站臺區(qū)域密度較小時盡量控制平均候車時間最短。本文選用時刻表協(xié)調(diào)指標如表1所示。
表1 時刻表協(xié)調(diào)指標
Tab.1 Index of schedule coordination
由于本文所涉及的仿真指標數(shù)量較少,采用客觀權(quán)重法有較高的精確度,本文選擇含義明確且接受度較高的熵權(quán)法確定評價指標權(quán)重。熵權(quán)法主要操作步驟可歸納為:
(1)數(shù)據(jù)標準化處理
(2)指標信息熵計算
其中,P表示歸一化后各方案值所占比例:
(3)指標權(quán)重計算
熵權(quán)法確定指標權(quán)重的計算公式如下:
對每個方案計算綜合評價值后,按照從大到小進行排序,大小排列的順序即為不同方案的推薦程度。
網(wǎng)絡(luò)仿真模型需要同時兼顧行人行為與列車行為,Anylogic作為多方法建模軟件,其內(nèi)嵌的社會力模型能較好地滿足網(wǎng)絡(luò)仿真的需求。仿真建模主要包括車站環(huán)境建模、行人行為建模、多線耦合建模和數(shù)據(jù)輸出建模四個部分。
首先,需要通過車站布置CAD圖確定面向乘客的車站服務(wù)區(qū)域;接下來,利用Anylogic行人庫中空間標記模塊來描繪車站環(huán)境。不同模塊對應(yīng)的功能見表2。
表2 車站建模相關(guān)模塊
Tab.2 Station modeling related modules
在軟件中完成車站環(huán)境描繪后還需要對模塊屬性進行設(shè)置,在屬性中可以對線服務(wù)數(shù)、隊列數(shù)、隊列類型、服務(wù)類型、排隊策略進行設(shè)定。
行人行為建模的主要目的即以車站環(huán)境建模為基礎(chǔ),建立行人在車站的邏輯行為。將行人行為分為進站行人行為、出站行人行為、換乘站的換乘行人行為,三種不同類型的行人行為流程如圖1所示。
圖1 行人流程圖
建立行人邏輯行為主要通過行人庫的模塊功能實現(xiàn),不同模塊主要功能如表3所示。
表3 行人建模相關(guān)模塊
Tab.3 Pedestrian modeling related modules
根據(jù)行人在站的不同行為,構(gòu)建基本的行人邏輯建模,如圖2所示。
圖2 基本行人邏輯
完成行人邏輯建模后首先需要將其與已建立好的車站環(huán)境建立對應(yīng)關(guān)系,一般做法是在模塊的屬性設(shè)置中通過圖形化定義實現(xiàn)。此外在屬性界面中還需要設(shè)置行人到達速率、到達方式、行人速度、行人延遲方式、行人服務(wù)類型等。在行人建模的過程中需要注意既有模塊中并沒有考慮列車容量限制帶來的乘客滯留現(xiàn)象,需要通過“Ped Wait”與“Delay”模塊的組合來實現(xiàn),如圖3所示。
“Delay”模塊的最大容量代表了當(dāng)前候車區(qū)域可進入列車的人數(shù),主要由列車容量限制與列車已有人數(shù)共同影響。具體實施方法是在每一站記錄進入列車的人數(shù)并計算列車已有乘客數(shù)量從而設(shè)置后站“Delay”模塊的最大容量。舉例來講,例如存在A、B兩站,A往B為下行方向,下行方向B站站臺可進入列車的人數(shù)由列車在A站已有乘客數(shù)與A站上下車人數(shù)共同決定。
行人建模過程中使用的相關(guān)參數(shù)如表4所示。其中uniform表示正態(tài)分布,normal表示均勻分布。
表4 仿真相關(guān)參數(shù)
Tab.4 Related simulation parameters
多線耦合建模主要實現(xiàn)將各個獨立車站協(xié)同一體的功能,仿真模型中主要通過時刻表將不同車站聯(lián)系起來并對列車與行人行為進行控制。為了使仿真模型可以在任意時段存在通用性,首先設(shè)置網(wǎng)絡(luò)初始狀態(tài),主要包括當(dāng)前網(wǎng)絡(luò)已有的區(qū)間客流與候車人數(shù)限制。在列車到達的時刻通過inject函數(shù)實現(xiàn)乘客到達車站,同時使用stopDelayForAll結(jié)束當(dāng)前乘客的候車行為,對應(yīng)的行人邏輯中也需要將“Ped Source”的到達根據(jù)設(shè)置為inject()函數(shù)調(diào)用,“Delay”模塊中的類型設(shè)置為直至調(diào)用stopDelay()。在列車到達事件中,線路間隔與首趟列車到達時刻為變量,建模過程中主要用到的函數(shù)如表5所示。
表5 建模主要函數(shù)
Tab.5 Main modeling functions
針對上節(jié)中的例子結(jié)合容量限制功能對A站下行方向列車到達事件進行設(shè)置,如圖4所示。
圖4 列車到達事件設(shè)置
