• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive asymptotical synchronization and stabilization in one kind of coupled dynamical network

    2014-11-01 07:18:50,,

    , ,

    (1.School of Mathematics and Systems Science,Shenyang Normal University,Shenyang 110034,China;2.College of Mathematics and Computer Science,Dali University,Dali 671003,China)

    0 Introduction

    Complex networks have been the subject of extensive study for more than two decades due that many systems in nature can be described by models of complex networks[1-5].Examples of the well known complex networks include the internet,the world wide web,food webs,biological neural networks,electrical power grids,telephone cell graphs,coauthor ship and citation networks of scientists,cellular and metabolic networks,etc.There are many interesting issues to study in understanding the complex networks,such as the structural complexity,network evolution,connection diversity,dynamical complexity,node diversity, meta-complication,etc.[3].The synchronization and stabilization of dynamical networks are also such interesting issues.

    The complex network models can be extended from static to dynamic by introducing dynamical elements to be the network nodes[6-7].For the resulting dynamical networks,the synchronization and stabilization of all its dynamical nodes are significant and interesting phenomenon,which have attracted increasing attention from various fields of science and engineering since the beginning of this century.Because the synchronization of a coupled dynamical network can well explain many natural phenomena observed,recently the synchronization of coupled dynamical networks has become a focal point in the study of dynamics[6-29].Some notable works are as follows.In 2002,Wang and Chen[6]presented a simple scale-free dynamical network model and investigated its synchronization.They have also studied the synchronization issue in small-world dynamical networks[7].Later,Lüet al[8]introduced a time-varying complex dynamical network model and investigated its synchronization phenomenon.In[9],Chen et al derived a simple sufficient condition for global synchronization of linearly coupled neural networks.In[10],Li and Chen presented a complex dynamical network model with coupling delays,and further obtained some synchronization conditions for both delay-independent and delay-dependent asymptotical stabilities.

    Note that all the works mentioned above of coupled dynamical networks are devoting to linearly coupled dynamical networks.He and Yang[11]discussed the adaptive synchronization in nonlinearly coupled dynamical networks.In the present work,we continue the study of He and Yang.We study the adaptive asymptotical synchronization and stabilization in one kind of coupled dynamical network with non-uniform coupling strength.Our work riches and improves the contribution of[11].

    The rest of this paper is organized as follows.A coupled dynamical network model with nonuniform coupling strength is introduced and some necessary preliminaries are introduced in Section 2.The adaptive asymptotical synchronization and stabilization of the network model are examined in Section 3and in Section 4,respectively.In Section 5,we propose numerical examples to verify our results of theory.And in Section 6,we conclude the paper.

    1 Preliminaries

    Letx(t)=(x1(t),x2(t),…,xn(t))T∈Rnbe the state variable of an isolated node,which is a dynamical system and described by

    wheref(x(t))=(f1(x(t)),f2(x(t)),…,fn(x(t)))T:Rn→Rnis a given continuous vector valued function(or map).Consider a complex dynamical network ofNcoupled nodesxi,1≤i≤N,with each node being anndimensional dynamical system,which is described by

    Here,xi(t)=(xi1(t),xi2(t),…,xin(t))T(∈Rnfor givent)is the state variable of nodei,i=1,2,…,N;h(x)=(h1(x),h2(x),…,hn(x))T:Rn→Rnis a continuous map;σij=σji(≥0)fori≠j,which represents the coupling strength between the nodesiandj,in particular,σij=σji=0if there is no connection between nodeiandj,andFor the coupling dynamical networks,the concepts of asymptotical synchronization and stabilization are defined as follows.

    Definition 1The coupling dynamical network(2)is said to achieve asymptotical synchronization if and only iffor anyi,j=1,2,…,N.

    Definition 2The coupling dynamical network(2)is said to achieve asymptotical stabilization for vectorx0∈Rnif and only iffor anyi=1,2,…,N.

