崔紅標,王昱茗,葉回春,張 雪,董婷婷,易齊濤,張世文
不同內(nèi)源重金屬生物炭對Cu和Cd吸附及其對老化作用的響應(yīng)
崔紅標1,2,3,王昱茗1,2,3,葉回春4,張 雪1,2,3,董婷婷1,2,3,易齊濤1,2,張世文1,2※
(1. 安徽理工大學(xué)地球與環(huán)境學(xué)院,淮南 232001;2. 安徽省高潛水位礦區(qū)水土資源綜合利用與生態(tài)保護工程實驗室,淮南 232001;3. 安徽理工大學(xué)環(huán)境友好材料與職業(yè)健康研究院,蕪湖 241003;4. 中國科學(xué)院空天信息創(chuàng)新研究院,北京 100094)
為明確老化作用對不同內(nèi)源污染物生物炭吸附重金屬穩(wěn)定性的影響,該研究以不同污染程度(清潔、中度和重度污染)土壤種植的巨菌草秸稈制備3種不同內(nèi)源Cu和Cd含量的生物炭RB、SB和JB,分析3種生物炭對Cu2+和Cd2+的吸附能力以及干濕和凍融老化對飽和吸附后生物炭中Cu和Cd的生物有效性的影響。結(jié)果表明:3種生物炭表面均分布豐富的孔隙結(jié)構(gòu),RB含有最高的pH值和灰分含量;生物炭對Cu2+和Cd2+的吸附符合Langmuir模型(2=0.951~0.998),且RB對Cu2+和Cd2+的吸附量最大,分別為54.3和37.3 mg/g;與此相同,飽和吸附后RB對Cu2+和Cd2+的固持量最大,分別為21.4和4.78 mg/g。與老化前相比,干濕老化較凍融老化更顯著地降低了飽和吸附后生物炭中Cu的TCLP(Toxicity Characteristic Leaching Procedure)浸出含量,促進了Cu從酸溶態(tài)和殘渣態(tài)向還原態(tài)和氧化態(tài)轉(zhuǎn)化,降低了Cu的環(huán)境風險;但是干濕和凍融老化作用增加了飽和吸附后生物炭中Cd的TCLP浸出含量,促進了Cd從殘渣態(tài)向酸溶態(tài)、還原態(tài)和氧化態(tài)轉(zhuǎn)化,增加了Cd的環(huán)境風險。這可能是由于3種生物炭對Cu2+的吸附主要以表面絡(luò)合為主,對Cd2+的吸附以化學(xué)沉淀機制為主??傮w上,RB生物炭固持最高的Cu2+和Cd2+,但是干濕和凍融老化增加了飽和吸附后生物炭Cd環(huán)境風險,研究結(jié)果對于評估生物炭長期鈍化修復(fù)穩(wěn)定性具有一定的指導(dǎo)意義。
吸附;老化;生物炭;內(nèi)源重金屬;化學(xué)形態(tài)
生物炭是一種將農(nóng)林廢棄物等生物質(zhì)在相對低溫、缺氧或限氧條件下熱解形成的高度芳香化的富碳固態(tài)物質(zhì)[1-2]。因其具有較大的比表面積與陽離子交換量、發(fā)達的孔隙結(jié)構(gòu)、豐富的含碳官能團、通常呈現(xiàn)堿性,對Pb2+、Cu2+和Cd2+等重金屬具有較好的吸附固定能力,并廣泛應(yīng)用于土壤重金屬污染修復(fù)[2-4]。
當前,用于制備生物炭的原料包括:農(nóng)作物秸稈、污泥、農(nóng)產(chǎn)品加工廢棄物等。由于生物質(zhì)來源不同,生物炭內(nèi)源污染物如重金屬、PAHs等具有顯著性差異[5-6]。目前的研究主要關(guān)注生物炭對重金屬的吸附機制與效果提升[7-8],但鮮有關(guān)注生物炭內(nèi)源污染物的環(huán)境風險。尤其是在中國,尚未有限定生物炭內(nèi)源污染物的強制標準背景下,極有可能將含有高量內(nèi)源污染物的生物炭用于土壤的改良和修復(fù),產(chǎn)生二次污染等環(huán)境問題[9]。如Li等[10]將某水稻秸稈制備的生物炭(Cd含量0.37 mg/kg)按照5%用量添加土壤后,稻米Cd含量(1.71 mg/kg)較對照處理(0.31 mg/kg)增加了4.52倍,產(chǎn)生了較大的環(huán)境風險。因此,開展生物炭內(nèi)源污染物環(huán)境風險的研究具有重要意義。