Anylogic軟件提供了豐富的數(shù)據(jù)輸出手段,包括了圖形化的數(shù)據(jù)輸出。結(jié)合本文相關(guān)內(nèi)容,主要輸出的數(shù)據(jù)為站臺區(qū)域密度、乘客平均候車時間。數(shù)據(jù)輸出過程中主要用到的模塊如表6所示。
表6 數(shù)據(jù)輸出相關(guān)模塊
Tab.6 Data output related modules
站臺區(qū)域密度,首先利用環(huán)境建模中的矩形區(qū)域與多邊形區(qū)域描繪出各站站臺范圍,之后使用行人庫中的“Ped Area Descriptor”選擇相應(yīng)區(qū)域,從統(tǒng)計功能中添加“數(shù)據(jù)”模塊存放密度數(shù)據(jù),其值為對應(yīng)的“Ped Area Descriptor”的density()屬性。
乘客平均候車時間,在需要測量時間的流程兩端分別添加流程庫中的“Time Measure Start”和“Time Measure End”模塊,模型運行后時間數(shù)據(jù)將會以數(shù)據(jù)集的形式存放在“Time Measure End”模塊中。
統(tǒng)計兩類數(shù)據(jù)后利用“Excel File”模塊通過writeDataSet()函數(shù)將數(shù)據(jù)輸入到excel表格中。
本文選擇成都地鐵網(wǎng)絡(luò)中天府廣場、中醫(yī)大省醫(yī)院、騾馬市三個換乘站之間形成的多線耦合城市軌道交通網(wǎng)絡(luò)建模。其中一號線上行方向為天府廣場到騾馬市,二號線上行方向為中醫(yī)大省醫(yī)院到天府廣場,四號線上行方向為中醫(yī)大省醫(yī)院到騾馬市。由于高峰時段客流壓力大,時刻表設(shè)置不同所造成的影響也最大,因此固定仿真時段為工作日早高峰(8:00~8:30),采取AW2定員載客數(shù)1 468人作為列車容量限制。固定網(wǎng)絡(luò)區(qū)間運行時分不變,如圖5所示。
圖5 網(wǎng)絡(luò)仿真示意圖
表7 時刻表協(xié)調(diào)備選方案(單位:s)
Tab.7 Schedule coordination options(unit:s)
采用上文提出的熵權(quán)法與加權(quán)平均法結(jié)合的評價模型對不同方案進行分析,輸出不同方案評分的綜合評價值如圖6所示。
在18種時刻表中,最優(yōu)時刻表為方案2,成都地鐵現(xiàn)行方案1評分略低于方案2,不同方案評分基本可分為60~70、70~80、80以上三個等級。接下來輸出站臺最大密度數(shù)據(jù),由于非換乘站并不是協(xié)調(diào)評估的主要控制點,因此僅輸出換乘站相關(guān)數(shù)據(jù),如圖7所示。
圖6 不同方案綜合評價值對比
圖7 站臺最大密度(單位:人/m2)
結(jié)合綜合評價結(jié)果分析相關(guān)數(shù)據(jù)可以發(fā)現(xiàn)方案2將一號線站臺客流密度維持在較低范圍,同時一定程度犧牲了四號線站臺客流密度。而評分較低的方案16正好與方案2相反,即首先保證了四號線站臺密度。因此可以發(fā)現(xiàn)一號線站臺密度是高峰時段的重要控制指標,接下來輸出平均候車時間數(shù)據(jù)。
就平均候車時間而言(如圖8),時刻表1、2、3、4、5、6、13、14、15候車時間都是相對較低的。但結(jié)合綜合評價結(jié)果與站臺密度指標可以發(fā)現(xiàn)在高峰時段站臺密度指標優(yōu)先于平均候車時間,在滿足站臺密度指標的前提下進行平均候車時間的調(diào)整是相對科學(xué)的。將最優(yōu)時刻表方案2與現(xiàn)行時刻表對比分析,四號線列車到達時刻早于一、二號線,且一、二號線列車到達時刻相對接近。
圖8 平均候車時間對比(單位:s)
結(jié)合仿真結(jié)果可得出在協(xié)調(diào)過程中,應(yīng)該首先滿足天府廣場與騾馬市換乘到一號線的換乘協(xié)調(diào),一號線間隔為重點協(xié)調(diào)對象,并且只要保證一號線間隔是三者中最小值時即可有較優(yōu)效果,而二號線與四號線間隔整體影響差異不大。此外應(yīng)使一號線列車到達時刻早于二號線列車到達時刻且上下行方向到達時刻相對接近。
本文利用Anylogic軟件建立基于多線耦合的成都地鐵網(wǎng)絡(luò)的軌道交通網(wǎng)絡(luò)仿真模型,通過輸出站臺密度與平均候車時間數(shù)據(jù)對備選方案進行對比分析,結(jié)果表明一號線間隔取最小且列車到達時刻最早,同時上下行到達時間相對接近是較優(yōu)的協(xié)調(diào)方向。基于網(wǎng)絡(luò)的時刻表協(xié)調(diào)是一個十分復(fù)雜的過程,而本文僅以6座車站為對象進行研究,并且對于列車停站時間也進行了相應(yīng)簡化。如何將客流分配的不確定因素考慮進仿真模型中是進一步研究需要思考的問題。
[1] 蔡涵哲. 網(wǎng)絡(luò)化條件下城市軌道交通行車組織優(yōu)化問題研究[D]. 北京: 北京交通大學(xué), 2012.
