楊彩迪,牛玉華,張曉明,3,衛(wèi) 杰,左知靈,張睿鈺
添加礫石對崩崗巖土無側限抗壓強度的影響
楊彩迪1,2,牛玉華1,張曉明1,3※,衛(wèi) 杰1,左知靈1,張睿鈺1
(1. 華中農(nóng)業(yè)大學資源與環(huán)境學院,武漢 430070;2. 浙江大學環(huán)境與資源學院,杭州 310058;3. 農(nóng)業(yè)農(nóng)村部長江中下游耕地保育重點實驗室,武漢 430070)
崩崗是中國南方紅壤地區(qū)常見的一種土壤侵蝕類型,該研究對礫石含量、形狀和直徑三因素進行正交設計,分析不同組合的礫石對崩崗巖土無側限抗壓強度的影響。結果表明,崩崗4層土體的無側限抗壓強度均值由大到小依次為淋溶層A、黏化層Bt、淀積層B、母質(zhì)層C,效果較好的處理分別為:淋溶層A,質(zhì)量分數(shù)15%,直徑2~4 mm,圓礫;黏化層Bt,質(zhì)量分數(shù)15%,直徑5~7 mm,圓礫;淀積層B,質(zhì)量分數(shù)15%,直徑5~7 mm,圓礫;母質(zhì)層C,質(zhì)量分數(shù)15%,直徑5~7 mm,圓礫。4層土體的軸向應力隨軸向應變均呈急劇上升、急劇下降、減速衰減和衰減穩(wěn)定4個階段,但礫石復合土高于未加礫石土。4層土體在較好處理下的無側限抗壓強度分別比未加礫石土提高59.56%、71.70%、49.51%和83.64%,且二者呈線性遞增函數(shù)關系(2=0.99)。添加礫石的土柱在受壓時破壞程度較小,其中淋溶層A和母質(zhì)層C主要集中為下部破碎,黏化層Bt和淀積層B主要為土柱一側破碎。該研究可為崩崗侵蝕預防和分層治理提供理論依據(jù)。
礫石;土壤;相關;崩崗;無側限抗壓強度;應力-應變;破壞形態(tài)
崩崗是指山坡土體或巖石風化殼在水力和重力作用下分解、崩塌和受沖侵蝕的現(xiàn)象,屬于水力-重力復合侵蝕類型[1-2]。崩崗在中國南方花崗巖地區(qū)分布最為廣泛,具有突發(fā)性強和發(fā)展速度快的特點,因此比一般水土流失更具有威脅性[3]。目前崩崗侵蝕已引起國內(nèi)不少學者的關注,主要集中于對崩積體的侵蝕過程、產(chǎn)流產(chǎn)沙特性、侵蝕影響因子以及水動力學機制等的研究[4-8]。無側限抗壓強度確定的土壤抗壓能力是衡量土壤改良效果的主要依據(jù),土壤的抗壓強度直接影響土體的機械下陷,因此對崩崗侵蝕區(qū)的改良土體進行無側限抗壓強度研究具有重要的實踐意義[9]。目前已有學者對此進行了初步研究,黃倩楠等[10]發(fā)現(xiàn)摻砂顯著降低崩崗巖土無側限抗壓強度,相同摻砂量時,混合摻砂較分層摻砂更能提高無側限抗壓強度。張建偉等[11]得出木質(zhì)素能夠提高粉土的無側限抗壓強度,一定的凍融循環(huán)次數(shù)下木質(zhì)素改良土的無側限抗壓強度隨摻量的增大先增加后降低。童麗萍等[12]通過研究不同摻合料對土坯墻泥漿抗壓強度的影響得出,隨粗砂含量增加,試塊抗壓強度先增后減;周宇等[13]研究得出石灰改良紅層的無側限抗壓強度隨石灰摻量的增加而增大;經(jīng)歷干濕循環(huán)作用后,試樣呈多縫錐形破壞。
天然沉積砂礫分布廣泛,結構穩(wěn)定,可就地取材,具有承載力高、抗剪強度高、壓縮性低、滲透性大、排水性能好和價格低廉等特點,已廣泛應用到建筑材料、地基改良和堤壩建筑等方面[14-16]。礫石與土壤顆粒在密度、表面結構及透水性等方面存在本質(zhì)差異,因此當?shù)[石和土壤混合后會導致土壤結構與理化性質(zhì)發(fā)生變化,進而影響土體的抗壓、抗剪和水力侵蝕等能力[17-21]。吉恩躍等[22]發(fā)現(xiàn)礫石土的抗拉強度隨含水率增大而減小,隨干密度增大而增大;隨摻礫量增加,土樣抗拉能力不斷減弱。王蕙等[23]通過比較不同礫石存在形式下紅壤坡面侵蝕特征發(fā)現(xiàn),在較小降雨侵蝕力作用下,嵌套于坡面的礫石可以增加地表入滲,阻礙坡面侵蝕。鄭騰輝等[24]發(fā)現(xiàn)隨礫石含量的增加,巖溶區(qū)坡面累計侵蝕量呈先增后減的變化趨勢。
目前利用礫石改良土壤的研究已取得一定進展,但在中國南方典型崩崗區(qū)研究較少。本研究通過添加礫石對崩崗不同層次土體無側限抗壓強度的試驗研究,探討崩崗土體無側限抗壓強度隨礫石含量、礫石形狀和礫石直徑3個因素的變化規(guī)律,并對機理進行分析,以期為崩崗侵蝕防治提供理論依據(jù)。
