岳 霞,白雨禾,王昭懿,宋 平
鹽脅迫下玉米種子萌發(fā)過程低場(chǎng)核磁共振研究
岳 霞,白雨禾,王昭懿,宋 平※
(1. 沈陽農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,沈陽 110866;2. 遼寧省農(nóng)業(yè)信息化工程技術(shù)研究中心,沈陽 110161)
為探究鹽脅迫對(duì)玉米種子萌發(fā)過程中水分的分布和種子活性的影響,以非糯性玉米鄭單958種子為檢測(cè)對(duì)象,對(duì)不同NaCl濃度(0、50、100、150、200 nmol/L)環(huán)境下試驗(yàn)樣本進(jìn)行低場(chǎng)核磁共振成像以及核磁共振波譜試驗(yàn)。結(jié)果表明:玉米萌發(fā)過程中,胚乳和胚部位的含水率均在0~2 d迅速增加,2 d之后胚乳水分波動(dòng)增長(zhǎng),而胚部位水分則出現(xiàn)水平波動(dòng)的現(xiàn)象。隨著鹽脅迫程度上升,種子發(fā)芽率從90%降至0,鹽濃度在50 nmol/L及以下時(shí),不同相態(tài)水信號(hào)幅值變化趨勢(shì)受鹽脅迫影響較小,達(dá)到100 nmol/L時(shí)自由水信號(hào)幅值被抑制在低水平,達(dá)到150 nmol/L時(shí)結(jié)合水和半結(jié)合水信號(hào)幅值的變化速率均被大幅延緩。2弛豫譜圖中結(jié)合水主峰左側(cè)出現(xiàn)信號(hào)微弱且弛豫時(shí)間為0.1~1 ms的副峰,副峰的出現(xiàn)和玉米種子發(fā)芽密切關(guān)聯(lián),是一種標(biāo)志著種子發(fā)芽的結(jié)合水。試驗(yàn)結(jié)果為玉米種子萌發(fā)過程對(duì)鹽堿脅迫的反應(yīng)機(jī)制后續(xù)研究提供理論支持和數(shù)據(jù)參考。
種子;水分;鹽脅迫;玉米萌發(fā);低場(chǎng)核磁共振技術(shù);核磁共振圖像
鹽漬化是土地惡化的一種現(xiàn)象,也是限制當(dāng)前農(nóng)業(yè)生產(chǎn)的主要環(huán)境因子。各類鹽漬土分布在100余個(gè)國(guó)家,類型包括原生鹽漬土、次生鹽漬土和灌區(qū)鹽漬土[1]。中國(guó)耕地中鹽漬化面積達(dá)920.9×104hm2,占全國(guó)耕地面積的6.62%,其中西部六省區(qū)(陜、甘、寧、青、蒙、新)鹽漬土面積占全國(guó)的69.03%[2]。
玉米是重要的糧食作物,為飼料和糧食兼用,對(duì)于土壤和氣候的適應(yīng)性較強(qiáng)[3]。玉米耐鹽能力存在臨界值[4],低濃度的鹽對(duì)玉米萌發(fā)生長(zhǎng)具有促進(jìn)作用,但濃度過高對(duì)其有毒害作用[5],即高濃度的Na+和Cl-對(duì)玉米造成萌發(fā)期的滲透脅迫和植株發(fā)育階段的離子毒害[6]。
玉米萌發(fā)過程中,水分變化影響淀粉和蛋白質(zhì)等生物大分子的活力,大分子的水合狀態(tài)進(jìn)一步影響酶的活性[7]。目前低場(chǎng)核磁共振技術(shù)(LF-NMR,LowFieldNuclearMagneticResonance)已廣泛應(yīng)用于研究食品與作物內(nèi)部水分相態(tài)、分布和遷移等,LF-NMR以氫核為檢測(cè)對(duì)象、永磁體強(qiáng)度小于0.2 T,相比于傳統(tǒng)檢測(cè)手段,具有非破壞性、取樣量精準(zhǔn)、能夠保持樣品完整性等優(yōu)點(diǎn)。目前國(guó)內(nèi)外學(xué)者利用LF-NMR進(jìn)行了食品加工以及存儲(chǔ)過程的監(jiān)測(cè)、摻假鑒定[8-13],頁巖資源油氣開發(fā)[14],植物種子和水果的無損檢測(cè)[15-16]。研究鹽脅迫對(duì)玉米種子影響的傳統(tǒng)方法多基于室內(nèi)砂培及大田試驗(yàn),監(jiān)測(cè)種子的發(fā)芽指數(shù)和質(zhì)量變化[17],更多注重種子外在的宏觀特征表達(dá)[18],宋平等[19]通過低場(chǎng)核磁共振技術(shù)手段,對(duì)不同萌發(fā)時(shí)間和不同溫度下玉米種子進(jìn)行水分分布和流動(dòng)規(guī)律的探究,本文進(jìn)一步探討鹽脅迫對(duì)玉米種子萌發(fā)過程中水分的分布和種子活性的影響。
本試驗(yàn)通過人工模擬自然環(huán)境下的鹽脅迫環(huán)境,劃分4個(gè)濃度梯度的NaCl溶液,與對(duì)照組的種子樣本進(jìn)行統(tǒng)一培養(yǎng)萌發(fā),從種子內(nèi)部水分變化的角度分析不同濃度NaCl溶液對(duì)種子吸脹、萌動(dòng)、發(fā)芽3個(gè)階段的影響,以期為后續(xù)研究玉米種子萌發(fā)對(duì)鹽堿脅迫的響應(yīng)機(jī)制提供更多的理論基礎(chǔ)支持和數(shù)據(jù)參考。
儀器設(shè)備:Sartorius BSA124S-CW分析天平(最大稱量:120 g,賽多利斯工業(yè)稱重設(shè)備北京有限公司);MGC-1500HP-2人工氣候箱(控溫范圍:有光照10~50 ℃,光照強(qiáng)度:0~40 000 lx,光照方式:隔板式,上海一恒科學(xué)儀器有限公司);MiniMR-60核磁共振儀(磁體類型:永磁體,磁場(chǎng)強(qiáng)度:(0.5±0.05)T,射頻脈沖頻率:12.2 MHz,磁體溫度:32 ℃,探頭線圈直徑:15 mm,上海紐邁電子科技有限公司);另玻璃試管、發(fā)芽紙、錐形瓶、雙頭不銹鋼藥匙、圓形培養(yǎng)皿、方形培養(yǎng)盒、鑷子、滴定管若干。
化學(xué)試劑:NaCl固體、次氯酸鈉(NaOCl)溶液、蒸餾水。
試驗(yàn)對(duì)象:玉米種子(非糯性玉米鄭單958,種子粗蛋白質(zhì)量分?jǐn)?shù)9.33%,粗脂肪3.98%,粗淀粉73.02%,呈半馬齒狀,發(fā)芽率88%~90%)。
鹽濃度梯度劃分為5組,對(duì)照組樣本采用蒸餾水培養(yǎng)(NaCl濃度為0),4組試驗(yàn)組采用濃度由低到高,分別為50、100、150、200 nmol/L的NaCl溶液培養(yǎng)樣本。
1.2.1 樣品制備處理