    Add a simple controlleruito nodeifor eachi.Then we obtain the following controlled dynamical network:

    We call the network (2)to achieve adaptive asymptotical synchronization (stabilization)with controllersui,i=1,2,…,N,if the network (3)is to achieve asymptotical synchronization(stabilization).

    2 Synchronization

    In this section,we discuss the adaptive synchronization of the network (2).To make (3)synchronizing,we choose the controllersui=kxi,wherek(>0)is a constant.Then(3)becomes the following:

    Now,we begin to show the network (4)is to achieve asymptotical synchronization under a certain condition,that is,(2)is to achieve adaptive asymptotical synchronization.

    We first assume there exist two constantsl>0andp>0such that

    for anyx=(x1,x2,…,xn)∈Rnandx′=(x′1,x′2,…,x′n)∈Rn,wherel>0andp>0is called the Lipschitz constants offandhrespectively

    Letxi,i=1,2,…,N,be a set of solution of(4).Consider the following system:

    Then we have

    Lemma 1For(6),assumeLetK=l+M.Then the network(4)is to achieve asymptotical synchronization ifk>K,that is,the network(2)is to achieve adaptive asymptotical synchronization.

    ProofConstruct the following function:

    On the other hand,if(y2,y3,…,yN)=0,thenxi=x1,i=2,3,…,N.This impliesF(yi)=0,andfor alli=2,3,…,N.

    In terms of the facts above,we can easily know that the vector 0is the equilibrium point of(6).Thus,from the Lyapunov function methodThat is,Lemma 1holds.

    Theorem 1For the network(2),assume:σij=σfor anyiandj(i≠j),andk>(l+Npσ).Then,(2)is to achieve adaptive asymptotical synchronization.

    ProofFori=2,…,N, we have

    Therefore,byk>(l+Npσ),we know Theorem 1holds from Lemma1.

    3 Stabilization

    This section further discuss the adaptive asymptotical stabilization of the network(2).

    Choose the controllersui=k(xi-x0),wherex0∈Rnis a fixed vector.Then (3)becomes the following

    Theorem 2For the network(2),assume:there exist two constantsl>0andp>0such that

    for anyx=(x1,x2,…,xn)∈Rn.LetM=max{|σii|:i=1,2,…,N},andK=l+2pNM.Then the network(7)to achieve asymptotical stabilization for the pointx0ifk>K,that is,the network(2)is to achieve adaptive asymptotical stabilization.

    ProofThen(7)becomes

    Construct the following function:

    Then we have

    On the other hand,by(8),the vector 0is the equilibrium point of(9).Thereforefor anyi=1,2,…,N.So,Theorem 2holds.

    4 Simulation

    In this section,we make a simple report on our simulation experiment to verify the theoretical results of the present work.

    For the dynamical system of the isolated node(1),takef(x)(=-10x1+10x2,28x1-x1x3-x2,i.e.the Lorenz chaotic system described in[30]witha=10

    To verify Theorem 1,takeh(x)=(sin2(2x1),cos2(2x2),sin2(2x3))T,σ=0.02,andN=200in the coupling dynamical networks(2)and (4);moreover takek=0.5in the controlled dynamical network(4).For the constructed networks(2)and(4),it can be easily known that the conditions of Theorem 1hold.For the two networks with the same initial values of the nodes chosen randomly from-10to 10,by simulations through Matlab,we obtain the results such as the showed by the Fig.1and the Fig.2,respectively.One can easily know that the adaptive asymptotical synchronization can be quickly achieved under the controllerui=kxifrom comparing the Fig.1and the Fig.2.