研究區(qū)位于湖北省咸寧市通城縣,湘、鄂、贛3省交界處,亞熱帶季風氣候,四季分明,氣候溫和,光照適中,年平均氣溫16.7 ℃,無霜期260 d,年平均降雨量1 512.8 mm,徑流總量9.08億m3,但由于受季風影響和時空分布不均,導致春季多低溫,夏季高溫,常有災害性天氣發(fā)生。加之花崗巖出露面積大,水土流失嚴重,因此在該地開展崩崗研究工作具有很強的代表性。取樣地布設于通城縣五里鎮(zhèn)五里社區(qū)(116°46′26″E,29°12′39″N),海拔高度為142 m。該區(qū)土壤類型為花崗巖發(fā)育的典型棕紅壤,結構松散,水土流失嚴重,崩崗侵蝕范圍廣,土壤侵蝕模數(shù)大,嚴重影響該地農(nóng)業(yè)與經(jīng)濟發(fā)展。
經(jīng)過野外實地調(diào)查,2018年6月在湖北省通城縣五里社區(qū)選擇一處較為完整的瓢型崩崗,面積為126 m2,崩壁后壁高9 m,溝道長17 m,溝道最大寬5.7 m,溝口寬2.9 m,平均深5 m。采樣時修整崩崗剖面使各層次充分呈現(xiàn),根據(jù)剖面顏色從紅到白自上而下劃分土壤層次,依次為淋溶層A(含根,0~0.17 m)、黏化層Bt(少或無根,0.17~0.49 m)、淀積層B(過渡層,呈現(xiàn)紅白相間,0.49~3.5 m)、母質(zhì)層C(白色,3.5~3.9 m)。選取4層土壤的中部分別用體積為100 cm3(20 cm2×5 cm)的環(huán)刀采集崩崗土層原狀土樣,將采樣后的環(huán)刀迅速放入塑封袋內(nèi)保存,同時在中部多點采取代表性土壤帶回室內(nèi),置于通風處陰干,過2 mm篩備用。土壤理化性質(zhì)的測定方法為:烘干法測定含水率,環(huán)刀法測定容重,吸管法測定顆粒組成,重復3次。
由于礫石顆粒大小與形狀的差異,導致其與土壤之間咬合差異明顯,對土體力學特性產(chǎn)生影響,因此本試驗考慮礫石含量、直徑和形狀3個因素進行正交設計(表1)。
表1 三因素正交設計試驗
礫石含量3個水平:5%,10%和15%(質(zhì)量分數(shù));礫石直徑3個水平:2~4、5~7、8~10 mm;礫石形狀2個水平:圓礫和角礫,共計3×3×2=18種處理,每種處理3個水平,礫石均為整體均勻加入。本次試驗空白試樣(CK)12個(4層土×3次重復),礫石復合土試樣216個(4層土體×18種處理×3次重復),共計試樣228個。試驗所用礫石購買于湖北中泰恒宇商貿(mào)有限公司,用套篩選出直徑為2~4、5~7、8~10 mm 3種粒徑的礫石,并區(qū)分圓礫和角礫,判斷能否將礫石弄碎以挑選真正的礫石。將收集的礫石沖洗干凈,烘干并再次過篩。
根據(jù)野外實地調(diào)查較常見的含水率20%、密度1.35 g/cm3,采用三軸儀飽和器(直徑39.1 mm×高80 mm),按照試驗設計中的18種處理制備重塑土樣。將備用土樣平鋪于不吸水的托盤內(nèi),用小型噴霧器噴灑定量蒸餾水于土樣,攪拌均勻后用保鮮膜密封,置于保濕缸內(nèi)24 h,使土水充分混勻穩(wěn)定。將備好的礫石與加水穩(wěn)定后的土樣充分混合,均分成4份裝于鋁盒中。試樣共分4層裝置,每次將1個鋁盒內(nèi)的礫石土體混合物全部倒入到三瓣桶錘擊,使土粒相對密實,保證每次擊實后用直尺測量的高度減少2 cm,將每層表面打毛,保證土樣為一個均勻整體。試樣的測定與計算依據(jù)GB/T 50123—1999土工試驗方法標準[10,25]。試驗使用南京土壤儀器有限公司生產(chǎn)的YYW-2型應變控制式無側限壓力儀測定無側限抗壓強度,儀器最大測力0.6 kN,加載速率2.4 mm/min,量力環(huán)系數(shù)2.4 N/0.01 mm,即240 N/mm。
崩崗剖面4層土壤的基本理化性質(zhì)如表2。
表2 崩崗不同層次土壤基本理化性質(zhì)
注:不同字母表示不同土壤層次間有顯著差異。下同。
Note: Different letters indicate significant differences between soil layers. The same below.
