• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    寄生植物鎖陽種子萌發(fā)方法及愈傷組織、初生吸器誘導(dǎo)研究

    2020-03-05 04:04:28陳貴林
    植物研究 2020年6期
    關(guān)鍵詞:內(nèi)蒙古大學(xué)鎖陽藥學(xué)院

    岳 鑫 陳貴林

    (1. 內(nèi)蒙古大學(xué)生命科學(xué)學(xué)院,呼和浩特 010021;2. 內(nèi)蒙古醫(yī)科大學(xué)藥學(xué)院,呼和浩特 010021)

    Cynomorium songaricum Rupr. is an obligate parasitic plant distributed in Mongolia,Central Asia and Northwest China[1]. C.songaricum is used to treat kidney disease,intestinal ailments and impotence.Biomedical and phytochemical evidences show that C.songaricum contains triterpenes that inhibit HIV-1 proteases and Hepatitis C(HCV)[2~4]. It also contains the high-molecular weight polymer procyanidin CSPP-A,which suppresses the growth of methicillin-resistant Staphylococcus aureus[1]. To date,studies assessing the physiology and biotechnology of C.songaricum are scarce,because of its obligate parasitism and lack of perniciousness.

    Parasitism is a lifestyle that has been repeatedly found throughout evolution. At least 4 000 plant species are parasitic and obtain some or all nutrients by directly invading other plants[5]. The interaction between an obligate root parasite and the host begins early in the life cycle(i.e.,germination). Parasitic plants sense surrounding host roots and germinate via mechanisms possibly evolving from a conserved germination system employed by non-parasitic species[6]. These plants use secondary metabolites produced by host plant roots as signal molecules to induce germination as well as developmental programs speci fi c for parasitism[7]. Such chemical molecular signals for germination stimulation have been identified,and comprise three classes,including strigolactones,dihydrosorgoleone and other molecules whose structures and activities require detailed investigation[8]. Multiple other molecules induce seed germination in Striga and Orobanche seeds in vitro,including kinetin,abscisic acid,inositol,methionine,and ethylene[9].Revealed germination inducers might affect aminocyclopropanecarboxylate(ACC)oxidase in Striga asiatica seed conditioning,converting ACC into ethylene[10]. These findings indicate many molecules could alter germination through a shared mechanism[11].

    From the germinated seed,the development of a particular multicellular organ termed haustorium represents a characteristic property of plant parasites,which help parasitic organisms invade host and generate connections[12-13].The haustorium is triggered by haustorium-inducing factors(HIFs)and redox signals[12]. Currently known HIFs are grouped into four classes,including flavonoids,p-hydroxy acids,quinones and cytokinins[8]. Haustorium signaling is induced by redox cycling of HIFs,with the inducer’s redox potential determining its activity[14].Induced the formation of papillae using a low concentration of KT(<0.1%)from Cuscuta japonica Choisy,with no primordia found[15].Added KT(10 ppm)to the medium to induce a structure similar to the haustorium of the semi-parasitic plant Rhinanthus serotirus[16].Applied BA to induce haustorium formation in Cuscuta chinensis Lam[17]. In addition,reports are available on cytokinin-induced haustorium in other parasitic plants such as Striga sp.[18],and other studies found that cytokinin(KT)plays a decisive role in haustorium formation,while auxin has the opposite function.

    The pyrene seeds of C.songaricum are especially difficult to germinate,partly because of a thick,impervious pericarp that contains large amounts of abscisic acid(ABA),which occupies half of the seed’s volume[19]. The hard seed coat has to be fractured to reverse dormancy[20].In addition,embryo development in C.songaricum tends to stop at the stage of the multicellular globular proembryo without formation of a suspensor. Release from dormancy is erratic since different stimulus thresholds are required for inducing germination of individual seeds[21].

    Studies assessing C.songaricum,with high medicinal value,have focused on improving its parasitic relationship with its hosts,facilitate artificial cultivation and increase supply. Because haustorium development is a crucial step in this process,this study used different tissue culture methods to induce callus formation from seed explants and subsequently establish Haustorium organogenesis. The present findings may subsequently help clarify the parasitic mechanisms involved in the interaction of C.songaricum with its hosts.

    So far,there is no efficient method for seed germination in C.songaricum. In addition,studies assessing the structure and function of C.songaricum,as well as the parasitic relationship between C.songaricum and its host are almost inexistent,which leads to unsuccessful cultivation of C.songaricum.The wild sources of C.songaricum are increasingly endangered by disorderly mining for use in pharmaceutical industries and product development. The World Conservation Union(IUCN)currently defines the endangered level of C.songaricum as vulnerable(VU),which is designated as a Class Ⅱprotected plant in the Washington Convention(CITES)[22].The protocol for haustorium organogenesis from the callus opens up the possibility of evaluating the processes involved in host-parasite relationships,which may help in C.songaricum protection and utilization.