生物炭應(yīng)用于自然環(huán)境中,會經(jīng)歷一系列的生物和非生物過程,這一系列過程稱為生物炭老化[11]。特別是在一些降雨分布不均、存在季節(jié)性凍融以及酸雨沉降區(qū),生物炭應(yīng)用于土壤后,會經(jīng)歷顯著的干濕、凍融、酸化等老化作用[12]。生物體會吸附固定土壤溶液中的重金屬,這部分被吸附的重金屬是否會由于老化作用重新解吸釋放,以及不同含量內(nèi)源重金屬的存在是否會影響生物炭對重金屬固持的穩(wěn)定性,目前仍不明確。長期的老化過程會改變生物炭物理化學(xué)性質(zhì)(比表面積、礦物組成、pH值和官能團等),影響生物炭對污染物的固定能力[13-14]。Kumar等[15]研究發(fā)現(xiàn),培養(yǎng)罐內(nèi)老化180 d后,增加了土壤中生物炭對Zn的穩(wěn)定化效果。然而,前期的研究發(fā)現(xiàn)生物炭雖然短期內(nèi)能夠吸附固定土壤重金屬,但是長期田間老化降低了其對重金屬的固定能力和鈍化作用[16-17]。研究還發(fā)現(xiàn),老化作用會改變巨菌草()生物炭性質(zhì),活化生物炭內(nèi)源Cd,尤其是來源污染土壤生物質(zhì)制備的生物炭,其內(nèi)源污染物具有更高的環(huán)境風險[9]。因此,厘清不同內(nèi)源污染物生物炭吸附重金屬后的穩(wěn)定性對于評價生物炭長期應(yīng)用風險具有重要指導(dǎo)意義。
綜上,本研究首先制備不同內(nèi)源污染物含量的3種生物炭,分析不同內(nèi)源重金屬生物炭對Cu2+和Cd2+的吸附特征(等溫吸附),并分析干濕和凍融老化對飽和吸附后生物炭中重金屬生物有效性的影響,以期為生物炭的長期安全應(yīng)用提供實踐指導(dǎo)。
該研究設(shè)定土壤污染程度為土壤污染篩選值<1、1~3、>3~5、>5倍分別為清潔,輕度污染、中度污染、重度污染。土壤重金屬污染程度以單個元素超標倍數(shù)最高為準。為了獲取不同內(nèi)源重金屬含量的生物炭,在江西省鷹潭市劉家站中國科學(xué)院紅壤生態(tài)實驗站(簡稱:紅壤站)清潔區(qū)(28°12'N,116°55''E)、貴溪銅冶煉廠周邊九牛崗(28°10'N,117°12''E)和水泉污染區(qū)(28°19'N,117°12''E)土壤種植巨菌草()。與《土壤環(huán)境質(zhì)量農(nóng)用地土壤污染風險管控標準(試行)》(GB15618—2018)中Cu(50 mg/kg)和Cd(0.3 mg/kg)的風險篩選值相比,九牛崗和水泉土壤Cu分別超標16.3和3.04倍,Cd超標3.27和3.67倍(表1)。因此,九牛崗、水泉和紅壤站3個區(qū)域土壤分別為重度、中度和清潔土壤。在2017年11月收獲3個地區(qū)的巨菌草秸稈,并采集土壤樣品。秸稈室溫下洗凈、烘干,剪至1 cm小段;然后,置于馬弗爐(通氮氣0.5 h),升溫至400℃下熱解2 h,將制備的生物炭冷卻并研磨過篩于干燥器備用。先前的研究表明該區(qū)域主要污染物是Cu和Cd[18],因此本研究中僅關(guān)注生物炭內(nèi)源Cu和Cd。來自紅壤站(清潔)、水泉(中度污染)和九牛崗(重度污染)巨菌草制備的生物炭分別標記為RB、SB和JB。最后,分析3個區(qū)域土壤、巨菌草秸稈及其制備的生物炭內(nèi)源Cu和Cd含量,結(jié)果如表1所示。為保證樣品數(shù)據(jù)分析質(zhì)量,所有樣品均設(shè)置3次重復(fù),同時設(shè)置空白和標準物質(zhì)(土壤標準物質(zhì),GBW07405;植物標準物質(zhì),GBW10010)。
表1 土壤、巨菌草和生物炭中Cu和Cd含量
注:不同字母表示不同區(qū)域的處理間在<0.05水平上差異顯著,下同。
Note: Different letters indicated significant differences at<0.05 level, the same below.