由表2可知,4層土壤的含水率從上而下先增大后減小,淋溶層A、黏化層Bt和淀積層B這3層土壤的容重沒有顯著差異,母質(zhì)層C的容重顯著增加。4層土壤黏粒含量由高到低分別為黏化層Bt、淋溶層A、淀積層B、母質(zhì)層C;母質(zhì)層C和淀積層B的砂粒含量較高;粉粒含量母質(zhì)層C最高,淀積層B最低。除淋溶層A外,從黏化層Bt到母質(zhì)層C,黏粒含量逐漸減小,砂粒含量逐漸增大。從表格的水平方向來看,淋溶層A 3種粒徑的含量相對均勻,黏化層Bt的黏粒含量約為砂粒的2倍,淀積層B的砂粒含量約為粉粒的2倍,母質(zhì)層C砂粒含量約為黏粒的2倍,可見土壤的理化性質(zhì)隨深度的變化也在發(fā)生顯著的變化。淋溶層A由于外界生物、干濕交替和凍融交替等影響,粒徑組分相對平均,結構良好,質(zhì)地優(yōu)良。而其余3層3種粒徑含量相差較大,導致相對失衡,土壤膠黏性差,顆粒松散,質(zhì)地較差。垂直方向4層土體的性質(zhì)差別較大,前3層的黏粒含量明顯大于母質(zhì)層C,而淀積層B和母質(zhì)層C的砂粒含量均較大,結構松散,雨季地表徑流入滲或者直接暴露于地表后,在水流沖力和重力的作用下容易發(fā)生崩解,為崩崗的發(fā)生創(chuàng)造條件[26]。
通過對崩崗4層土體和礫石復合土進行無側限抗壓強度試驗,結果如表3所示。
表3 不同礫石組合下崩崗的無側限抗壓強度
由表3可知,4層土體的無側限抗壓強度均值由大到小為淋溶層A、黏化層Bt、淀積層B、母質(zhì)層C,效果較好的處理是:1)淋溶層A:A3B1C1,礫石質(zhì)量分數(shù)15%,直徑2~4 mm,形狀圓礫;2)黏化層Bt:A3B2C1,礫石質(zhì)量分數(shù)15%,直徑5~7 mm,形狀圓礫;3)淀積層B:A3B2C1,礫石質(zhì)量分數(shù)15%,直徑5~7 mm,形狀圓礫;4)母質(zhì)層C:A3B2C1,礫石質(zhì)量分數(shù)15%,直徑5~7 mm,形狀圓礫。4層土體的礫石質(zhì)量分數(shù)均為15%時較好,添加礫石能有效提高土體無側限抗壓強度,這是因為礫石比土壤能更好地抵抗外界壓力,同時含量越高,顆粒之間的摩阻效應越明顯;除淋溶層A的較好礫石直徑是2~4 mm外,其余3層均為5~7 mm,這是因為淋溶層A的黏粒、粉粒和砂粒含量相對均勻,且土樣中可以看到細小根系等侵入體,這些因素會導致土體本身的黏聚力更好,礫石直徑過大反而破壞本身的黏聚力,而其他3層土體的顆粒組成分布不均,黏化層Bt黏粒含量較高,而淀積層B和母質(zhì)層C砂粒含量較高,因此需要合適直徑(5~7 mm)的礫石進行加強。當?shù)[石含量相同,直徑2~4 mm的礫石較多時,整個土體被數(shù)量龐大的礫石填充,礫石與礫石之間和礫石與土壤之間較分散,礫石之間接觸較少,膠黏作用較弱,對土體的裂紋不能產(chǎn)生很好的阻擋作用,而當直徑為8~10 mm時,土石混合體大孔隙急劇增多,顆粒間作用力下降,抗壓效果也較差。4層土體均為圓礫較好,這是因為角礫輪廓不規(guī)則,顆粒與顆粒之間咬合點較多,但單個咬合接觸面積少,咬合力不夠牢固;圓礫之間的咬合面積較大,咬合力相對較強,同時顆粒形狀越不規(guī)則,更容易與周圍土體形成拱架橋結構,最終導致孔隙率增大,土體容易破碎,抗壓強度降低,所以圓礫的抗壓能力更強[27]。
未加礫石土與處理效果較好的礫石復合土的應力-應變曲線如圖1。
圖1 未加礫石土與礫石復合土的應力-應變曲線
由圖1可知,崩崗4層土體中,未加礫石土和礫石復合土的應力均經(jīng)歷急劇上升、急劇下降、減速衰減和衰減穩(wěn)定4個階段,但礫石復合土的軸向應力均高于未加礫石土,其中淋溶層A和黏化層Bt最為明顯。這是因為:1)急劇上升階段:主要發(fā)生在軸向應變?yōu)?%~3%之前,此時軸向應變較小,未達到土樣破壞時的最大軸向應力,土柱還未被外部壓力破壞,軸向應力隨位移變化急劇上升;2)急劇下降階段:主要發(fā)生在軸向應變?yōu)?%~5%之間,此時試樣達到抵抗破壞時的最大軸向應力,繼續(xù)施加壓力使得試樣發(fā)生很大的破碎變形,由于土樣變形減弱了礫石與土樣之間的咬合程度,進一步加劇土樣分散,因此軸向應力急劇下降;3)減速衰減階段:主要發(fā)生在軸向應變?yōu)?%~10%之間,經(jīng)歷過前一階段急劇下降,土樣破碎基本穩(wěn)定,不會再出現(xiàn)新的形變,咬合程度的變化也減小,因此軸向應力衰減幅度逐漸減??;4)衰減穩(wěn)定階段:主要發(fā)生在軸向應變?yōu)?0%~15%,此階段軸向應力基本穩(wěn)定。淀積層B和母質(zhì)層C相對于淋溶層A和黏化層Bt,隨著軸向應變的增大,軸向應力更快地趨于穩(wěn)定,這與土壤的理化性質(zhì)密切相關,淋溶層A和黏化層Bt由于黏粒含量高,加之礫石咬合程度較大,在后期階段可以起到一定的緩沖作用,而淀積層B和母質(zhì)層C砂粒含量較高,結構十分松散,在被破壞后很難緩沖和咬合,此時加入的礫石不但沒有發(fā)揮抗壓作用,反而使土柱更為松散,因此后期階段軸向應力低于未加礫石土的軸向應力。