探究鹽脅迫對(duì)玉米種子萌發(fā)的影響試驗(yàn)整體分為3部分,包括種子萌發(fā)指標(biāo)檢測(cè)試驗(yàn),核磁共振波譜試驗(yàn)和核磁共振成像(MRI,Magnetic Resonance Imaging)試驗(yàn)。
核磁共振波譜試驗(yàn)采集樣本核磁信號(hào)時(shí)采用CPMG(Carr-Purcell-Meiboom-Gillsequence)脈沖序列,通過反演信號(hào)數(shù)據(jù),得到2弛豫譜圖;核磁共振成像試驗(yàn)?zāi)康氖遣杉|(zhì)子密度加權(quán)圖像。試驗(yàn)分組和檢測(cè)具體內(nèi)容如下:
1)核磁共振波譜試驗(yàn),挑選籽粒均勻、飽滿的鄭單玉米種子共90粒,每組18粒,共5組。
2)MRI試驗(yàn),取種子15粒,每組3粒,共5組。
3)標(biāo)準(zhǔn)發(fā)芽指標(biāo)檢測(cè)試驗(yàn),取250粒種子,每組50粒,共5組,置于圓形培養(yǎng)皿中。
以上3個(gè)部分試驗(yàn)的樣本均被劃分為5組,分別置于對(duì)照組和50、100、150、200 nmol/L的NaCl溶液環(huán)境下培養(yǎng)。
進(jìn)行標(biāo)準(zhǔn)發(fā)芽試驗(yàn)的玉米種子需測(cè)得其胚芽與胚根長(zhǎng)度,具體方法為:第6 天時(shí),測(cè)量胚芽基部到頂部的距離,計(jì)算已發(fā)芽種子的平均胚芽長(zhǎng)度。測(cè)量胚芽基部到頂部的距離,計(jì)算已發(fā)芽種子的平均根長(zhǎng)。計(jì)算種子的發(fā)芽勢(shì)(GE,Germination Potential)、發(fā)芽率(GR,Germination Rate)及發(fā)芽指數(shù)(GI,Germination Index),具體公式如下所示:
發(fā)芽勢(shì)=第4天內(nèi)發(fā)芽種子/50×100%(1)
發(fā)芽率=總發(fā)芽數(shù)/50×100 %(2)
發(fā)芽指數(shù)=∑/%(3)
式中為第天種子發(fā)芽數(shù);為對(duì)應(yīng)發(fā)芽的天數(shù)。
試驗(yàn)前先配置質(zhì)量分?jǐn)?shù)3%的NaOCl溶液,對(duì)種子做消毒處理,浸泡試驗(yàn)樣本3 min,然后用蒸餾水沖洗3~5次,并用吸水紙吸干表面水分,均勻放置于鋪有濾紙的培養(yǎng)盒中,分別用等量的蒸餾水和50、100、150、200 nmol/L的NaCl溶液對(duì)種子進(jìn)行培養(yǎng),以浸濕濾紙和種子為宜,將5組樣本(核磁共振信號(hào)每個(gè)梯度下設(shè)置18個(gè)平行樣本,核磁成像每個(gè)梯度下設(shè)置3個(gè)平行樣本)置于溫度為(28±1)℃、相對(duì)濕度80%的人工氣候箱中培養(yǎng),為排除缺乏光照可能對(duì)種子萌發(fā)產(chǎn)生的影響,設(shè)置12 h光照和12 h無光照交替的模擬自然環(huán)境,每隔24 h對(duì)每個(gè)核磁波譜信號(hào)樣本重復(fù)采樣4次,并測(cè)定其質(zhì)量,每個(gè)核磁成像樣本采樣1次,試驗(yàn)總時(shí)長(zhǎng)為6 d。
1.2.2 核磁共振波譜試驗(yàn)
首先進(jìn)行FID(Free Induction Decay)脈沖試驗(yàn),利用標(biāo)準(zhǔn)油樣尋找核磁共振的中心頻率及脈沖寬度,參考宋平等試驗(yàn)結(jié)果[19],CPMG脈沖序列的主要參數(shù)設(shè)置如下:重復(fù)采樣次數(shù)NS=16,硬脈沖90o脈寬P1=17.52s,重復(fù)采樣等待時(shí)間TW=2 000 ms,后段180o脈寬NECH=6 000,射頻信號(hào)頻率偏移量O1每次設(shè)置存在偏差。
對(duì)于核磁共振波譜試驗(yàn)的樣品,將5組試驗(yàn)樣本的玉米種子裝入玻璃試管,置于試管底端,將試管豎直放入低場(chǎng)核磁共振儀線圈中央,利用CPMG脈沖序列采集核磁共振信號(hào),獲取萌發(fā)初始狀態(tài)(干種子狀態(tài),記做0),1~6 d(萌發(fā)階段)的試驗(yàn)數(shù)據(jù)。將采集到的重復(fù)數(shù)據(jù)導(dǎo)入核磁共振反演軟件,用同時(shí)迭代重建算法(SIRT,Simultaneous Iterative Reconstruction Technique)進(jìn)行反演運(yùn)算。參考以往試驗(yàn)結(jié)果[20],反演軟件主要參數(shù)設(shè)定如下:分組形式為多分組,反演參數(shù)為2弛豫時(shí)間,開始時(shí)間為0.01 ms,迭代次數(shù)為100 000,截止時(shí)間為10 000 ms,參與反演點(diǎn)數(shù)為200個(gè)。
1.2.3 核磁共振成像試驗(yàn)(MRI試驗(yàn))
得到2弛豫譜之后,繼續(xù)進(jìn)行核磁共振成像試驗(yàn)。核磁共振成像采用多層自旋回波(MSE,Multi-slice Spin Echo)脈沖序列,對(duì)樣本冠狀面(縱向)進(jìn)行掃描。參數(shù)設(shè)置為:90o軟脈沖回波時(shí)間TE=5.885 ms,重復(fù)采樣等待時(shí)間TR=300 ms,每次成像時(shí)間為30 min。
將反演得到的2弛豫譜數(shù)據(jù)導(dǎo)入SPSS軟件,進(jìn)行質(zhì)量歸一化處理,再計(jì)算每個(gè)樣本歸一化處理之后的弛豫譜數(shù)據(jù)均值,將均值作為試驗(yàn)樣本的核磁信號(hào)幅值,導(dǎo)入Origin2018軟件繪圖。
玉米種子發(fā)芽指數(shù)統(tǒng)計(jì)結(jié)果,如表1所示。在鹽脅迫和對(duì)照組的培養(yǎng)條件下,玉米種子萌發(fā)期的外在特征出現(xiàn)差異:對(duì)照組最終發(fā)芽率達(dá)到90%,平均根長(zhǎng)和芽長(zhǎng)分別達(dá)到0.678 cm和0.309 cm。隨著鹽濃度的增加,種子的萌發(fā)率、發(fā)芽指數(shù)、發(fā)芽勢(shì)不斷下降。外源NaCl脅迫對(duì)根和芽的生長(zhǎng)造成明顯脅迫。當(dāng)NaCl濃度達(dá)到200 nmol/L時(shí),種子樣本不發(fā)芽,發(fā)芽率和平均根長(zhǎng)、平均芽長(zhǎng)下降到0。