為了考察3種生物炭對Cu2+和Cd2+的吸附能力,該研究進行等溫吸附試驗:稱取0.10 g生物炭于50 mL離心管中,分別加入30.4~384 mg/L Cu2+,或者42.8~444 mg/L Cd2+溶液(電解質(zhì)為0.01 mol/L NaNO3),用0.1 mol/L的HCl或NaOH溶液調(diào)節(jié)溶液pH值為5,100 r/min振蕩24 h,4 000 r/min的條件下離心15 min,用0.22m的微孔濾膜分離上清液,濾液用濃硝酸酸化至pH值<2后待測。生物炭對Cu2+和Cd2+的吸附量按照公式(1)計算:
=(C-C)/(1)
式中C和C分別為重金屬初始和吸附平衡時的濃度,mg/L;為溶液體積,L;為生物炭的質(zhì)量,g。
該研究采用Langmuir和Freundlich模型擬合生物炭對Cu2+和Cd2+的等溫吸附試驗結(jié)果,具體方程如下:
Langmuir方程:
C/Q=C/Q+1/(K·Q)(2)
Freundlich方程:
lnQ=ln(K)+ln(C)/(3)
式中C是吸附平衡時溶液濃度,mg/L;Q是吸附平衡時吸附量,mg/g;Q為理論最大吸附量,mg/g;K是與結(jié)合強度有關(guān)的Langmuir模型參數(shù),L/mg;K是與吸附能力相關(guān)的Freundlich參數(shù),mg1-n/(L·g);是各向異性指數(shù)。
為了考察老化作用對3種生物炭吸附Cu2+和Cd2+穩(wěn)定性的影響,該研究首先根據(jù)等溫吸附試驗結(jié)果制備飽和Cu2+和Cd2+吸附的生物炭,然后進行干濕和凍融老化試驗,具體過程如下:
1)飽和吸附Cu2+和Cd2+生物炭制備:根據(jù)等溫吸附的結(jié)果,選擇150 mg/L的Cu2+和Cd2+混合溶液,分別投加足量生物炭,震蕩平衡24 h后,離心、過濾、冷凍干燥后過0.15m篩,制備飽和吸附Cu2+和Cd2+的3種生物炭樣品。
2)干濕(Dry-Wet,DW)交替老化:按照Nguyen等[19]方法測定生物炭最大持水量。然后稱取5 g飽和吸附Cu2+和Cd2+的生物炭于燒杯中,加入適量純水保證生物炭100%含水率。將樣品于烘箱中25 ℃下培養(yǎng)16 h,然后將溫度提高至60 ℃繼續(xù)培養(yǎng)8 h(保證含水率>35%),完成1次干濕交替,一共進行25次干濕交替[20]。
3)凍融(Freeze-Thaw,F(xiàn)T)交替老化:取5 g飽和吸附Cu2+和Cd2+的生物炭于燒杯中,加入適量純水保證生物炭100%含水率。將樣品于-25 ℃下培養(yǎng)5 h,然后轉(zhuǎn)移到烘箱中25 ℃繼續(xù)培養(yǎng)19 h,完成1次凍融交替,一共進行25次凍融交替[21]。
采用比表面積分析儀(Auto-sorb-iQA3200-4,QUANTATECH,美國)、高分辨場發(fā)射掃描電子顯微鏡(SEM,Quanta 400 FEG,F(xiàn)EI,美國)和X射線光電子能譜儀(XPS,ESCALAB 250 XI,Thermo Scientific,美國)分析生物炭比表面積、表面形貌和有機官能團組成,其中XPS數(shù)據(jù)采用XPSPEAK 4.1軟件分析處理。
生物炭pH值采用固液比1 g∶20 mL,混勻振蕩1.5 h后用pH計(PHS-25,雷磁,中國)測定[22]。土壤和生物炭重金屬總量采用HF∶HNO3∶HClO4混酸電熱板消解,然后用配有石墨爐原子吸收光譜儀(A3,普析通用儀器,中國)測定。美國EPA推薦的Toxicity Characteristic Leaching Procedure(TCLP)可以較好的反應(yīng)模擬填埋條件下重金屬的浸出毒性[11,23],因此本研究采用TCLP法評估生物炭吸附重金屬后在環(huán)境中的浸出特性。酸溶態(tài)(包括水溶態(tài)、離子交換態(tài)和碳酸鹽結(jié)合態(tài))、可還原態(tài)(鐵錳結(jié)合態(tài))、可氧化態(tài)(有機結(jié)合態(tài))及殘渣態(tài)重金屬采用歐共體標準物質(zhì)局提出的BCR連續(xù)提取法分析[24]。
為了評價老化作用對生物炭固持Cu2+和Cd2+的影響,該研究采用風險評估指數(shù)(酸溶態(tài)占總量的百分比)[25]評估老化前后生物炭飽和吸附Cu2+和Cd2+的環(huán)境風險。該方法共分為5級,分別是無風險(RAC≤1%),低風險(1%
所有數(shù)據(jù)用Excel 2016進行數(shù)據(jù)處理,SigmaPlot 10.0進行繪圖。用SPSS 20進行方差分析(One-way ANOVA),差異顯著性分析采用Duncan新復(fù)極差方法,顯著性水平<0.05。