    1 Materials and Methods

    1.1 Explant preparation

    C. songaricum seeds were obtained from Hangjing County,Ordos,China,and preserved in an ultra-cold freezer at -70°C. The pericarp was removed by rubbing the seed with emery paper. The seeds were then soaked in 70% ethanol. The surface was sterilized with 0.1% mercuric chloride solution(6 min),and the seeds underwent five washes with sterilized water. Then surface-sterilized seeds were cultured on B5medium.

    1.2 Callus culture medium and conditions

    B5medium with a series of concentration gradients of 2,4-dichlorophenoxyacetic acid(2,4-D),kinetin(KT)and gibberellic acid(GA3)was used to induce callus formation(Table 1),with pH adjusted to 6.0 before agar(3%)addition. Each medium was then submitted to autoclave(25 min,120°C). Sterile triangular flasks were added 60 mL of callus induction medium,followed by addition of 50 seeds. Cultures were incubated in the dark at 25±1°C. Three quintuplicate independent assays were performed.Callus induction was evaluated after 40 d of culture by counting calluses.

    1.3 Microscopy

    Seeds cultured for 0,20,30 and 40 d,respectively,were mounted on microscope slides,and embryos were examined. The embryos were obtained by crushing the seeds with another microscope slide.Then,embryos were transferred to formalin-aceto-alcohol(FAA)stationary liquid medium for 24 h and observed under a cell microscope(Axio Observer A1,ZEISS).

    1.4 Haustorium organogenesis media and conditions

    B5 medium was added 0.25 mg·L-1KT and various 2,4-D amounts(Table 2)to induce haustorium organogenesis from the callus.For all media,pH was adjusted to 6.0 before agar(3%)addition. Each medium was then submitted to autoclave(25 min,120°C). Sterile triangular flasks were filled with 60 mL haustorium differentiation medium,and five calluses were added to each flask. Incubation was carried out away from light at 25±1°C. Three independent assays consisting of five triangular flasks were performed.

    1.5 Scanning electron microscopy(SEM)

    Haustorium formed from calluses were submitted to fixation(3% glutaraldehyde)and washing.Sample dehydration was carried out with ethyl alcohol gradient(10-minute intervals)followed by critical-point drying(liquid CO;10 min). Then,the specimens were mounted on aluminum stubs with double-sided tape and underwent platinum(Pt)coating on an ion sputter apparatus(Hitachi E-1010,Japan). An accelerating voltage of 15 kV was employed for analysis by emission SEM on a Hitachi S-4300 field(S-3400N,Hitachi)at different resolutions and magnifications.

    1.6 Statistical analysis

    The seeds that developed calluses were counted,and haustorium in per callus were identified.The callus induction rate represented the number of explants that formed a callus divided by that of all inoculated explants,multiplied by 100%. The rate of haustorium formation reflected the number of explants that formed a haustorium divided by that of all inoculated callus,multiplied by 100%. The average number of haustorium formed per callus was used for analysis. The data were analyzed with the SPSS software(v19).P<0.05 indicated statistical significance.

    2 Results and analysis

    2.1 Germination conditions

    During seed imbibition,it was hypothesized that GA production occurs[23~24]. Moreover,GA supplemented exogenously decreases the minimum effective exposure time to germination for stimulants employed during conditioning,promoting seed germination in parasitic species[25]. GA3does not participate in the process of radicle breakthrough of the seed testa. Instead,it activates the transcription factor gibberellin- and abscisic acid-regulated Myb(GAMyb),promotes α -amylase synthesis and induces endosperm degradation,all of which facilitate seed germination. In this study,an adequate concentration of GA3,incombination with other plant growth regulators included in the medium,promoted embryo development and germination of C.songaricum seeds.

    The tiny embryo of C.songaricum appeared as a multicellular spherical proembryo with no germ cell differentiation,with a radicle or cotyledon found close to the micropylar end(Fig.1A). Embryo cells varied in size,with larger and smaller ones located near the chalazal and micropylar ends,respectively(Fig.1B). The cells were polyhedral in shape,tightly packed and contained large nuclei.

    During culture,the embryos initially became differentiated at two poles(Fig.1C). This was followed by unipolar development during the process of germination(Fig.1D). The level of embryonic development and differentiation of mature C.songaricum seeds was similar to that of other parasitic angiosperms. The present findings support these previous observations.