表1 鹽脅迫對(duì)種子發(fā)芽指標(biāo)的影響
2.2.1 感興趣區(qū)域平均灰度值統(tǒng)計(jì)
對(duì)核磁共振質(zhì)子密度圖像先進(jìn)行統(tǒng)一映射得到灰度圖,再提取感興趣區(qū)域(Region of Interest,ROI)的平均灰度值,ROI區(qū)域包括胚和胚乳兩部分,如圖1所示?;叶葓D中某區(qū)域越亮越白,表示灰度值越大,整體含水率越大、活性越強(qiáng),反之整體含水率越小且活性越弱[21]。因此灰度值也可以表示種子整體或者局部含水率。
玉米種子萌發(fā)過程中胚部位、胚乳灰度值即含水率變化如圖2所示。胚部位的平均灰度值在種子吸脹階段(0~2 d)迅速增加,在2 d之后增速下降;胚乳水分在2 d之后出現(xiàn)波動(dòng)增長(zhǎng)的趨勢(shì),而胚部位水分則出現(xiàn)水平波動(dòng)的現(xiàn)象。此外,0、50、100 nmol/L 3組,胚和胚乳的平均灰度值比值的變化趨勢(shì)為先增加后減少,在1 d達(dá)到峰值,而150、200 nmol/L兩組比值在0~2 d遞減,2 d后分別出現(xiàn)波動(dòng)遞減和水平波動(dòng)的現(xiàn)象。
圖1 玉米種子胚乳和胚感興趣ROI區(qū)域
圖2 玉米種子胚乳和胚部位ROI區(qū)域平均灰度值
2.2.2 偽彩圖像分析
對(duì)質(zhì)子密度圖像進(jìn)行偽彩處理,可以直觀看到種子內(nèi)部水分變化。種子的核磁共振信號(hào)主要來源于種子內(nèi)部水分的氫質(zhì)子,紅色(高亮度)代表該區(qū)域氫質(zhì)子密度大、含水率高,藍(lán)色(低亮度)說明該區(qū)域氫質(zhì)子密度小、含水率低[22]。圖像的亮度反映種子萌發(fā)過程中氫質(zhì)子密度,可推斷水分遷移和分布[23]。玉米種子萌發(fā)涉及一系列的生化反應(yīng)和形態(tài)改變,并受到周圍環(huán)境條件的影響。根據(jù)一般規(guī)律,玉米種子萌發(fā)過程可以分為3個(gè)主要階段:吸脹階段、萌動(dòng)階段、發(fā)芽階段[24]。
圖3是不同濃度NaCl處理下鄭單958種子萌發(fā)過程中0、1、2、3、4、5、6 d時(shí)偽彩圖。初始時(shí),各組種子胚部位亮度明顯高于胚乳,這是因?yàn)楦煞N子休眠期生理反應(yīng)微弱,胚乳中主要貯藏淀粉,而胚中蛋白質(zhì)和脂肪含量較高,各部分組織堅(jiān)實(shí)緊密,細(xì)胞內(nèi)物質(zhì)呈干燥的凝膠狀態(tài),因而胚比胚乳中的氫質(zhì)子密度大。由于人工放置樣品,種子縱面會(huì)和機(jī)器磁場(chǎng)角度產(chǎn)生偏差,導(dǎo)致圖像出現(xiàn)一定偏差;但是質(zhì)子密度分布圖中,胚部位的紅色時(shí)有時(shí)無,最主要的原因是種子的發(fā)育過程中,生長(zhǎng)細(xì)胞持續(xù)增生需要大量營(yíng)養(yǎng)物質(zhì),在圖2b中表現(xiàn)為灰度平均值“水平波動(dòng)”。對(duì)于對(duì)照組1~2 d的圖像,可以看出,種子體積逐漸增大,各部位亮度驟然升高,胚乳部位水分面積擴(kuò)大,其亮度呈現(xiàn)出由胚邊緣向種皮遞減的趨勢(shì),這是因?yàn)榉N子胚乳中的淀粉粒等物質(zhì)吸水膨脹,直到細(xì)胞內(nèi)部的水分達(dá)到一定的飽和程度,這也可以解釋胚乳和胚灰度平均值比值在1 d達(dá)到峰值后逐漸下降。高濃度NaCl溶液對(duì)種子照成的影響首先是阻礙種子的吸脹。
對(duì)照組經(jīng)過3 d的培養(yǎng),種子普遍開始萌動(dòng),在農(nóng)業(yè)生產(chǎn)上俗稱為露白。3 d圖像中顯示為各部位亮度繼續(xù)升高,胚根尖端突破種皮向外延展。此時(shí)吸水暫時(shí)停滯,酶開始活動(dòng),種子內(nèi)部代謝加強(qiáng),胚乳中的淀粉粒等營(yíng)養(yǎng)物質(zhì)被分解成葡萄糖等可溶性物質(zhì),同時(shí)種胚吸收這些被分解的物質(zhì),從休眠狀態(tài)恢復(fù)的細(xì)胞器活性提高,種胚細(xì)胞恢復(fù)生長(zhǎng)[25]。
4 d后,對(duì)照組試驗(yàn)樣本開始長(zhǎng)出胚芽,胚根繼續(xù)生長(zhǎng),種子進(jìn)入發(fā)芽階段,種胚細(xì)胞開始或加速分裂和分化,種胚的新陳代謝極為旺盛,在圖像中顯示為種胚部位水分面積持續(xù)擴(kuò)大,亮度高。
對(duì)于50~200 nmol/L組,3 d之后的圖像變化明顯遲緩,隨著NaCl溶液濃度上升,鹽脅迫對(duì)種子的露白以及根和芽的生長(zhǎng)的抑制作用增強(qiáng),這可能是因?yàn)辂}分抑制了種子中淀粉酶的活性,阻礙淀粉轉(zhuǎn)化為蔗糖和可溶性糖[26]。
注:偽彩值越大說明樣品中氫質(zhì)子密度越大。
雖然圖像可直觀展示種子萌發(fā)過程,但是還需要更精準(zhǔn)的數(shù)據(jù)支撐。核磁共振2弛豫譜反映了水分子的動(dòng)力學(xué)特性。一般地,與淀粉或蛋白質(zhì)等生物大分子緊密結(jié)合的水分具有極短的橫向弛豫時(shí)間,而細(xì)胞內(nèi)液泡以及維管束導(dǎo)管中的游離水分則具有較長(zhǎng)的橫向弛豫時(shí)間。核磁共振2弛豫譜信號(hào)幅值與活體組織的水分質(zhì)量成正比[27-28]?;铙w植物器官內(nèi)不同相態(tài)的水分的核磁共振2弛豫譜特性差異較大,表現(xiàn)為2弛豫譜的多組分特征[29]。