    Fig.1 The varying states on the nodes of uncontrolled network(2)of Theorem 1

    Fig.2 The varying states on the nodes of the controlled network(4)of Theorem1

    To verify Theorem 2,in the coupling dynamical networks(2)and(7),takeN=200,h(x)=(sin2(2x1),cos2(2x2),sin2(2x3))T,randomly determineσijas one of 0and any value of the interval[0.01,0.03]fori<j;moreover take alsok=0.5in the controlled dynamical network(7).For such constructed networks(2)and(7),the conditions of Theorem 2also hold forFor the two networks with the same initial values of the nodes chosen randomly from-10to 10,by simulations through Matlab,we obtain the results such as the showed by the Fig.3and the Fig.4,respectively.Fig.3shows the states on the variation of the nodes of the uncontrolled network,that is,the network(2);while Fig.4shows the states on the variation of the nodes of the controlled network,that is,the network(7).Comparing Fig.4with Fig.3,we have the observation that the stable state can quickly reach after controllersui=k(xi-x0)are imposed to the dynamical network(2).

    The two figure suggest that adaptive synchronization and stabilization be achieved under the conditions of Theorem 1and Theorem 2,respectively.That is,the simulation results support our theoretical derivations and analysis.

    Fig.3 The varying states on the nodes of the uncontrolled network(2)of Theorem 2

    Fig.4 The varying states on the nodes of controlled network(7)of Theorem 2

    5 Conclusion

    The adaptive asymptotical synchronization and stabilization in a kind of coupled dynamical network with non-uniform coupling strength have been studied in the present work,respectively.We try to make the network synchronizing and stabilizing by adding suitable simple controllers to each node's dynamical equation.Conditions for both the adaptive asymptotical synchronization and the adaptive asymptotical stabilization are derived,respectively.These conditions are applicable to networks with different sizes.Finally,numerical examples are shown to verify our theoretical results.

    [1]WATTS D J,STROGATZ S H.Collective dynamics of small-world networks[J].Nature,1998,393:440-442.

    [2]BARABáSI A L,ALBERT R.Emergence of scaling in random networks[J].Science,1999,286:509-512.

    [3]STROGATZ S H.Exploring complex networks[J].Nature,2001,410:268-276.

    [4]ALBERT R,BARABáSI A L.Statistical mechanics of complex networks[J].Rev Mod Phys,2002,74:47-91.

    [5]BOCCALETTI S,LATORA V,MORENO Y,et al.Complex networks:structure and dynamics[J].Phys Rep,2006,424:175-308.

    [6]WANGW Xiaofan,CHEN Guanrong.Synchronization in scale-free dynamical net-works:Robustness and fragility[J].IEEE Trans CAS-I,2002,49(1):54-61.

    [7]WANGW Xiaofan,CHEN Guanrong.Synchronization in small-world dynamical networks[J].Int J Bifurcat Chaos,2002,12(1):187-192.

    [8]LU Jinhu,YU Xinghuo,CHEN Guanrong.Chaos synchronization of general complex dynamical networks[J].Phys A,2004,334:281-302.

    [9]CHEN Guanrong,ZHOU Jin,LIU Zengrong.Global synchronization of coupled delayed neural networks and applications to chaotic CNN models[J].Int J Bifurcat Chaos,2004,14(7):2229-2240.

    [10]LIA Chunguang,CHEN Guanrong.Synchronization in general complex dynamical networks with coupling delays[J].Phys A,2004,343:263-278.

    [11]HE Guangming,YANG Jingyu.Adaptive synchronization in nonlinearly coupled dynamical networks[J].Chaos,Solitons Fractals,2008,38(5):1254-1259.

    [12]WANGW Xiaofan.Complex networks:topology,dynamics and synchronization[J].Int J Bifurcat Chaos,2002,12(5):885-916.

    [13]ROSENBLUM M G,PIKOVSKY A S,KURTHS J.Phase synchronization of chaotic oscillators[J].Phys Rev Lett,1996,76(11):1804-1807.

    [14]ROSENBLUM M G,PIKOVSKY A S,KURTHS J.From phase to lag synchronization in coupled chaotic oscillators,Phys Rev Lett,1997,78(22):4193-4196.