    2.2 Callus induction

    The embryo broke through the seed coat at the micropylar end after 40 d culture(Fig.2B),and the radicle continued to elongate in subsequent days(Fig.2C). The radicle’s top became intumescent(Fig.2D)and eventually formed the callus(Fig.2E),which was pure white and dense,growing rapidly from the radicle(Fig.2F). After another 20 d,it turned brown(Fig.2G),and embryogenic callus formation occurred(Fig.2H). Embryogenic cells were mostly cylindrical,with large nuclei and starch grains(Fig.2I). The rates of callus formation from C.songaricum seeds were assessed in the dark under various combinations of three hormonal plant growth regulators(Table 1). The highest callus induction rate(13.7%)after a 40 d incubation was produced by the combination of 1,0.5 and 1 mg·mL-1of 2,4-D,KT,and GA3,respectively. This rate was significantly higher than those obtained with other combinations.

    The synergistic effects of auxins(2,4-D)and cytokinins assisted C. songaricum germination and promoted callus formation. Studies assessing other holoparasitic or hemiparasitic plants have shown that combined use of auxins and cytokinins promotes callus generation. However,the same auxins or cytokinins play significantly different roles in distinct parasitic plants[26~28]. In this study,optimal callus formation from C.songaricum seeds was obtained with 1 mg·L-12,4-D and 0.5 mg·L-1KT. This study firstly reported in vitro callus generation from C.songaricum seeds.

    2.3 Haustorium organogenesis

    No haustoriuml hair was observed on the surface of the primary haustorium. Furthermore,the structure was similar to that of the primary haustorium from seed germination. The number of haustorium per callus was determined. The best results were obtained with 1.0 mg·mL-12,4-D,which yieldedsix haustorium per callus by Day 60. The callus broke through the radicle and formed root-like organs of 3 to 4 mm in length(Fig.3A). The tops of these structures were enlarged to form globular shaped organs(primary haustorium;Fig.3A-B). Scanning electron microscopy indicated that the haustoriuml top was composed of a uniform fossa surrounded by a thick ribbon like structure(Fig. 3D-E)with protrusions(Fig.3F),increasing to approximately eight on Day 60 and remaining constant thereafter(Table 2).Interestingly,some of the primary haustorium branched to form adventitious roots of 3 to 4 cm in length(Fig.3C). The tip of each adventitious root formed nascent primary haustorium,which then branched out into adventitious roots.

    Fig.1 Development of C.songaricum embryo in different periods of cultivationSeeds cultured for 0,20,30 and 40 d were examined. The embryos were obtained by crushing the seeds with another microscope slide,transferred to the formalin-aceto-alcohol(FAA)stationary liquid medium for 24 h,and observed with bright field illumination(Fig.1A,C and D).The embryo was stained with a fluorochrome and observed with a fluorescence objective lens(Fig.1B)

    Fig.2 Callus development in different periods of cultivation in C.songaricumThe embryo broke through the seed coat at the micropylar end after 40 days of culture(Fig.2B). The radicle continued to elongate in the following days(Fig. 2C). The radicle’s top became intumescent(Fig. 2D)and eventually formed a callus(Fig. 2E). The callus was pure white and dense,and grew rapidly from the radicle(Fig.2F). After another 20 d,it became brown(Fig.2G),and embryogenic callus formation occurred(Fig. 2H). Embryogenic cells were mostly cylindrical,with large nuclei and starch grains(Fig.2I)

    Table 1 Synergistic effects of 2,4-dichlorophenoxyacetic acid(2,4-D),kinesin(KT)and gibberellin(GA3)on callus induction in C.songaricum Rupr. Seeds

    With regard to morphological organogenesis of the primary haustorium,the haustorium is initiated by localized cell growth,alongside haustoriuml hair growth in multiple species.Parasitic plant species develop haustorium close to the root tip or along thestem under stimulation by specific substances produced by the respective host[29]. Haustorium have a morphology comparable to that of Rhizobium-induced determinant nodules but a different developmental ontogeny.Cell division starting in the root cortex represents an initial event in nodules’organogenetic process,and nodule primordia comprise actively dividing cells. Meanwhile,haustoriuml swelling is primarily explained by the isodiametric root cell growth. Haustorium development equally differs from lateral root expansion due to the lack of epidermal rupture in the parasite[30].

    Table 2 Effect of plant growth regulators on haustorium induction in the callus of C.songaricum seed

    Fig.3 The development of C.songaricum haustorium in different periods of cultivation

    Furthermore,facultative parasitic organisms,such as Phtheirospermum,develop lateral haustorium in the root transition and elongation regions,and a single root could generate many haustorium[12].However,obligate parasitic organisms,including

    Striga,Orobanche and Phelipanche spp. develop only one haustorium at the tip of each of the emerging radical apexes upon germination.