分析玉米萌發(fā)不同階段的核磁共振2弛豫譜,發(fā)現(xiàn)2弛豫時(shí)間主要分布范圍為1~10 000 ms,所有試驗(yàn)對(duì)象的2弛豫譜均有3個(gè)明顯的主峰,從左到右依次代表結(jié)合水(0.1 ms <21<10 ms)、半結(jié)合水(10 ms <2< 100 ms)和自由水(100 ms <22<1 000 ms),以及1個(gè)在結(jié)合水左側(cè)的副峰(0.1ms <23<1 ms),副峰代表游離性比結(jié)合水弱的水。核磁共振2弛豫譜峰面積(無量綱單位)與樣品中氫質(zhì)子的數(shù)量成正比,2弛豫譜中各個(gè)峰面積也可以反映各相態(tài)水分的含量,代表總水分含量,21為結(jié)合水,22為半結(jié)合水,23為自由水,則有=21+22+23。不同鹽脅迫處理下鄭單958玉米種子2弛豫譜,如圖4所示,種子總體活性增強(qiáng),表現(xiàn)為2弛豫譜峰后移。不同處理下玉米種子單位質(zhì)量2峰面積數(shù)據(jù)統(tǒng)計(jì),如表2所示。
圖4 不同處理下鄭單958玉米種子反演譜(弛豫譜)
2.3.1 鹽脅迫對(duì)結(jié)合水的影響
通過分析表2,發(fā)現(xiàn)在0~2 d的吸脹階段,隨著鹽濃度的增加,結(jié)合水的增速隨著鹽濃度增加依次遞減,對(duì)照組和50 nmol/L組的結(jié)合水峰值出現(xiàn)在2 d,100 nmol/L組的結(jié)合水峰值則推遲到3 d,3組種子的結(jié)合水在達(dá)到峰值之后逐漸下降,下降速率從小到大依次是50、100 nmol/L、對(duì)照組,而150、200 nmol/L兩組種子的結(jié)合水在3 d達(dá)到一個(gè)小峰值之后并沒有出現(xiàn)下降趨勢(shì),而是小范圍水平波動(dòng)變化。這可以解釋為,種子吸脹結(jié)束后開始萌動(dòng),內(nèi)部生化反應(yīng)主要在解除休眠的種子胚乳中進(jìn)行,淀粉分子的鏈狀結(jié)構(gòu)伸展,淀粉粒吸水,在淀粉酶的催化作用下開始降解。因此種子內(nèi)部結(jié)合水量先增加后減少。鹽脅迫程度越厲害,種子內(nèi)部淀粉顆粒吸水越慢,淀粉酶活性受到抑制,分解轉(zhuǎn)移淀粉的速度越慢[30]。此外,種子貯藏的生物大分子還包括脂肪和蛋白質(zhì),大分子降解不只與淀粉有關(guān)。
表2 單位質(zhì)量T2峰面積統(tǒng)計(jì)表
2.3.2 鹽脅迫對(duì)半結(jié)合水的影響
0~1 d種子從休眠狀態(tài)蘇醒,體內(nèi)半結(jié)合水信號(hào)幅值劇增;隨著試驗(yàn)進(jìn)行,半結(jié)合水的增長(zhǎng)趨勢(shì)逐漸減緩。1 d之后,5組試驗(yàn)對(duì)象的半結(jié)合水增長(zhǎng)出現(xiàn)差異,對(duì)照組、50、100 nmol/L 3組的半結(jié)合水峰面積增速依次為957.79/d、626.19/d、736.04/d,而150、200 nmol/L兩組的增長(zhǎng)速率分別為289.69/d、254.23/d,均低于對(duì)照組、50、100 nmol/L組增速。以上數(shù)據(jù)表明NaCl脅迫程度在100 nmol/L及以下時(shí)對(duì)半結(jié)合水的影響較小。
2.3.3 鹽脅迫對(duì)自由水的影響
自由水對(duì)鹽脅迫最敏感。對(duì)照組和50 nmol/L組自由水峰面積分別在1和2 d達(dá)到最小值后出現(xiàn)大幅回升現(xiàn)象;100 nmol/L的自由水峰面積在2 d達(dá)到最小值后小幅上漲,但低于其初始狀態(tài);150、200 nmol/L組自由水2弛豫譜峰面積一直在600以下,并出現(xiàn)下降現(xiàn)象。
自由水代表細(xì)胞內(nèi)液泡和細(xì)胞間水。植物細(xì)胞在鹽脅迫條件下有無機(jī)滲透調(diào)節(jié)和有機(jī)滲透調(diào)節(jié)兩種形式[31]。在鹽脅迫過程中,植物可以通過對(duì)無機(jī)離子的選擇性吸收或隔離來維持細(xì)胞內(nèi)外的離子平衡,從而在鹽環(huán)境中維持正常生長(zhǎng)狀態(tài)。參與滲透調(diào)節(jié)過程的離子中,Cl-作用存在較大爭(zhēng)議,有學(xué)者認(rèn)為它被動(dòng)進(jìn)入細(xì)胞,只作為離子電荷的平衡物質(zhì),在調(diào)節(jié)滲透勢(shì)方面作用不大;而另一些學(xué)者認(rèn)為在脅迫初級(jí)階段時(shí),玉米可以通過對(duì)Cl-快速吸收來增強(qiáng)植株的耐鹽性,因此種子在低濃度(50 nmol/L)NaCl環(huán)境下表現(xiàn)出一定的耐鹽性。
較高濃度的無機(jī)離子環(huán)境下,植物平衡細(xì)胞內(nèi)外的滲透勢(shì)還需要借助有機(jī)分子。非鹽生植物若需減輕鹽脅迫,則借助外源物質(zhì)誘導(dǎo)積累滲透調(diào)節(jié)物質(zhì),從而調(diào)節(jié)體內(nèi)滲透壓的動(dòng)態(tài)平衡,這樣可以從根本上保護(hù)酶活性,對(duì)于生物膜的結(jié)構(gòu)更可以發(fā)揮出穩(wěn)定的作用[32]。玉米屬于非鹽生植物,其主要滲透調(diào)節(jié)物質(zhì)以有機(jī)小分子為主,主要包括脯氨酸、多元醇等,本試驗(yàn)沒有增加外源物質(zhì)誘導(dǎo)試驗(yàn)對(duì)象產(chǎn)生足夠有機(jī)小分子調(diào)節(jié)滲透壓,致使玉米種子在較高濃度(200 nmol/L)NaCl環(huán)境下,細(xì)胞膜功能遭到破壞。以上分析可以說明玉米種子在低濃度的鹽環(huán)境中通過無機(jī)滲透和有機(jī)滲透兩種形式調(diào)節(jié)體內(nèi)滲透壓,從而保持正常生長(zhǎng),但兩種調(diào)節(jié)滲透壓的形式在高濃度鹽環(huán)境下均遭到破壞。
2.3.4 鹽脅迫對(duì)副峰水的影響
除了上述變化明顯的主峰,試驗(yàn)發(fā)現(xiàn),在對(duì)照組、50、100、150 nmol/L 4組2弛豫譜圖中,結(jié)合水左側(cè)均出現(xiàn)小面積的副峰,出現(xiàn)時(shí)間為1~6 d,其弛豫時(shí)間在結(jié)合水范圍之內(nèi),占總體水分的比例在10%以下;當(dāng)鹽溶液濃度達(dá)到200 nmol/L,種子不發(fā)芽且無副峰出現(xiàn)。組內(nèi)副峰隨時(shí)間變化不具有明顯規(guī)律。副峰信號(hào)出現(xiàn),可能由于某些活性基團(tuán)和水形成的氫鍵比淀粉中的氫鍵穩(wěn)定性更強(qiáng)[33-34]。副峰的出現(xiàn)說明了種子在吸脹階段并不完全是物理現(xiàn)象,此過程中的化學(xué)反應(yīng)為后續(xù)萌動(dòng)、露白做了準(zhǔn)備。副峰的出現(xiàn)和種子發(fā)芽有密切關(guān)聯(lián),是一種標(biāo)志著種子發(fā)芽的結(jié)合水。