    [15]PECORA L M,CARROLL T L.Master stability functions for synchronized coupled systems[J].Phys Rev Lett,1998,80(10):2109-2112.

    [16]JIN Zhou,LU Junan,LU Jinhu.Adaptive synchronization of an uncertain complex dynamical network[J].IEEE Trans Automat Control,2006,51(4):652-656.

    [17]CAO Jinde,LI Ping,WAMNG Weiwei.Global synchronization in arrays of delayed neural networks with constant and delayed coupling[J].Phys Lett A,2006,353(4):318-325.

    [18]WAMNG Weiwei,CAO Jinde.Synchronization in an array of linearly coupled networks with time-varying delay[J].Phys A,2006,366:197-211.

    [19]SONG Qiankun,CAO Jinde.Synchronization and anti-synchronization for chaotic systems[J].Chaos Soliton Fract,2007,33(2):929-939.

    [20]LU Jianquan,DANIEL W C H.Local and global synchronization in general complex dynamical networks with delay coupling[J].Chaos Soliton Fract,2008,37(5):1497-1510.

    [21]YANG Lixin,CHU Yandong,ZHANG Jiangang,et al.Chaos synchronization of coupled hyperchaotic system[J].Chaos Soliton Fract,2009,42(2):724-730.

    [22]LIU Meng,SHAO Yingying,F(xiàn)U Xinchu.Complete synchronization on multi-layer center dynamical networks[J].Chaos Soliton Fract,2009,41(5):2584-2591.

    [23]XIAO Jiangwen,GAO Jiexuan,HHANG Yuehua,et al.Reduced-order adaptive control design for the stabilization and synchronization of a class of nonlinear chaotic systems[J].Chaos Soliton Fract,2009,42(2):1156-1162.

    [24]ZHU Huibin,CUI Baotong.Stabilization and synchronization of chaotic systems via intermittent control[J].Commun Nonlinear Sci Numer Simulat,2010,15:3577-3586.

    [25]XIAO Yuzhu,XU Wei,LI Xiuchun.Synchronization of chaotic dynamical network with unknown generally time-delayed couplings via a simple adaptive feedback control[J].Commun Nonlinear Sci Numer Simulat,2010,15:413-420.

    [26]XU Yuhua,ZHOU Wuneng,F(xiàn)ANG Jianan,et al.Adaptive synchronization of the complex dynamical network with non-derivative and derivative coupling[J].Phys Lett A,2010,374:1673-1677.

    [27]WU Xiangjun,LU Hongtao.Generalized projective synchronization between two different general complex dynamical networks with delayed coupling[J].Phys Lett A,2010,374:3932-3941.

    [28]YANG Xinsong,CAO Jinde.Finite-time stochastic synchronization of complex networks[J].Appl Math Model,2010,34:3631-3641.

    [29]GUO Wanli,AUSTIN F,CHEN Shihua.Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling[J].Commun Nonlinear Sci Numer Simulat,2010,15:1631-1639.

    [30]LORENZ E N.Deterministic non-periodic flow[J].J Atmos Sci,1963,20(2):130-141.