    3 Discussion

    The haustorium is the channel through which a parasitic plant invades its host tissue to uptake materials it needs. According to the function,the haustorium has two types,one is primary haustorium and the other is secondary haustorium. Depending on the position of the primary haustorium formed on the parasite root,primary haustorium is divided into lateral haustorium and terminal haustorium[31]. During lateral haustorium development,a branch appears in the elongation zone of the main root of the parasite,at the top of which a primary haustorium is formed,which without interference in continuous top elongation and multiple primary haustorium formations[32].On the contrary,there is only one terminal haustorium,the structure of which could terminate root growth. However,the development of haustorium in all types begins with the perception of secretions from host root nearby. The secretions,as known to trigger haustorium development,are called haustorium inducing factors(HIFs),including strigolactones,flavonoids,quinones and cytokinins. HIFs play a crucial role in the formation of primary haustorium by initiating signals leading to the accumulation of reactive oxygen species[33].

    The 2,6-dimethoxy-p-benzoquinone(DMBQ)is an efficient HIFs to initiate the formation of haustorium in many kinds of parasite plants without their host.Polyphenols secreted by the host are oxidized to quinones by the H2O2secreted by parasite plants[14,34].However,the DMBQ is not a panacea in triggering the haustorium formation in all species of parasite,which means that the function of HIFs is species-specific. The development of Phelipanche ramose L.haustorium initiated in the presence of cZ/tZ cytokinins and was prevented in the presence of cytokinin receptor[35].

    In this study,the cytokinin was considered to be the HIFs of C.songaricum,but the function of cytokinin as a HIF has not been elucidated here. A report assessing haustoriuml anatomy in Cuscuta japonica Choisy exogenously administered cytokinin showed that KT treatment promotes radial elongation in cortical cells and the formation of meristematic tissues,laying a material foundation for cell dedifferentiation and division. When endogenous cytokinin amounts are lower than the effective concentration,the dedifferentiation "switch" of cortical cells cannot be activated,which prevents the formation of the papillary or primordial primordium. At low levels of exogenous KT(<0.1%),although cortical cells may be elongated,they cannot be constituted into the primordial base. This indicates that only when exogenous cytokinin concentration reaches a certain level(the optimal KT concentration in this study was considered to be 0.25 mg·L-1),endogenous cytokinin would reach the effective concentration,activating the "switch" to dedifferentiate cortical cells to form the primordial primordium. So only one concentration of cytokinin was chose to test the cooperation effect between cytokinin and auxin on formation of the C.songaricum haustorium.

    These results indicate that auxin is very important in primary haustorium formation from C.songaricum callus in the presence of cytokinin.It was reported that Phtheirospermum japonicum sensed DMBQ and quickly activitied lots of genes to express,including gene YUC3,which involved in auxin synthesis. YUC3 activated about 18 hpis in epidermal cells near the parasitic-host contact point. After knockout of the YUC3 gene,the number of haustorium decreased significantly. The ectopic expression of YUC3 led to the formation of the haustorium-like structure and the increase of auxin. It suggested that local auxin biosynthesis mediated by YUC3 is vital for the haustorium to initiate development[36].In addition,the process of auxin transport is considered to be an essential factor in the haustorium initiation. In the study of the formation of the Triphysaria versicolor haustorium,it was found that the formation of the haustorium was inhibited by using the polar auxin transport inhibitor TIBA,while was recovered by applying exogenous auxin[30]. The above phenomena indicated that auxin transport is a necessary factor for DMBQ to trigger the formation of a haustorium.

    From this study,it could be speculated that the cooperation of exogenous auxin and cytokinin plays the most important role in the formation of primary haustorium from the callus in C.songaricum.The synergistic mechanism of cytokinin and auxin on callus differentiation into haustorium needs further study.

    All in all,seed germination and the formation of haustorium are the key to the completion of parasitic growth of C.songaricum. Exogenous signal substances can effectively promote the completion of this crucial link.Therefore,the study of exogenous signal substances is of great significance to the parasitic growth mechanism and artificial planting of C.songaricum.