如圖1所示,3種生物炭具有豐富的孔隙分布,內(nèi)壁上分布有大量微孔,但3種生物炭表面未有顯著差異。生物炭的C1分析顯示,在284.8、285.35、286.35和288.6 eV結(jié)合能處存在4個顯著的特征峰,分別對應(yīng)C?C/C–H、C–OH、C=O和O=C–OH官能團。分析結(jié)果表明,C–C/C–H和C=O官能團含量均表現(xiàn)為:SB>JB>RB,且RB中C–OH和O=C–OH官能團含量高于SB和JB(表2)。3種生物炭均呈堿性,其中RB生物炭pH值最高(10.1),較SB和JB高2.04和1.73(表2)。JB的比表面積最高,達到15.1 m2/g,分別較SB和RB高4.5和2.8 m2/g。本研究3種生物炭比表面積較低,這可能是由于生物炭裂解溫度維持在低溫400℃,以及巨菌草生物質(zhì)原料本身的特性差異導(dǎo)致[6,13,27]。3種生物炭的產(chǎn)率為34.2%~36.4%,沒有表現(xiàn)出顯著的差異。與生物炭pH值相同,3種生物炭灰分含量表現(xiàn)為RB>JB>SB。
注:RB、SB和JB分別為紅壤站、水泉和九牛崗巨菌草制備生物炭,下同。
3種生物炭對Cu2+和Cd2+的吸附等溫曲線如圖2所示。在30.4~154 mg/L濃度范圍內(nèi),Cu2+的吸附量隨著溶液濃度的增加快速增大;當濃度超過150 mg/L后,SB和JB處理Cu2+的吸附量趨于平衡,但RB仍具有一定的上升趨勢。與Cu2+相同,在42.8~178 mg/L濃度范圍內(nèi),Cd2+的吸附量隨著溶液濃度的增加快速增大;當濃度超過178 mg/L后,3種生物炭對Cd2+的吸附量未有顯著變化。
表2 3種生物炭基本理化性質(zhì)
注:Langmuir和Freundlich為2種吸附等溫方程。
擬合結(jié)果表明,Langmuir模型擬合吸附數(shù)據(jù)的2達到0.951~0.998,接近于1,較Freundlich具有更好地擬合效果(表3)。因此,生物炭對Cu2+和Cd2+的吸附以単分子層吸附為主[28]。Langmuir擬合結(jié)果顯示3種生物炭對Cu2+的吸附能力大小表現(xiàn)為RB>SB>JB,RB對Cu2+的吸附能力達到54.3 mg/g,是JB的2.56倍。與Cu2+相同,RB對Cd2+的最大吸附能力最高,是JB的1.50倍。這可能是由于RB盡管比表面積不是最高,但是其具有最高的pH值和灰分,因此對重金屬的吸附能力較強[29]。這可能是由于生物炭pH值和灰分對Cu2+和Cd2+的吸附較比表面積具有更大的貢獻[30]。但是,3種生物炭對Cu2+和Cd2+的結(jié)合強度(K)都表現(xiàn)為JB>SB>RB,這表明RB雖能夠大量吸附Cu2+和Cd2+,但是其固持能力可能不如SB和JB。
表3 3種生物炭對Cu2+和Cd2+吸附等溫線的擬合參數(shù)
注:Q為理論最大吸附量;K和K分別指示結(jié)合強度和吸附能力;是各向異性指數(shù)。
Note:Qis theoretical maximum adsorption;KandKindicate adhesive strength and adsorption capacity, respectively;is fractional anisotropy.
與等溫吸附試驗結(jié)果相同,RB對Cu2+和Cd2+飽和吸附后固持量最高,分別為21.4和4.78 mg/kg。其中RB對Cu2+和Cd2+的固持量是SB的1.78和1.91倍,是JB的2.63和2.96倍(圖3)。
處理Treatments
老化前3種生物炭對Cu2+和Cd2+的浸出含量均表現(xiàn)為:RB>SB>JB。老化后,干濕交替和凍融交替老化均降低了TCLP提取Cu含量(除JB-FT處理外),且干濕交替老化對TCLP浸出Cu的降低效果優(yōu)于凍融交替老化(<0.05)。如SB-DW和SB-FT較SB處理,TCLP浸出Cu含量分別降低了1.57和0.39倍。與TCLP浸出Cu變化相反,老化增加了TCLP浸出Cd含量,其中RB-DW和RB-FT較RB處理TCLP浸出Cd分別增加了1.53和1.64倍(圖4)。
另外,老化前后3種生物炭中Cu和Cd浸出率表明,干濕和凍融交替老化均降低了Cu的浸出率,但是提高了Cd的浸出率。總體上,老化處理后Cu和Cd浸出率大小表現(xiàn)為:RB>SB>JB,這與等溫吸附中結(jié)合強度(K)大小相反,這表明生物炭和重金屬的結(jié)合能力越強,有利于降低重金屬的浸出率。但是前期的研究顯示,干濕和凍融老化會活化生物炭內(nèi)源Cu和Cd[12]。這可能是由于本研究中生物炭同時飽和吸附了Cu2+和Cd2+,2種重金屬間可能存在一定的交互作用,老化作用改變了生物炭性質(zhì),使得其對Cu2+具有較好的固持作用,但是降低了對Cd2+固定的穩(wěn)定性。
注:DW和FT分別為干濕和凍融老化。
Note: DW and FT are the dry-wet aging and freeze-thaw aging, respectively.