    aaaaa片日本免费| 人人妻人人澡人人爽人人夜夜| 日本黄色视频三级网站网址 | 黑人操中国人逼视频| 久久草成人影院| 亚洲黑人精品在线| 99re6热这里在线精品视频| 黑人操中国人逼视频| 免费观看a级毛片全部| 91精品三级在线观看| 亚洲精品在线美女| 人人妻人人澡人人看| 色在线成人网| 久久精品亚洲精品国产色婷小说| xxxhd国产人妻xxx| 黄色视频,在线免费观看| 极品少妇高潮喷水抽搐| 亚洲国产精品合色在线| 老司机福利观看| 性色av乱码一区二区三区2| 黄色成人免费大全| 国产欧美日韩一区二区三区在线| 亚洲成人国产一区在线观看| 亚洲精品自拍成人| 欧美精品av麻豆av| 久久国产精品影院| 精品国产美女av久久久久小说| 国产成人精品久久二区二区91| 夜夜夜夜夜久久久久| 国产成人精品久久二区二区免费| 免费看a级黄色片| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 伦理电影免费视频| 欧美丝袜亚洲另类 | 国产成人啪精品午夜网站| 操美女的视频在线观看| 免费不卡黄色视频| 高清av免费在线| 成人18禁高潮啪啪吃奶动态图| 最新美女视频免费是黄的| 怎么达到女性高潮| 王馨瑶露胸无遮挡在线观看| 中文字幕精品免费在线观看视频| 99国产精品一区二区三区| a级毛片黄视频| 天天影视国产精品| 国产伦人伦偷精品视频| 国产精品久久电影中文字幕 | 中文字幕人妻丝袜一区二区| 欧美精品一区二区免费开放| 国产激情欧美一区二区| 日韩欧美国产一区二区入口| 国内毛片毛片毛片毛片毛片| 夜夜夜夜夜久久久久| 好看av亚洲va欧美ⅴa在| 久久人人97超碰香蕉20202| 久久久水蜜桃国产精品网| 成人黄色视频免费在线看| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| 国产一区二区三区综合在线观看| av福利片在线| 国产亚洲精品一区二区www | av天堂久久9| 久热爱精品视频在线9| 亚洲美女黄片视频| 国产91精品成人一区二区三区| 啦啦啦免费观看视频1| tube8黄色片| 亚洲国产毛片av蜜桃av| 大型黄色视频在线免费观看| 丁香欧美五月| 国产一区在线观看成人免费| 在线观看免费视频网站a站| 欧美在线黄色| 国产精品免费一区二区三区在线 | 午夜精品在线福利| 免费在线观看黄色视频的| 国产麻豆69| 最新在线观看一区二区三区| 高清av免费在线| 国产男女内射视频| 在线观看免费视频日本深夜| 久久久久精品人妻al黑| av片东京热男人的天堂| 超碰成人久久| av一本久久久久| 自拍欧美九色日韩亚洲蝌蚪91| aaaaa片日本免费| 无人区码免费观看不卡| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻aⅴ院 | 亚洲,欧美精品.| videosex国产| 国产成人欧美| 老司机在亚洲福利影院| av中文乱码字幕在线| 精品人妻熟女毛片av久久网站| 丝袜在线中文字幕| 国产高清视频在线播放一区| 久久久精品免费免费高清| 国产免费现黄频在线看| 中文欧美无线码| 18禁裸乳无遮挡动漫免费视频| 久久久久精品国产欧美久久久| 韩国av一区二区三区四区| 亚洲精品国产区一区二| 久久精品熟女亚洲av麻豆精品| 天堂动漫精品| 色94色欧美一区二区| 国产精品.