2.3.5 鹽脅迫對(duì)總水分的影響
5個(gè)濃度梯度的種子總體水分的變化趨勢(shì)均表現(xiàn)為:吸脹階段前期(0~1 d)劇增,2 d之后放緩速度。隨著鹽脅迫的加劇,單位質(zhì)量的總體水T弛豫譜峰面積依次下降??傮w水峰面積的增速以及截至到6 d的積累量的排列順序?yàn)椋簩?duì)照組、50 nmol/L組、100nmol/L組、150 nmol/L組、200 nmol/L組。這和胚和胚乳灰度值的統(tǒng)計(jì)結(jié)果一致。
2.3.6 個(gè)體內(nèi)部3種相態(tài)水比例
根據(jù)表2,玉米種子休眠狀態(tài)時(shí),21>23>22,經(jīng)過6 d的培養(yǎng),對(duì)照組3種相態(tài)水的最終含量為22>23>21,結(jié)合水占總體比例從83.05%降到20.62%,半結(jié)合水比例從4.38%增加到56.83%;50 nmol/L組3種相態(tài)水的最終含量為22>21>23,結(jié)合水占總體比例從82.31%降到28.56%,半結(jié)合水比例從4.35%增加到47.57%;100 nmol/L組3種相態(tài)水的最終含量為22>21>23,結(jié)合水占總體比例從84.5%降到34.45%,半結(jié)合水比例從4.77%增加到57.81%;150 nmol/L組3種相態(tài)水的最終含量為21>22>23,結(jié)合水占總體比例從83.84%降到55.92%,半結(jié)合水比例從5.51%增加到36.47%;200 nmol/L組3種相態(tài)水的最終含量為21>22>23,結(jié)合水占總體比例從83.76%降到55.14%,半結(jié)合水比例從6.03%增加到39.92%。
此外,對(duì)照組吸脹1 d后,自由水比例從12.92%驟降至2.9%,1~6 d勻速增加到23.79%。50 nmol/L組自由水比例在2 d出現(xiàn)最小值,從13.77%驟降至3.51%,隨后緩慢增加到21.58%。100 nmol/L組較特殊,自由水比例初始值為10.65%,同樣在2 d達(dá)到最小值2.16%,隨后緩慢增加到31.51%,但是2弛豫譜峰面積和150、200 nmol/L兩組峰面積同樣保持在600以下,種子活性受到嚴(yán)重脅迫。150 nmol/L組自由水比例呈現(xiàn)不斷下降的趨勢(shì),從11.42%降到1%。200 nmol/L組和150 nmol/L組類似,自由水比例從11.45%持續(xù)降到1.8%。
5組試驗(yàn)對(duì)象的結(jié)合水占總體水比例的變化趨勢(shì)均為持續(xù)下降,半結(jié)合水比例持續(xù)上升,鹽脅迫程度加劇則會(huì)延緩下降或上升的速率,當(dāng)NaCl濃度達(dá)到150 nmol/L水平時(shí),二者比例變化均被大幅延遲;自由水對(duì)NaCl比較敏感,鹽濃度達(dá)到100 nmol/L,自由水含量受到嚴(yán)重抑制。
1)通過對(duì)質(zhì)子密度圖像進(jìn)行ROI提取并統(tǒng)計(jì)感興趣區(qū)域的平均灰度值,發(fā)現(xiàn)胚乳部分和胚部位的平均灰度值在種子吸脹階段迅速增加,在2 d之后增速下降;胚乳水分在2 d之后出現(xiàn)波動(dòng)增長(zhǎng)的趨勢(shì),而胚部位水分則出現(xiàn)水平波動(dòng)的現(xiàn)象;隨著鹽濃度從0增至200 nmol/L,水分變化速率減緩。偽彩圖像可以直觀展示種子萌發(fā)過程,解釋總體水分的分布和遷移,但還需要更精準(zhǔn)的數(shù)據(jù)分析不同相態(tài)水分的劃分和變化規(guī)律。
2)隨著鹽脅迫程度上升,種子發(fā)芽率從90%降至0。鹽濃度在50 nmol/L及以下時(shí),不同相態(tài)水信號(hào)幅值變化趨勢(shì)受鹽脅迫影響較小,達(dá)到100 nmol/L時(shí)自由水信號(hào)幅值被抑制在低水平,達(dá)到150 nmol/L時(shí)結(jié)合水和半結(jié)合水信號(hào)幅值的增速均被大幅延緩;但是50 nmol/L是否可以當(dāng)做鹽脅迫的閾值,值得進(jìn)一步劃分濃度梯度探究。此外,2弛豫譜圖結(jié)合水左側(cè)出現(xiàn)副峰,弛豫時(shí)間為0.1 ms<23<1 ms。對(duì)照組(0)、50、100、150 nmol/L各組內(nèi)副峰隨時(shí)間變化不具有明顯規(guī)律,當(dāng)鹽溶液濃度達(dá)到200 nmol/L,種子不發(fā)芽且無副峰出現(xiàn)。因此副峰的出現(xiàn)和種子是否發(fā)芽有密切關(guān)聯(lián),是一種標(biāo)志著種子發(fā)芽的結(jié)合水。
[1]武海霞,陳雅楠,陳曉娜,等. 淺析土壤鹽漬化形成原因及防治措施[J]. 內(nèi)蒙古水利,2017(5):50-51.
[2]楊勁松. 中國(guó)鹽漬土研究的發(fā)展歷程與展望[J]. 土壤學(xué)報(bào),2008,45(5):837-845. Yang Jingsong. Developmen and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845. (in Chinese with English abstract)
[3]王麗紅,張欣,岳潔瑜. 玉米抵御氯化鈉脅迫機(jī)理研究進(jìn)展[J]. 安徽農(nóng)業(yè)科學(xué),2019,47(1):6-9. Wang Lihong, Zhang Xin, Yue Jieyu. Research progress on mechanisms of maize in resistance to NaCl stress[J]. Journal of Anhui Agricultural Sciences, 2019, 47(1): 6-9. (in Chinese with English abstract)