圖4 老化作用對生物炭Cu和Cd浸出濃度和浸出率的影響
Fig.4 Effects of aging of three biochars on the leaching concentrations and ratios of Cu and Cd
由于重金屬全量不能反映其生物活性大小,因此本研究采用BCR多級提取方法評價老化作用對生物炭吸附Cu和Cd活性的影響[31]。老化前,3種生物炭固持的Cu主要以殘渣態(tài)為主,占總Cu的53.4%~81.0%;酸溶態(tài)次之,占總Cu的17.1%~36.4%(圖5)。與TCLP浸出Cu的結(jié)果相一致,干濕和凍融交替老化后,均顯著降低了酸溶態(tài)Cu的含量,且以干濕交替老化更為顯著。同時,老化處理降低了殘渣態(tài)Cu的含量,其中RB-DW和RB-FT較RB處理,酸溶態(tài)Cu含量分別降低了50.4%和14.9%,殘渣態(tài)Cu分別降低了21.6%和28.4%。另外,干濕和凍融交替老化均增加了還原態(tài)和氧化態(tài)Cu的含量,其中RB-DW和RB-FT較RB處理,還原態(tài)Cu含量分別增加了155%和216%,氧化態(tài)Cu含量分別增加了22.6%和12.7%。風險評估指數(shù)表明,老化前RB和SB處理Cu處于中等和高風險(17.1%~36.4%),除JB-FT外,干濕和凍融處理均降低了Cu的RAC,且老化后SB和JB處理Cu的RAC低于RB。這些結(jié)果表明老化處理通過促進Cu從酸溶態(tài)和殘渣態(tài)向中間形態(tài)轉(zhuǎn)化,降低了Cu的環(huán)境風險。
與Cu相同,老化前3種生物炭固持Cd主要以殘渣態(tài)和酸溶態(tài)為主,分別占總Cd的80.1%~92.1%和5.90%~18.7%。老化處理均增加了生物炭酸溶態(tài)Cd含量,且凍融處理增加幅度更大,其中RB-DW和RB-FT較RB分別增加了6.55和7.99倍。同時,干濕和凍融處理均增加了還原態(tài)和氧化態(tài)Cd的含量。如SB-DW和SB-FT處理較SB還原態(tài)Cd分別增加了4.40和5.09倍,氧化態(tài)Cd分別增加了21.6和6.42倍。另外,老化處理均顯著降低了殘渣態(tài)Cd的含量,且凍融處理降低效果更加顯著。Cd的風險水平從老化處理前的低風險和中等風險(RAC=7.78%~19.7%)增加到老化后的極高風險水平(RAC=59.8%~85.4%)。這表明老化處理促進了生物炭Cd由殘渣態(tài)向酸溶態(tài)和中間形態(tài)轉(zhuǎn)化,顯著增加了Cd的環(huán)境風險。
圖5 干濕和凍融老化對飽和吸附生物炭Cu和Cd化學(xué)形態(tài)的影響
高鵬等[32]研究表明,老化作用增加了生物炭固定Cd2+的穩(wěn)定性。然而,本研究中老化作用促進了生物炭對Cu2+的固定,降低了生物炭固定Cd2+的穩(wěn)定性。前期的研究顯示,干濕和凍融老化增加了生物炭內(nèi)源Cu2+和Cd2+的生物有效性[9]。因此,老化作用對不同重金屬的活化效果具有顯著的差異,這也可能是前人研究中,生物炭在田間長期穩(wěn)定化修復(fù)后,對不同重金屬穩(wěn)定性具有顯著差異的主要原因[33]。
與本研究結(jié)果相同,前期的長期定位試驗顯示,酸雨等老化作用降低了生物炭對重金屬的穩(wěn)定效果,使得土壤重金屬有效性隨老化時間的增加逐漸降低[16]。但是Bian等[34]研究表明,3 a的老化作用未顯著改變生物炭對土壤Cd2+的鈍化穩(wěn)定性。本研究與Bian等[34]研究結(jié)果差異的主要原因包括以下幾個方面。一是由于老化方式的差異,本研究中僅模擬了干濕和凍融交替老化,未考慮化學(xué)和微生物等老化作用。二是本研究中生物炭飽和吸附Cu2+和Cd2+之間也存在一定的相互作用:生物炭對Cu2+的吸附能力顯著高于對Cd2+的吸附能力,Cu2+與活性位點的結(jié)合能力強于Cd2+,導(dǎo)致生物炭吸附固定的Cd2+更易受環(huán)境因子的變化發(fā)生活化。最后,生物炭對不同重金屬的吸附固定機制本身存在一定的差異。生物炭對重金屬的吸附機制包括靜電吸引、陽離子-π作用、離子交換、表面絡(luò)合及化學(xué)沉淀等[11,35],但是不同吸附機制的貢獻存在顯著差異。Jiang等[36]發(fā)現(xiàn)水稻秸稈生物炭主要是通過電性相吸降低Cu2+和Cd2+的生物活性。Peng等[37]發(fā)現(xiàn)松樹木屑生物炭對Cu2+和Cd2+的吸附主要是通過羧基和羥基的表面絡(luò)合作用。Cui等[38]研究表明干濕和凍融老化作用促進了巨菌草生物炭含氧官能團含量的增加,因此,Cu2+與含氧官能團的表面絡(luò)合可能是老化后巨菌草生物炭對Cu2+吸附穩(wěn)定性增加的主要機制[39]。同時,前期研究表明干濕和凍融交替會降低了巨菌草生物炭pH值[38]。因此,推測研究中巨菌草生物炭主要是通過與Cd2+形成碳酸鹽等沉淀吸附Cd2+[40]。盡管如此,后期有必要進一步明確老化作用對不同內(nèi)源污染物生物炭飽和吸附后Cu2+和Cd2+的活化機制。
1)本研究以清潔、中度和重度污染土壤種植的巨菌草秸稈制備了不同內(nèi)源Cu和Cd含量的3種生物炭RB、SB和JB。結(jié)果表明,3種生物炭表面分布大量的微孔,富含C=O和O=C–OH等有機官能團,且清潔區(qū)巨菌草生物炭RB的pH值和灰分含量最高;等溫吸附結(jié)果表明,3種生物炭對Cu2+和Cd2+的吸附符合Langmiur模型,其中RB對Cu2+和Cd2+的吸附量分別為54.3和37.3 mg/g。
2)3種生物炭對Cu2+和Cd2+的飽和吸附量大小均表現(xiàn)為RB>SB>JB,干濕老化較凍融老化更顯著地降低了TCLP浸出Cu含量和Cu浸出率;但是干濕和凍融老化均增加了TCLP浸出Cd含量和Cd的浸出率。
3)干濕和凍融老化使Cu從酸溶態(tài)和殘渣態(tài)向還原態(tài)和氧化態(tài)轉(zhuǎn)化,較老化前降低了Cu的環(huán)境風險;但是干濕和凍融老化使Cd從殘渣態(tài)向酸溶態(tài)、還原態(tài)和氧化態(tài)轉(zhuǎn)化,較老化前增加了Cd的環(huán)境風險。
4)3種生物炭對Cu2+的吸附主要以表面絡(luò)合為主,對Cd2+的吸附以化學(xué)沉淀機制為主;RB生物炭固持最高的Cu2+和Cd2+,但是干濕和凍融老化增加了飽和吸附后生物炭中Cd2+環(huán)境風險。
[1]Beesley L, Marmiroli M. The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar[J]. Environmental Pollution, 2011, 159(2): 474-480.