    猜你喜歡
    內(nèi)蒙古大學(xué)鎖陽藥學(xué)院
    蘭州大學(xué)藥學(xué)院簡介
    男人的“不老藥”——鎖陽
    內(nèi)蒙古大學(xué)文學(xué)與新聞傳播學(xué)院
    ——高建新教授
    來自沙漠中的「不老藥」——說說鎖陽固精丸
    施旖旎作品
    鎖陽的“舍與得”
    知識窗(2016年3期)2016-05-14 09:08:24
    An Analysis of Neighbors
    What I see in The Merchant of Venice
    HSCCC-ELSD法分離純化青葙子中的皂苷
    湖北旋覆花化學(xué)成分的研究
    超色免费av| 中文字幕制服av| 精品视频人人做人人爽| 纵有疾风起免费观看全集完整版| 久久精品国产自在天天线| 有码 亚洲区| 9191精品国产免费久久| 国产乱人偷精品视频| 国产欧美亚洲国产| 如日韩欧美国产精品一区二区三区| 国产亚洲欧美精品永久| 中文乱码字字幕精品一区二区三区| 韩国精品一区二区三区 | 激情五月婷婷亚洲| 免费黄色在线免费观看| 精品视频人人做人人爽| 九九在线视频观看精品| 男女免费视频国产| 观看av在线不卡| 在线观看三级黄色| 亚洲欧美日韩卡通动漫| 精品国产国语对白av| 久久青草综合色| av一本久久久久| 久久久国产一区二区| 精品国产一区二区久久| 久久久久久久久久久久大奶| 欧美精品人与动牲交sv欧美| 交换朋友夫妻互换小说| 国产免费一级a男人的天堂| 免费观看在线日韩| av.在线天堂| 免费播放大片免费观看视频在线观看| 91在线精品国自产拍蜜月| 亚洲欧美日韩另类电影网站| 中国美白少妇内射xxxbb| 天天操日日干夜夜撸| 一本色道久久久久久精品综合| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 两个人免费观看高清视频| av卡一久久| 亚洲欧洲国产日韩| 亚洲国产精品专区欧美| 性色avwww在线观看| 男人舔女人的私密视频| 国产男女超爽视频在线观看| 成人国语在线视频| 曰老女人黄片| 国产精品国产av在线观看| 人成视频在线观看免费观看| 亚洲精品国产色婷婷电影| 国产精品99久久99久久久不卡 | 王馨瑶露胸无遮挡在线观看| 十八禁高潮呻吟视频| 波野结衣二区三区在线| 国产麻豆69| 欧美 日韩 精品 国产| 又黄又爽又刺激的免费视频.| 精品酒店卫生间| 亚洲av日韩在线播放| 精品一区二区免费观看| 欧美国产精品va在线观看不卡| 欧美成人精品欧美一级黄| 久久久久国产网址| 一区在线观看完整版| 在线观看美女被高潮喷水网站| 黄色视频在线播放观看不卡| 18禁国产床啪视频网站| 最新中文字幕久久久久| 91精品伊人久久大香线蕉| 香蕉精品网在线| 久久精品国产亚洲av涩爱| 国产精品成人在线| 卡戴珊不雅视频在线播放| 女人被躁到高潮嗷嗷叫费观| 肉色欧美久久久久久久蜜桃| 一级片'在线观看视频| 午夜91福利影院| 国产精品久久久久久精品古装| 亚洲精品久久成人aⅴ小说| 男的添女的下面高潮视频| 亚洲综合色惰| 久久午夜福利片| 韩国精品一区二区三区 | 国产精品嫩草影院av在线观看| 乱人伦中国视频| 久久久久久久久久久免费av| 国产亚洲欧美精品永久| 欧美3d第一页| 少妇高潮的动态图| 精品久久蜜臀av无| 在线观看www视频免费| 国产精品不卡视频一区二区| 波多野结衣一区麻豆| 国产av国产精品国产| 男人舔女人的私密视频| 九九在线视频观看精品| 欧美国产精品一级二级三级| 免费看av在线观看网站| 黑丝袜美女国产一区| 亚洲成国产人片在线观看| 亚洲av免费高清在线观看| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜制服| 夫妻午夜视频| 久热久热在线精品观看| 插逼视频在线观看| 欧美少妇被猛烈插入视频| 午夜激情av网站| 日日啪夜夜爽| 久久精品国产亚洲av涩爱| freevideosex欧美| 成人漫画全彩无遮挡| 妹子高潮喷水视频| 大香蕉久久网| 亚洲av国产av综合av卡| 视频中文字幕在线观看| 欧美3d第一页| 日本免费在线观看一区| 91久久精品国产一区二区三区| 亚洲国产色片| 久久鲁丝午夜福利片| av免费观看日本| 久久ye,这里只有精品| 好男人视频免费观看在线| 51国产日韩欧美| 中文字幕免费在线视频6| 国产免费又黄又爽又色| 日韩,欧美,国产一区二区三区| 纵有疾风起免费观看全集完整版| www.