[4]王佳佳,谷思玉. NaCl與Na2CO3+NaHCO3對(duì)玉米萌發(fā)期脅迫效應(yīng)的比較[J]. 作物雜志,2012(2):138-141. Wang Jiajia, Gu Siyu. Comparison of NaCl and Na2CO3+NaHCO3stress on corn germination[J]. Crops, 2012(2): 138-141. (in Chinese with English abstract)
[5]付長(zhǎng)方,張海艷. 鹽脅迫對(duì)玉米種子萌發(fā)、幼苗葉綠素含量和滲透勢(shì)的影響[J]. 山東農(nóng)業(yè)科學(xué),2015,47(5):27-30. Fu Changfang, Zhang Haiyan. Effects of salt stress on seed germination and seedling chlorophyll content and osmotic potential of maize[J]. Shandong Agricultural Sciences, 2015, 47(5): 27-30. (in Chinese with English abstract)
[6]張磊,侯云鵬,王立春. 鹽堿脅迫對(duì)植物的影響及提高植物耐鹽堿性的方法[J]. 東北農(nóng)業(yè)科學(xué),2018,43(4):11-16. Zhang Lei, Hou Yunpeng, Wang Lichun. Effect of alkaline salt stress on plant and method of enhancing saline-alkali resistance[J]. Journal of Northeast Agricultural Sciences, 2018, 43(4): 11-16. (in Chinese with English abstract)
[7]Damaris Rebecca Njeri. 鹽脅迫的非洲水稻幼苗蛋白質(zhì)組分析和MYB轉(zhuǎn)錄因子(OsMybcc-1)參與水稻種子萌發(fā)的研究[D]. 武漢:中國(guó)科學(xué)院大學(xué),2019.
DAMARIS REBECCA NJERI. Salt Stress and Proteomics Analysis of African Rice Seedlings and Involvement of MYB Transcription Factor (OsMvbcc-1) in Germination Vigor of Rice Seeds[D]. Wuhan: University of Chinese Academy of Sciences, 2019. (in Chinese with English abstract)
[8]劉銳,武亮,張影全,等. 基于低場(chǎng)核磁和差示量熱掃描的面條面團(tuán)水分狀態(tài)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(9):288-294. Liu Rui, Wu Liang, Zhang Yingquan, et al. Water state and distribution in noodle dough using low-field nuclear magnetic resonance and differential scanning calorimetric[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(9): 288-294. (in Chinese with English abstract)
[9]姜潮,韓劍眾,范佳利,等. 低場(chǎng)核磁共振結(jié)合主成分分析法快速檢測(cè)摻假牛乳[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(9):340-344. Jiang Chao, Han Jianzhong, Fan Jiali, et al. Rapid detection of adulterated milk by low field-nuclear magnetic resonance coupled with PCA method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 340-344. (in Chinese with English abstract)
[10]Carla da Silva Carneiro, Eliane Teixeira Mársico, Roberta de Oliveira Resende Ribeiro, et al. Low-field nuclear magnetic resonance (LF NMR 1 H) to assess the mobility of water during storage of salted fish ( Sardinella brasiliensis )[J]. Journal of Food Engineering, 2016, 169: 321-325.
[11]Cheng Shasha, Zhan Tang, Yao Li, et al. Use of low-field-NMR and MRI to characterize water mobility and distribution in pacific oyster (Crassostrea gigas) during drying process[J]. Drying Technology An International Journal, 2018, 36: 630-636.
[12]Li Min, Li Bin, Zhang Weijia. Rapid and non-invasive detection and imaging of the hydrocolloid-injected prawns with low-field NMR and MRI[J]. Food Chemistry, 2018, 242: 16-21.