[2]李鴻博,鐘怡,張昊楠,等. 生物炭修復(fù)重金屬污染農(nóng)田土壤的機制及應(yīng)用研究進展[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(13):173-185. Li Hongbo, Zhong Yi, Zhang Haonan, et al. Mechanism for the application of biochar in remediation of heavy metal contaminated farmland and its research advances[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 173-185. (in Chinese with English abstract)
[3]He E K, Yang Y X, Xu Z B, et al. Two years of aging influences the distribution and lability of metal(loid)s in a contaminated soil amended with different biochars[J]. Science of the Total Environment, 2019, 673: 245-253.
[4]王欣,尹帶霞,張鳳,等. 生物炭對土壤肥力與環(huán)境質(zhì)量的影響機制與風險解析[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(4):248-257. Wang Xin, Yin Daixia, Zhang Feng, et al. Analysis of effect mechanism and risk of biochar on soil fertility and environmrntal quality[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(4): 248-257. (in Chinese with English abstract)
[5]Liu Y, Dai Q Y, Jin X Q, et al. Negative impacts of biochars on urease activity: High pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?[J]. Environmental Science &Technology, 2018, 52(21): 12740-12747.
[6]Kookana R S, Sarmah A K, Van Zwieten L, et al. Biochar application to soil: Agronomic and environmental benefits and unintended consequences[J]. Advances in Agronomy, 2011, 112: 103-143.
[7]Li H B, Dong X L, Da Silva E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017, 178: 466-478.
[8]閆翠俠,賈宏濤,孫濤,等. 雞糞生物炭表征及其對水和土壤鎘鉛的修復(fù)效果[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(13):225-233. Yan Cuixia, Jia Hongtao, Sun Tao, et al. Characteristics of chicken manure biochars and its effect on Cd and Pb remediation in water and soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(13): 225-233. (in Chinese with English abstract)
[9]張雪,劉笑生,沈露露,等. 老化作用對巨菌草莖生物炭內(nèi)源銅鎘活性的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2020,39(3):563-571. Zhang Xue, Liu Xiaosheng, Shen Lulu, et al. Effects of ageing on the availability of endogenous copper and cadmium in biochar derived fromstems[J]. Journal of Agro-Environment Science, 2020, 39(3): 563-571. (in Chinese with English abstract)
[10]Li H H, Yu Y, Chen Y H, et al. . Biochar reduced soil extractable Cd but increased its accumulation in rice (L) cultivated on contaminated soils[J]. Journal of Soils and Sediments, 2019, 19: 862-871.
[11]吳文衛(wèi),周丹丹. 生物炭老化及其對重金屬吸附的影響機制[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2019,38(1):7-13. Wu Wenwei, Zhou Dandan. Influence of biochar aging on its physicochemical properties and adsorption of heavy metals[J]. Journal of Agro-Environment Science, 2019, 38(1): 7-13. (in Chinese with English abstract)
[12]Mia S, Dijkstra F A, Singh B. Long-term aging of biochar: A molecular understanding with agricultural and environmental implications[J]. Advances in Agronomy, 2017, 141: 1-51.