[2] 張迅. 基于換乘協(xié)調(diào)的城市軌道交通換乘站列車銜接優(yōu)化研究[D]. 北京: 北京交通大學(xué), 2014.
[3] 馬超云. 城市軌道交通換乘站列車時刻表的協(xié)調(diào)和優(yōu)化[D]. 北京: 北京交通大學(xué), 2010.
[4] 張銘, 徐瑞華. 軌道交通網(wǎng)絡(luò)列車銜接組織的遞階協(xié)調(diào)優(yōu)化[J]. 系統(tǒng)工程, 2007, 25(9): 33-37.
[5] 周艷芳, 周磊山, 樂逸祥. 城市軌道網(wǎng)絡(luò)換乘站列車銜接同步協(xié)調(diào)優(yōu)化研究[J]. 鐵道學(xué)報, 2011, 33(3): 9-16.
[6] 卞兆洋. 城市軌道交通網(wǎng)絡(luò)化運營組織協(xié)調(diào)優(yōu)化[D]. 成都: 西南交通大學(xué), 2015.
[7] 李玉芳, 高越. 軌道交通網(wǎng)絡(luò)化列車首末班車銜接協(xié)
[8] 調(diào)方案研究[J]. 城市建設(shè), 2011(1): 277-277.
[8] ERFAN H, ARMAN S, SOHEIL M, et al. An integrated. Simulation model and evolutionary algorithm for train timetabling problem with considering train stops for praying[C]// Simulation Conference (WSC). Berlin: IEEE, 2012.
[9] WEI Z, HAO H, HUANG Z. Calibrating rail transit assignment models with genetic algorithm and automated fare collection data[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(7): 518–530.
[10] YANG X, LI X, GAO Z Y, et al. A cooperative scheduling model for timetable optimization in subway systems[J]. IEEE Transctions on Intelligent Transportation systems, 2013, 14(1):438-447.
[11] 馬語佳, 馬駟, 謝冰如. 大型高速鐵路客運站客運設(shè)施配置仿真優(yōu)化[J]. 鐵路計算機應(yīng)用, 2016, 25(3): 12-16.
[12] 李洪旭, 李海鷹, 樊校, 等. 基于Anylogic的地鐵車站集散能力仿真分析評估[J]. 鐵路計算機應(yīng)用, 2012, 21(8): 48-50.
[13] 陳立揚, 宋瑞, 李志杰, 等. 基于Anylogic的地鐵站站廳層設(shè)施布置仿真研究[J]. 交通信息與安全, 2013(5): 25-30.
[14] 蘇星燕. 城市軌道交通換乘站運營協(xié)調(diào)效率的評價研究[D]. 長沙: 中南大學(xué), 2010.
[15] 張銘, 吳彥穎. 城市軌道交通換乘樞紐運營協(xié)調(diào)效率評價[J]. 都市快軌交通, 2009, 22(5): 24-27.
[16] 彭沙沙, 吳小萍, 梅盛. 基于GIS的城市軌道交通與土地利用協(xié)調(diào)研究[J]. 鐵道工程學(xué)報, 2011, 28(1): 76-79.
Simulation and Evaluation of An Urban Rail Transit Timetable Based on Multi-line Coupling
YAN Hao-zhe1, 2,MA Si1
(1. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China; 2. Institute of Transportation Development Strategy & Planning of Sichuan Province, Chengdu 610031, China)
Timetable scheduling has an important effect on the operation of urban rail transit systems. Based on anylogic simulation, this study proposed a new method for optimizing flexibility and control in solving the problem of timetable coordination and evaluation. First, we established a multi-line coupling network simulation model using train intervals and first train arrival times as the variables. Then, taking the Chengdu metro network as an example for building a network model, we designed different schedules based on the current timetable. We used the evaluation model combined with weighted entropy and weighted average to compare and evaluate the density and average waiting time of different platforms, finally, we attained a better timetable. Further, by analyzing its characteristics, we obtained the coordination optimization relationship among the variables.
urban rail transit network; Anylogic simulation; timetable evaluation and optimization; optimization of network transportation organization
U293.1
A
10.3969/j.issn.1672-4747.2020.01.015
1672-4747(2020)01-0111-09
2019-01-18
成都軌道交通5號線一、二期工程客流預(yù)測(05CBHT-FW-2019-002)
晏浩哲(1994—),男,四川成都人,碩士,研究方向為運輸組織優(yōu)化,E-mail:120526259@qq.com
晏浩哲,馬駟. 基于多線耦合的城市軌道交通時刻表仿真評估[J]. 交通運輸工程與信息學(xué)報,2020,18(1):111-119.
(責(zé)任編輯:李愈)