[13]郭啟悅,李燁,任舒悅,等. 低場(chǎng)核磁共振技術(shù)在食品安全快速檢測(cè)中的應(yīng)用[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2019,10(2):380-384. Guo Qiyue, Li Ye, Ren Shuyue, et al. Application of low field nuclear magnetic resonance technology in food safety rapid detection[J]. Journal of Food Safety & Quality, 2019, 10(2): 380-384. (in Chinese with English abstract)
[14]賈子健. 頁巖核磁共振弛豫機(jī)制與測(cè)量方法研究[D]. 北京:中國(guó)石油大學(xué)(北京),2017. Jia Zijian. Study of Magnetic Resonance Relaxation Mechanism and Measurement Method on Shale[D]. Beijing: China University of Petroleum(Beijing) 2017. (in Chinese with English abstract)
[15]夏寶林,丁超,章志華,等. 基于低場(chǎng)核磁成像技術(shù)研究稻谷緩蘇的機(jī)理[J]. 中國(guó)糧油學(xué)報(bào),2019,34(11):100-105. Xia Baolin, Ding Chao, Zhang Zhihua, et al. Researching on the mechanism of rice tempering using the low field magnetic resonance imaging technique[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(11): 100-105. (in Chinese with English abstract)
[16]周水琴. 基于核磁共振成像的梨果品質(zhì)無損檢測(cè)方法研究[D]. 杭州:浙江大學(xué),2013. Zhou Shuiqin. Non-destructive Inspection of Pear Fruit Quality Based on Magnetic Resonance Imaging[D]. Hangzhou: Zhejiang University, 2013. (in Chinese with English abstract)
[17]匡樸. 鹽脅迫對(duì)不同耐鹽性玉米品種萌發(fā)、苗期生長(zhǎng)及產(chǎn)量的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2018. Kuang Pu. Effect of Salt Stress on Seed Germination,Seedling Growth and Yield of Maize Varieties With Different Salt Tolerance[D]. Taian: Shandong Agricultural University, 2018. (in Chinese with English abstract)
[18]李衛(wèi)明,許輝欣,柴政,等. 不同濃度鹽脅迫對(duì)三種飼草作物種子萌發(fā)特性的影響[J]. 中國(guó)奶牛,2019,347(3):67-70. Li Weiming, Xu Huixin, Chai Zheng, et al. Influence of salt concentration on germination of three different forage crop seeds[J]. China Dairy Cattle, 2019, 347(3): 67-70. (in Chinese with English abstract)
[19]宋平,楊濤,王成,等. 利用低場(chǎng)核磁共振分析水稻種子浸泡過程中的水分變化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(15):279-284. Song Ping, Yang Tao, Wang Cheng, et al. Analysis of moisture changes during rice seed soaking process using low-field NMR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(15): 279-284. (in Chinese with English abstract)
[20]宋平,彭宇飛,王桂紅,等. 玉米種子萌發(fā)過程內(nèi)部水分流動(dòng)規(guī)律的低場(chǎng)核磁共振檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(10):274-281. Song Ping, Peng Yufei, Wang Guihong, et al. Detection of internal water flow in germinating corn seeds based on low field nuclear magnetic resonance[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(10): 274-281. (in Chinese with English abstract)
[21]卞瑞姣,曹榮,趙玲,等. 基于低場(chǎng)核磁共振技術(shù)檢測(cè)秋刀魚腌干制過程水分狀態(tài)變化[J]. 食品安全質(zhì)量檢測(cè)學(xué)報(bào),2017,8(5):1698-1703. Bian Ruijiao, Cao Rong, Zhao Ling, et al. Changes in moisture status of Cololabis saira during salting and drying by low-field nuclear magnetic resonance[J]. Journal of Food Safety & Quality, 2017, 8(5): 1698-1703. (in Chinese with English abstract)
[22]Cheng Shasha, Zhang Tan, Wang Xiaohui, et al. Influence of salting processes on water and lipid dynamics, physicochemical and microstructure of duck egg[J]. LWT - Food Science and Technology, 2018, 95: 143-149.
[23]楊洪偉,張麗穎,紀(jì)建偉,等. 低場(chǎng)核磁共振分析聚乙二醇對(duì)萌發(fā)期水稻種子水分吸收的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(17):276-283. Yang Hongwei, Zhang Liying, Ji Jianwei, et al. Analysis on water absorption of rice seeds during germination process under polyethylene glycol solution using low-field nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 276-283. (in Chinese with English abstract)
[24]牟紅梅,何建強(qiáng),邢建軍,等. 小麥灌漿過程籽粒水分變化的核磁共振檢測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(8):98-104. Mou Hongmei, He Jianqiang, Xing Jianjun, et al. Water changes in wheat spike during grain filling stage investigated by nuclear magnetic resonance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 98-104. (in Chinese with English abstract)
[25]王慰親. 種子引發(fā)促進(jìn)直播早稻低溫脅迫下萌發(fā)出苗的機(jī)理研究[D]. 武漢:華中農(nóng)業(yè)大學(xué),2019. Wang Weiqin. Mechanisms under Lying the Effects of Seed Priming on the Establishment of Direct-seeded Early Season Rice under Chilling Stress[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese with English abstract)
[26]張有福,陳春艷. NaCl和Na2SO4脅迫下萌動(dòng)的玉米種子發(fā)芽和淀粉轉(zhuǎn)化的響應(yīng)[J]. 中國(guó)農(nóng)學(xué)通報(bào),2013,29(33):74-78. Zhang Youfu, Chen Chunyan. Response of NaCl and Na2SO4stress on germination and starch conversion in germinating seeds of maize[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 74-78. (in Chinese with English abstract)
[27]牟紅梅. 基于核磁共振的冬小麥灌漿及玉米種子萌發(fā)過程水分分布規(guī)律研究[D]. 楊陵:西北農(nóng)林科技大學(xué),2016. Mou Hongmei. Detection of Water Distribution in the Processes of Wheat Grain Filling and Maize Germination with the Nuclear Magnetic Resonance[D]. Yangling: Northwest A&F University, 2016. (in Chinese with English abstract)
[28]要世瑾,牟紅梅,杜光源,等. 小麥種子吸脹萌發(fā)過程的核磁共振檢測(cè)研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(11):266-274. Yao Shijin, Mou Hongmei, Du Guangyuan, et al. Water imbibition and germination of wheat seed with nuclear magnetic resonance[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 266-274. (in Chinese with English abstract)
[29]宋平. 基于低場(chǎng)核磁共振技術(shù)的水稻浸種過程種子水分檢測(cè)研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2016. Song Ping. Study of Water Contect Detection in the Rice Seed Soaking Process Based on Low Field NMR Techniques[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract)
[30]丁燕,呼鳳蘭,暢博奇. NaCl脅迫對(duì)玉米種子萌發(fā)特性及α-淀粉酶活性的影響[J]. 黑龍江農(nóng)業(yè)科學(xué),2019,298(4):11-14,26. Ding Yan, Hu Fenglan, Chang Boqi. Effects of NaCl stress on seeds germination characteristic and α-amylase activity of maize seed[J]. Heilongjiang Agricultural Sciences, 2019, 298(4): 11-14, 26. (in Chinese with English abstract)
[31]姜琳,王有婧,周薇,等. 植物抵抗鹽脅迫的生理機(jī)制[J]. 北方園藝,2016(23):190-194. Jiang Lin, Wang Youjing, Zhou Wei, et al. Physiological mechanism of plant resistance to salt stress[J]. Northern Horticulture, 2016(23): 190-194. (in Chinese with English abstract)
[32]劉暢,孫璐. 鹽堿脅迫對(duì)玉米苗期生理指標(biāo)影響的研究進(jìn)展[J]. 種子科技,2020,38(11):18-19.