未加礫石與較好礫石處理下崩崗的無側限抗壓強度比較如圖2a所示。
注:a圖不同字母表示不同層次土壤間有顯著差異(P<0.05)。*,P<0.05。
如圖2所示,未加礫石土的無側限抗壓強度分別為77.18、64.59、45.09、13.97 kPa,較好礫石組合下的無側限抗壓強度分別為123.15、115.90、67.41、25.65 kPa,相同層次礫石復合土的無側限抗壓強度明顯大于未加礫石土,分別提高59.56%、71.70%、49.51%、83.64%,且提高率大致呈遞增趨勢。原因是:1)母質(zhì)層C的作用效果最為明顯,因為該層本身含有礫石較多,再次加入礫石相當于形成一個“石柱”,石頭的抗壓能力顯然大于土體;2)淋溶層A和黏化層Bt的作用效果次之,因為這兩層土壤各種粒徑含量相當,黏結性較強,孔隙度較低,能較好地發(fā)揮礫石的摩擦咬合作用;3)淀積層B作用效果最小,因為該層本身含有較多礫石,結構松散,加入礫石的量又沒有達到形成“石柱”的程度,只發(fā)揮了礫石之間的摩擦咬合作用。
未加礫石土與礫石復合土無側限抗壓強度的擬合關系如圖2b,礫石復合土的無側限抗壓強度與未加礫石土的無側限抗壓強度呈線性遞增函數(shù)關系,回歸方程為=1.60+1.36(2=0.99),相關性較強,表明添加礫石對增強崩崗土體的無側限抗壓強度有明顯的效果。進一步對較好直徑下礫石的圓礫和角礫進行模擬,淀積層B相關性最好,回歸方程為=0.64+18.66(2≈1),表明礫石形狀對無側限抗壓強度的影響較大。Dodds[28]的研究也表明砂土力學性質(zhì)受顆粒形狀等微觀參數(shù)影響較大。
崩崗土體在進行無側限抗壓強度試驗后的破壞形態(tài)如圖3。
注:CK代表未加礫石土。
未加礫石土均出現(xiàn)不同程度的碎土破碎,淋溶層A和母質(zhì)層C主要集中為下部破碎,但母質(zhì)層C因為黏粒含量低,土粒之間膠結強度較低,因此碎屑更多。黏化層Bt和淀積層B主要為土柱一側破碎,但淀積層B比黏化層Bt破碎程度更為明顯,這是因為黏化層Bt黏粒較多,土壤的黏聚力較強,使得土柱不容易被破壞。添加礫石后的土柱在受壓時也出現(xiàn)不同程度的破壞,但破壞程度相比未加礫石土較小,淋溶層A和黏化層Bt表現(xiàn)為外部有一條裂痕但內(nèi)部較完整,這是因為礫石之間相互摩擦咬合使土柱不易破碎變形。淀積層B和母質(zhì)層C破壞主要發(fā)生在下部,成碎屑狀掉落,這是因為砂粒含量較高,形成類似的“石柱”,抗壓強度增加,但礫石之間缺乏膠黏,一旦下部有一點裂痕出現(xiàn)就會出現(xiàn)局部的破碎,但是不會出現(xiàn)整體的裂痕??傮w來看,添加礫石能夠有效提高崩崗不同層次土體的抗壓性能,但不同層次土體的抗壓機理不同。
通過對崩崗4層土體進行3個礫石含量、3個礫石直徑和2個礫石形狀的無側限抗壓強度試驗,分析不同層次土體的無側限抗壓強度規(guī)律可知,崩崗不同層次土體效果較好的處理是:1)淋溶層A:礫石質(zhì)量分數(shù)15%,直徑2~4 mm,形狀圓礫;2)黏化層Bt:礫石質(zhì)量分數(shù)15%,直徑5~7 mm,形狀圓礫;3)淀積層B:礫石質(zhì)量分數(shù)15%,直徑5~7 mm,形狀圓礫;4)母質(zhì)層C:礫石質(zhì)量分數(shù)15%,直徑5~7 mm,形狀圓礫。崩崗4層土體和礫石復合土的軸向應力均呈現(xiàn)急劇上升、急劇下降、減速衰減和衰減穩(wěn)定4個階段,但礫石復合土樣的軸向應力高于未加礫石土。4層土體礫石復合土的無側限抗壓強度比未加礫石土分別提高59.56%、71.70%、49.51%和83.64%,礫石復合土與未加礫石土的無側限抗壓強度呈線性遞增函數(shù)關系(2=0.99),添加礫石的土柱在受壓時破壞程度小于未加礫石土。礫石對崩崗不同層次土體的無側限抗壓強度影響不同,不同礫石與土壤顆粒接觸面、接觸點之間的咬合阻力對無側限抗壓強度的影響不同,受顆粒外形的摩擦力和凹凸度支配,且與土體自身的理化性質(zhì)密切相關。