色视频.com| 啦啦啦中文免费视频观看日本| 国产在视频线精品| 免费黄色在线免费观看| 国产成人aa在线观看| 欧美日韩国产mv在线观看视频| 亚洲欧美日韩卡通动漫| 18禁在线无遮挡免费观看视频| 女性被躁到高潮视频| 自线自在国产av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线天堂中文资源库| 国产成人精品无人区| 22中文网久久字幕| 国产高清不卡午夜福利| 免费高清在线观看视频在线观看| 日本wwww免费看| 国产男人的电影天堂91| 久久热在线av| 欧美日韩国产mv在线观看视频| 国产 精品1| 18禁观看日本| 国产深夜福利视频在线观看| 久久久久久久亚洲中文字幕| 免费av不卡在线播放| 久久99一区二区三区| 五月玫瑰六月丁香| 丝袜美足系列| 免费黄色在线免费观看| 国产欧美日韩一区二区三区在线| 久久久久久人妻| 考比视频在线观看| 90打野战视频偷拍视频| 精品福利永久在线观看| 精品福利永久在线观看| 极品人妻少妇av视频| www.熟女人妻精品国产 | 国产欧美亚洲国产| 母亲3免费完整高清在线观看 | 99久久综合免费| 性色avwww在线观看| 精品亚洲成a人片在线观看| 老司机影院毛片| 最黄视频免费看| 日日爽夜夜爽网站| 久久久久久久国产电影| 人妻一区二区av| 在线观看免费日韩欧美大片| 黄色怎么调成土黄色| 青春草国产在线视频| 亚洲成色77777| 伊人亚洲综合成人网| 欧美精品国产亚洲| 999精品在线视频| 亚洲激情五月婷婷啪啪| 亚洲伊人久久精品综合| 又粗又硬又长又爽又黄的视频| 亚洲综合色网址| 中文乱码字字幕精品一区二区三区| 国产深夜福利视频在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美人与善性xxx| 国产欧美日韩一区二区三区在线| 在线精品无人区一区二区三| 一级片免费观看大全| 久久久国产一区二区| 一边摸一边做爽爽视频免费| 宅男免费午夜| 丝袜人妻中文字幕| 久久热在线av| 女人被躁到高潮嗷嗷叫费观| 色网站视频免费| 五月玫瑰六月丁香| 一二三四在线观看免费中文在 | 最新的欧美精品一区二区| 在线观看美女被高潮喷水网站| 国产精品久久久久久久久免| 色94色欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 成人毛片60女人毛片免费| 亚洲内射少妇av| 国产精品久久久久久精品电影小说| 一个人免费看片子| 狠狠婷婷综合久久久久久88av| 久久久久视频综合| 在现免费观看毛片| 男人添女人高潮全过程视频| av网站免费在线观看视频| 伦理电影免费视频| 国产精品久久久久久精品古装| 久久久国产精品麻豆| 制服诱惑二区| 少妇猛男粗大的猛烈进出视频| av线在线观看网站| 国产熟女欧美一区二区| 日日撸夜夜添| 国产老妇伦熟女老妇高清| 黑人巨大精品欧美一区二区蜜桃 | 97在线视频观看| 日韩 亚洲 欧美在线| 久久久精品免费免费高清| 制服丝袜香蕉在线| 一本—道久久a久久精品蜜桃钙片| 亚洲精品久久午夜乱码| 欧美丝袜亚洲另类| kizo精华| 丝袜人妻中文字幕| 多毛熟女@视频| 青春草国产在线视频| 午夜免费男女啪啪视频观看| 欧美xxⅹ黑人| 香蕉丝袜av| 一本色道久久久久久精品综合| 咕卡用的链子| av线在线观看网站| 免费高清在线观看视频在线观看| 中文乱码字字幕精品一区二区三区| 日本黄色日本黄色录像| 久久影院123| 精品人妻一区二区三区麻豆| freevideosex欧美| 亚洲情色 制服丝袜| 欧美3d第一页| 伦精品一区二区三区| 在线观看免费日韩欧美大片| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 97超碰精品成人国产| 欧美精品一区二区免费开放| 精品久久蜜臀av无| 亚洲欧美日韩卡通动漫| 日日爽夜夜爽网站| av线在线观看网站| 国产成人精品福利久久| 91午夜精品亚洲一区二区三区| xxxhd国产人妻xxx| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频| 999精品在线视频| 日韩人妻精品一区2区三区| 精品少妇内射三级| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 亚洲国产毛片av蜜桃av| 午夜福利在线观看免费完整高清在| 久久ye,这里只有精品| 中文字幕免费在线视频6| 满18在线观看网站| 狂野欧美激情性xxxx在线观看| 在线免费观看不下载黄p国产| 亚洲丝袜综合中文字幕| 天天躁夜夜躁狠狠久久av| 在线天堂中文资源库| 亚洲欧洲国产日韩| 啦啦啦视频在线资源免费观看| 女人被躁到高潮嗷嗷叫费观| 18禁国产床啪视频网站| 两性夫妻黄色片 | 日韩在线高清观看一区二区三区| 精品酒店卫生间| 欧美人与性动交α欧美精品济南到 | 成人国产av品久久久| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 秋霞伦理黄片| 一级a做视频免费观看| 国产亚洲精品第一综合不卡 | 国产一区二区三区av在线| 老司机亚洲免费影院| videosex国产| 