[13]霍麗麗,姚宗路,趙立欣,等. 典型農(nóng)業(yè)生物炭理化特性及產(chǎn)品質(zhì)量評價[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(16):249-257. Huo Lili, Yao Zonglu, Zhao Lixin, et al. Physical and chemical properties and product quality evaluation of biochar from typical agricultural residues[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 249-257. (in Chinese with English abstract)
[14]Xu Z B, Xu X Y, Tsang D C W, et al. Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils[J]. Environmental Pollution, 2018, 242: 1362-1370.
[15]Kumar A, Joseph S, Tsechansky L, et al. Biochar aging in contaminated soil promotes Zn immobilization due to changes in biochar surface structural and chemical properties[J]. Science of the Total Environment, 2018, 626: 953-961.
[16]Cui H B, Fan Y C, Fang G D, et al. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment[J]. Ecotoxicology and Environmental Safety, 2016, 134: 148-155.
[17]Cui H, Zhou J, Si Y, et al. Immobilization of Cu and Cd in a contaminated soil: one- and four-year field effects[J]. Journal of Soils and Sediments, 2014, 14(8): 1397-1406.
[18]Cui H B, Fan Y C, Yang J, et al. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil[J]. Chemosphere, 2016, 161: 233-241.
[19]Nguyen B T, Lehmann J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry, 2009, 40(8): 846-853.
[20]Naisse C, Girardin C, Lefevre R, et al. Effect of physical weathering on the carbon sequestration potential of biochars and hydrochars in soil[J]. Global Change Biology Bioenergy, 2015, 7(3): 488-496.
[21]Hale S E, Hanley K, Lehmann J, et al. Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar[J]. Environmental Science & Technology, 2011, 45(24): 10445-10453.
[22]Rajkovich S, Enders A, Hanley K, et al. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil[J]. Biology and Fertility of Soils, 2012, 48(3): 271-284.
[23]US Environmental Pollution Agency. SW-846 Method 1311: Toxicity characteristic leaching procedure[EB/OL]. https: //www. epa. gov/hw-sw846/sw-846-test-method-1311- toxicity-characteristic-leaching-procedure, 1992.
[24]Wu J Z, Li Z T, Wang L, et al. A novel calcium-based magnetic biochar reduces the accumulation of As in grains of rice (L) in As-contaminated paddy soils[J]. Journal of Hazardous Materials, 2020, 394: 122507.
[25]Cao C, Zhang Q, Ma Z B, et al. Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China[J]. Geoderma, 2018, 328: 1-9.
[26]Jain S, Khare P, Mishra D, et al. Biochar aided aromatic grass[(Roxb. ) Wats. ] vegetation: A sustainable method for stabilization of highly acidic mine waste[J]. Journal of Hazardous Materials, 2019, 390: 121799.
[27]Chen Z M, Xiao X, Chen B L, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science &Technology, 2015, 49(1): 309-317.
[28]陳再明,方遠,徐義亮,等. 水稻秸稈生物碳對重金屬Pb2+的吸附作用及影響因素[J]. 環(huán)境科學(xué)學(xué)報,2012,32(4):769-776. Chen Zaiming, Fang Yuan, Xu Yiliang, et al. Adsorption of Pb2+by rice straw derived-biochar and its influential factors[J]. Acta Scientiae Circumstantiae, 2012, 32(4): 769-776. (in Chinese with English abstract)
[29]Jia Y H, Shi S L, Liu J, et al. Study of the effect of pyrolysis temperature on the Cd2+adsorption characteristics of biochar[J]. Applied Sciences-Basel, 2018, 8(7): 1019.
[30]Hao H, Jing Y D, Ju W L, et al. Different types of biochar: Effect of aging on the Cu(II) adsorption behavior[J]. Desalination and Water Treatment, 2017, 95: 227-233.
[31]Khadhar S, Sdiri A, Chekirben A, et al. Integration of sequential extraction, chemical analysis and statistical tools for the availability risk assessment of heavy metals in sludge amended soils[J]. Environmental Pollution, 2020, 263: 114543.
[32]高鵬,陳昱,梁媛. 老化作用促進生物炭已吸附Cd(Ⅱ)的進一步穩(wěn)定化研究[J]. 環(huán)境科學(xué)學(xué)報,2018,38(5):1877-1884. Gao Peng, Chen Yu, Liang Yuan. Study of aging effect on the stability of biochar initially adsorbed Cd(Ⅱ)[J]. Acta Scientiae Circumstantiae, 2018, 38(5): 1877-1884. (in Chinese with English abstract)
[33]O'Connor D, Peng T Y, Zhang J L, et al. Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials[J]. Science of the Total Environment, 2018, 619: 815-826.
[34]Bian R J, Joseph S, Cui L Q, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121-128.
[35]Dai Y J, Zhang N X, Xing C M, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review[J]. Chemosphere, 2019, 223: 12-27.
[36]Jiang J, Xu R K, Jiang T Y, et al. Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol[J]. Journal of Hazardous Materials, 2012, 229/230: 145-150.
[37]Peng H B, Gao P, Chu G, et al. Enhanced adsorption of Cu(II) and Cd(II) by phosphoric acid-modified biochars[J]. Environmental Pollution, 2017, 229: 846-853.