[1] 廖義善,唐常源,袁再建,等. 南方紅壤區(qū)崩崗侵蝕及其防治研究進展[J]. 土壤學報,2018,55(6):1297-1312. Liao Yishan, Tang Changyuan, Yuan Zaijian, et al. Research progress on benggang erosion and its prevention measure in red soil region of southern China[J]. Acta Pedologica Sinica, 2018, 55(6):1297-1312. (in Chinese with English abstract)
[2] 文慧,倪世民,馮舒悅,等. 贛南崩崗的發(fā)育階段及部位對土壤水力性質(zhì)的影響[J]. 農(nóng)業(yè)工程學報,2019,35(24):136-143. Wen Hui, Ni Shimin, Feng Shuyue, et al. Effects of developmental stages and parts of collapsing gully on soil hydraulic properties in southern Jiangxi[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(24): 136-143. (in Chinese with English abstract)
[3] 林敬蘭,黃炎和,蔣芳市,等. 崩崗土體的滲透性能機理研究[J]. 水土保持學報,2013,27(2):53-56,144. Lin Jinglan, Huang Yanhe, Jiang Fangshi, et al. Study on mechanism of different soil layer’s permeability in benggang[J]. Journal of Soil and Water Conservation, 2013, 27(2): 53-56, 144. (in Chinese with English abstract)
[4] 馮舒悅,王軍光,文慧,等. 贛南崩崗侵蝕區(qū)不同部位土壤抗剪強度及其影響因素研究[J]. 土壤學報,2020,57(1):71-83. Feng Shuyue, Wang Junguang, Wen Hui, et al. Soil shear strength of collapsing erosion area in south Jiangxi of China relative to position of the soil and its influencing factors[J]. Acta Pedologica Sinica, 2020, 57(1): 71-83. (in Chinese with English abstract)
[5] 王秋霞,丁樹文,鄧羽松,等. 花崗巖崩崗區(qū)不同土層的侵蝕水動力學特征[J]. 土壤學報,2017,54(3):570-580. Wang Qiuxia, Ding Shuwen, Deng Yusong, et al. Hydrodynamic characteristic of erosion in different soil layers in granite collapse region[J]. Acta Pedologica Sinica, 2017, 54(3): 570-580. (in Chinese with English abstract)
[6] 李學增,黃炎和,林金石,等. 不同寬度沖刷槽對崩崗崩積體產(chǎn)流產(chǎn)沙的影響[J]. 農(nóng)業(yè)工程學報,2016,32(9):136-141. Li Xuezeng, Huang Yanhe, Lin Jinshi, et al. Effects of different width of scouring flumes on runoff and sediment yield of colluvial deposits of collapsing hill[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 136-141. (in Chinese with English abstract)