精品少妇内射三级| 亚洲成色77777| 亚洲 欧美一区二区三区| 国产又色又爽无遮挡免| 男女高潮啪啪啪动态图| 午夜视频国产福利| 国产成人精品婷婷| 一个人免费看片子| 各种免费的搞黄视频| 欧美成人午夜精品| 免费高清在线观看日韩| 国产精品国产三级国产av玫瑰| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱码久久久久久按摩| 少妇猛男粗大的猛烈进出视频| 丝袜喷水一区| 天天操日日干夜夜撸| 精品一区在线观看国产| 建设人人有责人人尽责人人享有的| 中国美白少妇内射xxxbb| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 人人妻人人澡人人看| 五月天丁香电影| 91精品三级在线观看| 亚洲综合色惰| 99热全是精品| 国产在线视频一区二区| 爱豆传媒免费全集在线观看| 久久久久精品性色| 欧美激情 高清一区二区三区| 亚洲色图 男人天堂 中文字幕 | 美女国产高潮福利片在线看| 青春草视频在线免费观看| 日本与韩国留学比较| 久久精品夜色国产| 亚洲av中文av极速乱| 最近手机中文字幕大全| 亚洲av电影在线进入| 中文字幕av电影在线播放| 亚洲精品美女久久久久99蜜臀 | 伦精品一区二区三区| av天堂久久9| 亚洲人成网站在线观看播放| 久久久久人妻精品一区果冻| 国产色爽女视频免费观看| av片东京热男人的天堂| 国产日韩欧美亚洲二区| 成人国产av品久久久| 午夜福利影视在线免费观看| 欧美日韩一区二区视频在线观看视频在线| 午夜91福利影院| 波野结衣二区三区在线| 性色avwww在线观看| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 女人久久www免费人成看片| 国精品久久久久久国模美| 日韩,欧美,国产一区二区三区| 久久综合国产亚洲精品| 亚洲精品美女久久av网站| 久久青草综合色| 日本黄色日本黄色录像| 久久韩国三级中文字幕| 精品国产一区二区三区久久久樱花| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 啦啦啦视频在线资源免费观看| 亚洲国产日韩一区二区| 国产精品久久久久久av不卡| 人体艺术视频欧美日本| 国产亚洲精品久久久com| 最近中文字幕2019免费版| 大片免费播放器 马上看| 夫妻性生交免费视频一级片| 我要看黄色一级片免费的| 天堂中文最新版在线下载| 春色校园在线视频观看| 满18在线观看网站| 最近的中文字幕免费完整| 1024视频免费在线观看| 啦啦啦啦在线视频资源| 最黄视频免费看| 在线亚洲精品国产二区图片欧美| 视频区图区小说| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 日本欧美国产在线视频| 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 成人免费观看视频高清| 日韩av免费高清视频| 在线亚洲精品国产二区图片欧美| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 狠狠精品人妻久久久久久综合| 岛国毛片在线播放| 丰满乱子伦码专区| 18禁观看日本| 大话2 男鬼变身卡| www.熟女人妻精品国产 | 伊人亚洲综合成人网| 激情五月婷婷亚洲| 国产一级毛片在线| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 久久久国产精品麻豆| 狂野欧美激情性xxxx在线观看| 97在线人人人人妻| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 午夜福利,免费看| 亚洲精品色激情综合| 晚上一个人看的免费电影| 交换朋友夫妻互换小说| 国产av国产精品国产| 涩涩av久久男人的天堂| 免费观看av网站的网址| 搡老乐熟女国产| 久久久久久人妻| 亚洲精品,欧美精品| 午夜激情av网站| 最新的欧美精品一区二区| 在线观看www视频免费| 99香蕉大伊视频| 亚洲精品一区蜜桃| 国产亚洲欧美精品永久| 日韩一区二区视频免费看| 久久午夜综合久久蜜桃| 亚洲精品一二三| 国产亚洲欧美精品永久| 欧美bdsm另类| 国语对白做爰xxxⅹ性视频网站| 亚洲三级黄色毛片| 如日韩欧美国产精品一区二区三区| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 精品福利永久在线观看| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 亚洲av中文av极速乱| 美女xxoo啪啪120秒动态图| av在线app专区| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 