[38]Cui H B, Li D T, Liu X S, et al. Dry-wet and freeze-thaw aging activate the endogenous copper and cadmium in biochar[J]. Journal of Cleaner Production, 2021, 288: 125605.
[39]Liu Y Y, Wang L, Wang X Y, et al. Oxidative ageing of biochar and hydrochar alleviating competitive sorption of Cd(II) and Cu(II)[J]. Science of the Total Environment, 2020, 725: 138419.
[40]Chang R H, Sohi S P, Jing F Q, et al. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation[J]. Environmental Pollution, 2019, 254: 113123.
Adsorption of Cu and Cd by biochars with various contents of endogenous heavy metals and their responses to aging
Cui Hongbiao1,2,3, Wang Yuming1,2,3, Ye Huichun4, Zhang Xue1,2,3, Dong Tingting1,2,3, Yi Qitao1,2, Zhang Shiwen1,2※
(1.,,232001,; 2.,232001,, 3.,,241003,; 4.,,100094,)
Biochar has gained increasing attention in recent years due to its potential use in environmental remediation. The application of biochar may adsorb heavy metals from wastewater and decrease the bioavailability of heavy metals in soil. The concentrations of endogenous heavy metals in biochar are significant higher than in its feedstock after pyrolysis treatment. However, limits for heavy metals in biochars are lacking in some countries, which may lead to potential environmental risk resulting from the large-scale application of biochars rich in heavy metals. Therefore, three kinds of biochars named RB, SB, and JB with various contents of Cu and Cd were prepared from the straws ofgrew in clean soil, moderately-polluted, and highly-polluted soils by heavy metals, respectively. The physicochemical properties of three biochars were investigated by Scanning Electron Microscopy (SEM), Adsorption capacities of Cu2+and Cd2+for three biochars were evaluated by batch experiments. Finally, the effects of Dry-Wet (DW) and Freeze-Thaw (FT) aging on the stability of heavy metals adsorbed by three biochars with different contents of endogenous heavy metals were investigated. Results showed that large amount of micro-pores were distributed on the surface of biochars, and RB contained the highest pH value and ash content. The XPS analysis indicated that biochars had a lot of organic functional groups, such as C?C/C–H, C–OH, C=O and O=C–OH. The adsorption data were better fitted by Langmuir isotherm model (2=0.951-0.998) for three biochars. Adsorption capacities of Cu2+followed the order of RB>SB>JB, and the order of RB>JB>SB for adsorption capacities of Cd2+. RB had the highest adsorption amounts of Cu2+and Cd2+with 54.3 and 37.3 mg/g among three biochars, respectively. Similarly, the highest concentrations of total Cu and Cd after saturated adsorption were found in RB with 21.4 and 4.78 mg/g, respectively. DW and FT aging significantly changed the bioavailability of Cu and Cd in three biochars after saturated adsorption.DW aging significantly reduced the TCLP-extractable Cu in biochar after saturated adsorption compared with that of FT aging. For instance, concentrations of TCLP-extractable Cu in SB-DW and SB-FT were decreased by 1.57 and 0.39 times than that of SB. Moreover, DW aging promoted the transformation of Cu from acid-soluble and residual fractions to reducible and oxidizable fractions, and reduced the environmental risk of Cu. However, DW and FT aging significantly increased the TCLP-extractable Cd in biochars after saturated adsorption, promoted the transformation of Cd from residual fraction to acid-soluble, reducible and oxidizable fractions, and increased the environmental risk of Cd. Especially for RB-DW and RB-FT, contents of acid-soluble Cd were increased by 6.55 and 7.99 times than that of RB. It may be due to the surface complexation and chemical precipitation played key roles for the adsorption of Cu and Cd, respectively. In short, RB retained the highest amount of Cu and Cd, but DW and FT aging increased the environmental risk of Cd in three biochars after saturated adsorption. The study is of great significance for evaluating the long-term remediation stabilization of biochar.
adsorption; aging; biochars; endogenous heavy metals; chemical fractions
崔紅標,王昱茗,葉回春,等. 不同內(nèi)源重金屬生物炭對Cu和Cd吸附及其對老化作用的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(24):203-210.doi:10.11975/j.issn.1002-6819.2020.24.024 http://www.tcsae.org
Cui Hongbiao, Wang Yuming, Ye Huichun, et al. Adsorption of Cu and Cd by biochars with various contents of endogenous heavy metals and their responses to aging[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 203-210. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.024 http://www.tcsae.org
2020-09-24
2020-12-02
國家自然科學(xué)基金項目(41601340);安徽省高校自然科學(xué)研究重大項目(KJ2020ZD35);安徽理工大學(xué)環(huán)境友好材料與職業(yè)健康研究院研發(fā)專項基金資助項目(ALW2020YF12);淮北礦業(yè)集團科技研發(fā)項目(No. 2020-113)
崔紅標,副教授,主要從事重金屬污染土壤修復(fù)研究。Email:hbcui@aust.edu.cn
張世文,教授,主要從事重金屬污染土壤修復(fù)研究。Email:mamin1190@126.com
10.11975/j.issn.1002-6819.2020.24.024
X53
A
1002-6819(2020)-24-0203-08