[7] 高鵬宇,詹振芝,蔣芳市,等. 坡度和流量對崩積體坡面細溝水流輸沙能力的影響[J]. 水土保持學報,2018,32(3):68-73. Gao Pengyu, Zhan Zhenzhi, Jiang Fangshi, et al. Effects of slop and flow on sediment transport capacity of the colluvial deposit for rill flow in Benggang[J]. Journal of Soil and Water Conservation, 2018, 32(3): 68-73. (in Chinese with English abstract)
[8] Jiang F S, Huang Y H, Wang M K, et al. Effects of rainfall intensity and slope gradient on steep colluvial de-posit erosion in southeast China[J]. Soil Science Society of America Journal, 2014, 78(5): 1741-1752.
[9] Karkala S, Davis N, Wassgren C, et al. Calibration of discrete-element-method parameters for cohesive materials using dynamic-yield-strength and shear-cell experiments[J]. Processes, 2019, 7(5): 278.
[10] 黃倩楠,張曉明,衛(wèi)杰,等. 摻砂對崩崗土壤無側限抗壓強度的影響[J]. 北京林業(yè)大學學報,2020,42(1):114-120. Huang Qiannan, Zhang Xiaoming, Wei Jie, et al. Effects of mixing sand on unconfined compressive strength of soil in collapsing gully[J]. Journal of Beijing Forestry University, 2020, 42(1): 114-120. (in Chinese with English abstract)
[11] 張建偉,亢飛翔,邊漢亮,等. 凍融循環(huán)下木質(zhì)素改良黃泛區(qū)粉土無側限抗壓強度試驗研究[J]. 巖土力學,2020,41(增刊2):1-6. Zhang Jianwei, Kang Feixiang, Bian Hanliang, et al. Experiments on unconfined compressive strength of lignin modified silt in Yellow river flood area under freezing-thawing cycles[J]. Rock and Soil Mechanics, 2020,41(Supp.2):1-6. (in Chinese with English abstract)
[12] 童麗萍,李聰. 不同摻合料對土坯墻泥漿抗壓強度影響研究[J]. 鄭州大學學報:工學版,2018,39(5):82-90. Tong Liping, Li Cong. Study on the influence of different admixtures on compressive strength of adobe wall mud[J]. Journal of Zhengzhou University: Engineering Science, 2018, 39(5): 82-90. (in Chinese with English abstract)
[13] 周宇,李國玉,武紅娟,等. 石灰改良紅層無側限抗壓強度試驗研究[J/OL]. 冰川凍土,2020. 2020-05-25. http://kns.cnki.net/kcms/detail/62.1072.P.20200522.1914.008. html Zhou Yu, Li Guoyu, Wu Hongjuan, et al. Study on the unconfined compressive strength of lime stabilized redmudstone[J/OL]. Journal of Glaciology and Geocryology, 2020. 2020-05-25. http://kns.cnki.net/kcms/detail/62.1072.P. 20200522.1914.008.html (in Chinese with English abstract)
[14] 郭慶國. 粗粒土的工程應用[M]. 鄭州:黃河水利出版社,1998:1-18.