久久久| 欧美激情高清一区二区三区| 操出白浆在线播放| 亚洲色图综合在线观看| 飞空精品影院首页| 天堂动漫精品| 十八禁人妻一区二区| 777米奇影视久久| 亚洲一区二区三区不卡视频| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 亚洲av日韩在线播放| 18禁裸乳无遮挡动漫免费视频| 欧美国产精品一级二级三级| 国产精品98久久久久久宅男小说| 午夜福利视频在线观看免费| 国产免费现黄频在线看| 操出白浆在线播放| 免费在线观看日本一区| 久久久久久免费高清国产稀缺| 日本欧美视频一区| 成年人免费黄色播放视频| 又大又爽又粗| 黑人猛操日本美女一级片| 成人永久免费在线观看视频| 在线观看66精品国产| 亚洲三区欧美一区| 超碰97精品在线观看| 黄色a级毛片大全视频| 两性午夜刺激爽爽歪歪视频在线观看 | 丁香欧美五月| 中文字幕制服av| 97人妻天天添夜夜摸| 在线观看舔阴道视频| 精品久久久久久久久久免费视频 | 亚洲片人在线观看| 亚洲中文av在线| 成人手机av| 黄色丝袜av网址大全| av天堂久久9| 成人永久免费在线观看视频| videos熟女内射| 国产精品av久久久久免费| 在线观看日韩欧美| 国产精品电影一区二区三区 | 欧美激情高清一区二区三区| 18禁黄网站禁片午夜丰满| 精品久久蜜臀av无| 国产精品久久电影中文字幕 | 美女扒开内裤让男人捅视频| 精品国产乱子伦一区二区三区| av免费在线观看网站| 亚洲少妇的诱惑av| 国产一卡二卡三卡精品| 天堂中文最新版在线下载| e午夜精品久久久久久久| 精品久久久久久久久久免费视频 | 免费在线观看亚洲国产| 色尼玛亚洲综合影院| 成人精品一区二区免费| 丝瓜视频免费看黄片| 成在线人永久免费视频| 日本一区二区免费在线视频| 欧美大码av| 老熟妇乱子伦视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品自产拍在线观看55亚洲 | 国产在线精品亚洲第一网站| 国产亚洲av高清不卡| 一级a爱片免费观看的视频| 亚洲人成77777在线视频| 国产国语露脸激情在线看| 亚洲精品久久午夜乱码| 一边摸一边做爽爽视频免费| 热99久久久久精品小说推荐| 日韩欧美免费精品| 99riav亚洲国产免费| 夜夜夜夜夜久久久久| 人妻丰满熟妇av一区二区三区 | 久久精品国产a三级三级三级| 精品人妻在线不人妻| 久久中文字幕人妻熟女| 中文字幕人妻熟女乱码| 校园春色视频在线观看| av一本久久久久| 亚洲av成人一区二区三| 亚洲精品成人av观看孕妇| 99国产极品粉嫩在线观看| 99re6热这里在线精品视频| 男女免费视频国产| 午夜老司机福利片| 欧美大码av| 国产成人av激情在线播放| 亚洲欧美精品综合一区二区三区| 黄色成人免费大全| 精品国产美女av久久久久小说| 精品国产一区二区三区久久久樱花| 中文欧美无线码| 91老司机精品| 精品国产超薄肉色丝袜足j| 国产精品国产av在线观看| 亚洲久久久国产精品| 国内毛片毛片毛片毛片毛片| 女人久久www免费人成看片| 大型av网站在线播放| 狂野欧美激情性xxxx| 国产精品久久久久成人av| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 色精品久久人妻99蜜桃| 成年人免费黄色播放视频| 久9热在线精品视频| 黄色毛片三级朝国网站| 精品亚洲成a人片在线观看| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区 | 大香蕉久久成人网| 久9热在线精品视频| 欧美精品av麻豆av| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 宅男免费午夜| 亚洲一区二区三区欧美精品| 亚洲第一欧美日韩一区二区三区| 中文字幕av电影在线播放| av免费在线观看网站| 婷婷精品国产亚洲av在线 | 日韩欧美在线二视频 | 欧美日韩亚洲综合一区二区三区_| 欧美色视频一区免费| xxxhd国产人妻xxx| 日韩免费av在线播放| 国产三级黄色录像| 国产成人免费观看mmmm| 亚洲国产精品合色在线| 久久久精品免费免费高清| 国产黄色免费在线视频| aaaaa片日本免费| 亚洲精品国产精品久久久不卡| 51午夜福利影视在线观看| 成人黄色视频免费在线看| 精品国内亚洲2022精品成人 | 国产av一区二区精品久久| 中亚洲国语对白在线视频| 看片在线看免费视频| 免费少妇av软件| 最近最新免费中文字幕在线| 