[33]侯彩云,大下誠(chéng)一,瀨尾康久,等. 蒸煮過程中稻米水分狀態(tài)的質(zhì)子核磁共振譜測(cè)定[J]. 農(nóng)業(yè)工程學(xué)報(bào),2001,17(2):126-131. Hou Caiyun, Seiichi Oshita, Yasuhisa Seo, et al. State of moisture in rice kernel during cooking process by 1H-NMR measurement[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(2): 126-131. (in Chinese with English abstract)
[34]趙茂程,顧盛,汪希偉,等. 銀杏種子萌發(fā)過程低場(chǎng)核磁T2反演譜解譯初探[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(15):317-324. Zhao Maocheng, Gu Sheng, Wang Xiwei, et al. Preliminary study on interpretation of LF-NMR T2inversion spectrum of ginkgo biloba seed during germination process[J]. Transactions of The Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(15): 317-324. (in Chinese with English abstract)
Low-field nuclear magnetic resonance of maize seed germination process under salt stress
Yue Xia, Bai Yuhe, Wang Zhaoyi, Song Ping※
(1,,110866,;2,110161,)
Taking the non-waxy corn Zhengdan 958 seeds as the test object, a Low-Field Nuclear Magnetic Resonance (LF-NMR) experiment was performed under different NaCl concentrations (0, 50, 100, 150 and 200 nmol/L), in order to explore the influence of salt stress on the water distribution and activity during the germination of corn seeds. Two parts were included in the LF-NMR experiment, Magnetic Resonance Imaging (MRI) and nuclear magnetic resonance signal test. The proton density image was obtained by the Multi-slice Spin Echo (MSE) pulse sequence, and the nuclear magnetic signal was obtained by Carr-Purcell-Meiboom-Gill sequence (CPMG) pulse. The samples were incubated for 6 days at 28℃, providing for the analysis of nuclear magnetic resonance proton density images and NMR relaxation spectrum. The results showed that: The germination of maize had undergone the swelling (0-2 d), sprout (3-4 d), and budding (5-6 d) during the entire experimental period. Specifically, the overall moisture content increased, while the activity became stronger, as the gray value increased, where the grayscale image became brighter and whiter in a certain area. Therefore, the gray value of images can be used to represent the overall or local moisture content of seeds. Furthermore, the Region of Interest (ROI) of proton density image was extracted further to count the average gray value. It was found that the moisture content of endosperm and embryo part increased rapidly during the seed swelling stage, whereas, the growth rate decreased after 2 d. There was also a fluctuating increase in the moisture content of endosperm, whereas, the water in the embryo site fluctuated horizontally. The rate of water decreased as the salt concentration increased. Since the pseudo-color images can be used to visually show the germination process of seeds, they were used to explain the distribution and migration of overall moisture. However, more accurate data was needed to analyze the division and change rules of moisture in different phase states. The germination rate of seeds decreased from 90% to 0, as the degree of salt stress increased. When the salt concentration was 50 nmol/L and even below, the water signal amplitude of different phases was less affected by the salt stress, but when the salt concentration reached 100 nmol/L, the content of free water was suppressed at a low level. Particularly when it reached 150 nmol/L, the rate of change was greatly delayed in the content of bound and semi-bound water. After the 1thd, the2relaxation spectra showed that, a small area of the side peaks which did not have obvious regularities with time appeared on the left of the bound water, the relaxation time was within the range of bound water, and the proportion of total moisture was below 10%; the seeds would not germinate and no side peaks appeared when the salt solution concentration reached 200 nmol/L. Side peak signal represents water whose hydrogen bond is more stable than in starch, and the special hydrogen bond might come from the biochemical reaction that occurred after the seed was released from the dormant state. The appearance of the side peaks closely related to whether the seeds germinate showed that the swelling stage is not completely a physical phenomenon, and the chemical reaction in this process prepares for the subsequent germination and exposure. Side peaks indicate a kind of bound water that marks the germination of seeds. The findings can provide the theoretical reference for the follow-up research on the response mechanism of maize seed germination to salt-alkali stress.The LF-NMR test can be used to simulate the salt-alkali environment, futher to quickly identify the salt-tolerant ability of seeds or plants.
seeds; water; salt stress; corn germination; low field nuclear magnetic resonance technology; magnetic resonance imaging
岳霞,白雨禾,王昭懿,等. 鹽脅迫下玉米種子萌發(fā)過程低場(chǎng)核磁共振研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):292-300.doi:10.11975/j.issn.1002-6819.2020.24.034 http://www.tcsae.org
Yue Xia, Bai Yuhe, Wang Zhaoyi, et al. Low-field nuclear magnetic resonance of maize seed germination process under salt stress[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 292-300. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.034 http://www.tcsae.org
2020-07-25
2020-12-06
國(guó)家自然科學(xué)基金資助項(xiàng)目(31701318);遼寧省教育廳基礎(chǔ)研究項(xiàng)目(LSNJC201916);國(guó)家自然科學(xué)基金委員會(huì)與韓國(guó)國(guó)家研究基金會(huì)聯(lián)合資助合作交流項(xiàng)目(31811540396)
岳霞,從事精準(zhǔn)農(nóng)業(yè)方面的研究。Email:13220819559@163.com。
宋平,博士,教授,從事精準(zhǔn)農(nóng)業(yè)方面的研究。Email:songping_1010@163.com。
10.11975/j.issn.1002-6819.2020.24.034
S351.5+1
A
1002-6819(2020)-24-0292-09