[15] Guillaume B, Gilles A F, Frédéric L, et al. Channel response to sediment replenishment in a large gravel-bed river: The case of the Saint-Sauveur dam in the Bu?ch River (Southern Alps, France)[J]. River Research and Applications, 2020, 36(6): 880-893.
[16] Naphol Y, Pitthaya J, Krissakorn K, et al. Laboratory investigation of the properties of cement fly ash gravel for use as a column-supported embankment[J]. Construction and Building Materials, 2020, 257: 119493.
[17] 王雪松,謝永生,景民曉,等. 不同礫石類型對工程堆積體侵蝕規(guī)律的影響[J]. 水土保持學報,2014,28(5):21-25. Wang Xuesong, Xie Yongsheng, Jing Minxiao, et al. Effect of the different kinds of gravels on soil erosion of spoilbank[J]. Journal of Soil and Water Conservation, 2014, 28(5): 21-25. (in Chinese with English abstract)
[18] 詹振芝,黃炎和,蔣芳市,等. 礫石含量及粒徑對崩崗崩積體滲透特性的影響[J]. 水土保持學報,2017,31(3):85-90,95. Zhan Zhenzhi, Huang Yanhe, Jang Fangshi, et al. Effects of content and size of gravel on soil permeability of the colluvial deposit in Benggang[J]. Journal of Soil and Water Conservation, 2017, 31(3): 85-90, 95. (in Chinese with English abstract)
[19] 胡廷飛,王輝,胡傳旺,等. 礫石覆蓋厚度對斥水土壤入滲特性的影響及模型優(yōu)選[J]. 水土保持學報,2019,33(2):17-22,29. Hu Tingfei, Wang Hui, Hu Chuanwang, et al. Effect of thickness of gravel cover on infiltration characteristics of water repellent soils and its model optimization[J]. Journal of Soil and Water Conservation, 2019, 33(2): 17-22, 29. (in Chinese with English abstract)
[20] Koutous A, Hilali E. Grain shape effects on the mechanical behavior of compacted earth[J]. Case Studies in Construction Materials, 2019, 11: e00303.
[21] 郝騰飛,喻邦江. 粗顆粒含量對礫石土抗剪強度影響的試驗研究[J]. 地質(zhì)災害與環(huán)境保護,2018,29(3):73-76. Hao Tengfei, Yu Bangjiang. Experimental study on the effect of coarse particle content on shear strength of gravel soil[J]. Journal of Geological Hazards and Environment Preservation, 2018, 29(3): 73-76. (in Chinese with English abstract)
[22] 吉恩躍,陳生水,朱俊高,等. 不同摻礫量下礫石土抗拉強度試驗研究[J]. 巖土工程學報,2019,41(7):1339-1344. Ji Enyue, Chen Shengshui, Zhu Jungao, et al. Experimental research on tensile strength of gravelly soil under different gravel contents[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1339-1344. (in Chinese with English abstract)
[23] 王蕙,盧德寶,黃冬菁,等. 不同礫石存在形式紅壤坡面侵蝕特征的比較[J]. 中國水土保持科學,2019,17(4):49-58. Wang Hui, Lu Debao, Huang Dongjing, et al. On the erosion characteristics of red soil slope with different gravel existence forms[J]. Science of Soil and Water Conservation, 2019, 17(4): 49-58. (in Chinese with English abstract)
[24] 鄭騰輝,周旺,劉濤,等. 連續(xù)模擬降雨下巖溶區(qū)含礫石堆積體坡面徑流產(chǎn)沙特征[J]. 水土保持學報,2020,34(3):55-60. Zheng Tenghui, Zhou Wang, Liu Tao, et al. Characteristics sediment yield and runoff of the slope surface of gravel accumulation in Karst area under continuous simulated rainfall[J]. Journal of Soil and Water Conservation, 2020, 34(3): 55-60. (in Chinese with English abstract)
[25] 中華人民共和國水利部. 土工試驗方法標準(GB/T 50123—1999)[S]. 北京:中國計劃出版社,1999.
[26] 衛(wèi)杰,張曉明,丁樹文,等. 黃麻纖維加筋條件對崩崗巖土無側限抗壓強度的影響[J]. 水土保持學報,2015,29(6):59-63. Wei Jie, Zhang Xiaoming, Ding Shuwen, et al. Effects of reinforcement conditions of jute fiber on unconfined compressive strength of soil in collapsing hill[J]. Journal of Soil and Water Conservation, 2015, 29(6): 59-63. (in Chinese with English abstract)
[27] 劉清秉,項偉,Lehane B M,等. 顆粒形狀對砂土抗剪強度及樁端阻力影響機制試驗研究[J]. 巖石力學與工程學報,2011,30(2):400-409. Liu Qingbing, Xiang Wei, Lehane B M, et al. Experimental study of effect of particle shapes on shear strength of sand and tip resistance of driven piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 400-409. (in Chinese with English abstract)
[28] Dodds J S. Particle Shape and Stiffness-Effects on Soil Behavior[D]. Atlanta: Georgia Institute of Technology, 2003.