亚洲精品视频女| 亚洲av综合色区一区| 亚洲av成人精品一二三区| 成人亚洲精品一区在线观看| 久久ye,这里只有精品| 欧美+日韩+精品| 国产成人a∨麻豆精品| 免费女性裸体啪啪无遮挡网站| 老司机影院成人| 国产极品天堂在线| 内地一区二区视频在线| 啦啦啦在线观看免费高清www| 久久毛片免费看一区二区三区| 综合色丁香网| 插逼视频在线观看| 国产精品久久久久久精品电影小说| 最新的欧美精品一区二区| 中文字幕亚洲精品专区| 最近最新中文字幕免费大全7| 免费少妇av软件| 久久午夜综合久久蜜桃| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 国产有黄有色有爽视频| 欧美性感艳星| 美女内射精品一级片tv| 成人免费观看视频高清| 亚洲精品,欧美精品| 999精品在线视频| 久久99精品国语久久久| 另类精品久久| 制服诱惑二区| 晚上一个人看的免费电影| 只有这里有精品99| 人妻系列 视频| 制服丝袜香蕉在线| 黄色视频在线播放观看不卡| 天天躁夜夜躁狠狠久久av| 人妻系列 视频| 久久毛片免费看一区二区三区| 亚洲av福利一区| 美女中出高潮动态图| 少妇的逼好多水| 秋霞伦理黄片| 一级毛片电影观看| 精品一品国产午夜福利视频| 五月玫瑰六月丁香| 欧美精品高潮呻吟av久久| 亚洲精品色激情综合| 亚洲美女搞黄在线观看| 免费观看a级毛片全部| 国产精品一二三区在线看| 亚洲一区二区三区欧美精品| 午夜激情av网站| a级毛片在线看网站| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 曰老女人黄片| 中文天堂在线官网| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜制服| 丝袜美足系列| 99精国产麻豆久久婷婷| 大片免费播放器 马上看| 久久精品人人爽人人爽视色| 久久 成人 亚洲| www.av在线官网国产| 国产免费视频播放在线视频| 国产欧美亚洲国产| 免费观看无遮挡的男女| 在线天堂中文资源库| 国产免费视频播放在线视频| 人人妻人人爽人人添夜夜欢视频| 在线观看国产h片| 免费在线观看完整版高清| 中文字幕最新亚洲高清| 欧美老熟妇乱子伦牲交| 久久ye,这里只有精品| 少妇被粗大的猛进出69影院 | av片东京热男人的天堂| av在线app专区| 99久久中文字幕三级久久日本| 高清毛片免费看| 国产一区二区在线观看日韩| 狠狠精品人妻久久久久久综合| 哪个播放器可以免费观看大片| 国产成人欧美| 一区二区三区精品91| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 亚洲成人一二三区av| 国产精品偷伦视频观看了| 国产精品久久久久久精品古装| 国产黄色免费在线视频| a级毛色黄片| 日本av免费视频播放| 亚洲精品中文字幕在线视频| 国产黄频视频在线观看| 亚洲欧美一区二区三区国产| 亚洲精品乱码久久久久久按摩| 亚洲欧美日韩另类电影网站| 成人手机av| 国产精品久久久久久精品古装| 成人黄色视频免费在线看| 久久人人97超碰香蕉20202| av片东京热男人的天堂| 亚洲欧美色中文字幕在线| 国产精品免费大片| 国产午夜精品一二区理论片| 成人18禁高潮啪啪吃奶动态图| 国产成人午夜福利电影在线观看| 一级毛片电影观看| 人妻一区二区av| 亚洲 欧美一区二区三区| 女性生殖器流出的白浆| videossex国产| 国产精品久久久久久久电影| 99久国产av精品国产电影| 美女大奶头黄色视频| 欧美成人午夜精品| 亚洲精品视频女| 香蕉精品网在线| 亚洲伊人久久精品综合| 精品亚洲成a人片在线观看| 777米奇影视久久| 少妇被粗大的猛进出69影院 | 在线免费观看不下载黄p国产| 天天躁夜夜躁狠狠久久av| 三级国产精品片| 欧美人与性动交α欧美精品济南到 | 永久免费av网站大全| 一二三四在线观看免费中文在 | 伦理电影免费视频| 伦精品一区二区三区| 男男h啪啪无遮挡| 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品va在线观看不卡| 国产福利在线免费观看视频| 亚洲五月色婷婷综合| 亚洲激情五月婷婷啪啪| 国产一级毛片在线| 亚洲国产精品专区欧美| 亚洲欧美色中文字幕在线| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 亚洲欧美精品自产自拍| 久久久久国产精品人妻一区二区| 国产精品无大码| 丝瓜视频免费看黄片| 18禁裸乳无遮挡动漫免费视频| 久久婷婷青草| 欧美日韩视频高清一区二区三区二| 女人久久www免费人成看片| 欧美 亚洲 国产 日韩一| 欧美精品一区二区大全| 国产乱来视频区| 又大又黄又爽视频免费| 一级爰片在线观看| 中文字幕最新亚洲高清| 免费大片黄手机在线观看| 99久久精品国产国产毛片|