Effects of gravel addition on unconfined compressive strength of Benggang soil
Yang Caidi1,2, Niu Yuhua1, Zhang Xiaoming1,3※, Wei Jie1, Zuo Zhiling1, Zhang Ruiyu1
(1.,,430070,; 2.,,310058,; 3.,,430070,)
Benggang, a typical geo-hazard, is widely distributed in the granite area of southern China. It is characterized by strong sudden onset and rapid development, and is usually accompanied by a large amount of soil and water loss, which poses a serious threat to the ecological environment. Previous studies have focused on Benggang soil erosion process and the influencing factors, sediment yield characteristics and hydrodynamics mechanism.However, there is still limited study on mechanical strength effect of gravel addition on Benggang soil and its engineering application. This study explored the effects of gravel addition on unconfined compressive strength of Benggang soil. Different combinations of gravel content (5%, 10%, and 15%), diameter (2-4, 5-7, and 8-10 mm), and shape (round and angular gravels) were considered. In addition, soil without gravel addition was considered as control. In June 2018, the Benggang soil was sampled. Eluvial layer A, argic layer Bt, deposition layer B, and parent layer C were distributed along the soil profile. The physic-chemical properties of these soil samples were measured. The unconfined compressive strength values of different combinations of soils were also determined. The results showed that the eluvial layer A had relatively uniform particle size, good structure, and fine texture. However, the contents of particle sizes differed greatly in the other three layers, with weak adhesive, poor texture, and loose particles. The average value of unconfined compressive strength of different combinations was the highest in the eluvial layer A, followed by argic layer Bt, deposition layer B and parent layer C. The unconfined compressive strengths of four soil layers were higher in combinations of 15% gravel content, diameter of 2-4 and 5-7mm, and round shape. The gravel additions increased soil compressive strength by elevating the friction, cohesion and occlusion area of soil particles. The axial stress of all combinations showed the same variation tendency with the increase of axial strain, with four stages of rapid increase, sharp decrease, slow decrease and stable decrease. The axial stress of soil with gravel addition was higher than that of soil without gravel, especially in the eluvial layer A and argic layer Bt. Compared with soil without gravel addition, the unconfined compressive strength of soil with gravel addition increased by 59.56% (eluvial layer A), 71.70% (argic layer Bt), 49.51% (deposition layer B), and 83.64% (parent material layer C), respectively. A positive linear function could describe the relationship between the compressive strength of soil with and without gravels in the four soil layers. Thus, the addition of gravel enhanced the mechanical strength of Benggang soil obviously. The broken degree of soil without gravel was more severe than that of soil with gravel. Overall, the addition of gravel improved soil compressive strength, while the compressive mechanism in different soil layers was quite different. The difference was affected by the friction and concavity of particle shape, and the physic-chemical properties for different soil layers. The results above laid basis for the prevention and control of Benggang erosion, and proposed engineering practice instructions for the treatment of different soil layers.
gravels; soils; correlation; Benggang; unconfined compressive strength; stress-strain; failure pattern
楊彩迪,牛玉華,張曉明,等. 添加礫石對崩崗巖土無側限抗壓強度的影響[J]. 農(nóng)業(yè)工程學報,2020,36(24):118-124.doi:10.11975/j.issn.1002-6819.2020.24.014 http://www.tcsae.org
Yang Caidi, Niu Yuhua, Zhang Xiaoming, et al. Effects of gravel addition on unconfined compressive strength of Benggang soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 118-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.014 http://www.tcsae.org
2020-07-29
2020-10-10
國家自然科學基金項目(41771307、41201271);長江科學院開放研究基金資助項目(CKWV2017522/KY);華中農(nóng)業(yè)大學“國家級大學生創(chuàng)新創(chuàng)業(yè)訓練計劃”項目(105042016015);華中農(nóng)業(yè)大學“大學生科技創(chuàng)新基金”項目(SRF)(2016076)
楊彩迪,博士生,主要從事土壤物理和養(yǎng)分互作研究。Email:11714043@zju.edu.cn
張曉明,博士,副教授,主要從事土壤侵蝕和森林水文研究。Email:zxm_huanong@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2020.24.014
S152.9;TU411.6
A
1002-6819(2020)-24-0118-07