一级毛片精品| 久久国产乱子伦精品免费另类| 欧美日韩乱码在线| 精品一区二区三区av网在线观看| 婷婷成人精品国产| 亚洲七黄色美女视频| 久久影院123| 亚洲精品国产区一区二| 国产精品九九99| 欧美成狂野欧美在线观看| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 日韩熟女老妇一区二区性免费视频| 亚洲国产精品一区二区三区在线| 国产精品美女特级片免费视频播放器 | 日韩欧美国产一区二区入口| 久久精品人人爽人人爽视色| 国产区一区二久久| 人人妻人人爽人人添夜夜欢视频| 在线视频色国产色| 亚洲精品美女久久av网站| 成人手机av| 国产精品电影一区二区三区 | 丝袜美腿诱惑在线| 高清av免费在线| 少妇 在线观看| 午夜福利一区二区在线看| 高清毛片免费观看视频网站 | 亚洲人成电影免费在线| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 亚洲九九香蕉| 国产区一区二久久| 757午夜福利合集在线观看| 久久久久久久国产电影| 欧美日韩成人在线一区二区| 九色亚洲精品在线播放| 母亲3免费完整高清在线观看| 午夜91福利影院| 日韩三级视频一区二区三区| 精品国内亚洲2022精品成人 | 99久久综合精品五月天人人| 亚洲欧美色中文字幕在线| 很黄的视频免费| 午夜视频精品福利| 久99久视频精品免费| 久久香蕉精品热| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 日韩视频一区二区在线观看| 热re99久久国产66热| 天堂√8在线中文| 正在播放国产对白刺激| 久久久精品免费免费高清| 中出人妻视频一区二区| 亚洲国产毛片av蜜桃av| 热99re8久久精品国产| 手机成人av网站| 香蕉丝袜av| 成人精品一区二区免费| av有码第一页| 少妇猛男粗大的猛烈进出视频| 亚洲成人国产一区在线观看| 最近最新中文字幕大全电影3 | 性少妇av在线| 国产精品综合久久久久久久免费 | 夜夜躁狠狠躁天天躁| 久久狼人影院| 法律面前人人平等表现在哪些方面| 波多野结衣av一区二区av| 亚洲人成伊人成综合网2020| 亚洲av成人不卡在线观看播放网| 免费观看a级毛片全部| 精品国产超薄肉色丝袜足j| av网站免费在线观看视频| 高清欧美精品videossex| 国产精品一区二区在线观看99| 50天的宝宝边吃奶边哭怎么回事| 男女床上黄色一级片免费看| 人妻丰满熟妇av一区二区三区 | 久久99一区二区三区| 午夜91福利影院| 亚洲av日韩精品久久久久久密| 人人澡人人妻人| 在线观看免费视频网站a站| 香蕉国产在线看| 免费日韩欧美在线观看| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 国产精品免费大片| 精品人妻在线不人妻| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 一级片'在线观看视频| 搡老岳熟女国产| 狂野欧美激情性xxxx| 色在线成人网| 精品午夜福利视频在线观看一区| 国产xxxxx性猛交| 女人被狂操c到高潮| 亚洲精品在线观看二区| 99久久精品国产亚洲精品| 人人妻,人人澡人人爽秒播| 午夜老司机福利片| videos熟女内射| 免费不卡黄色视频| 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 日韩欧美一区视频在线观看| 国内久久婷婷六月综合欲色啪| 国产又爽黄色视频| 午夜成年电影在线免费观看| 亚洲视频免费观看视频| 久久国产精品人妻蜜桃| 亚洲久久久国产精品| 50天的宝宝边吃奶边哭怎么回事| 欧美日本中文国产一区发布| 亚洲成人手机| 少妇裸体淫交视频免费看高清 | 精品福利观看| 色精品久久人妻99蜜桃| 天堂俺去俺来也www色官网| 国产精品偷伦视频观看了| 在线观看www视频免费| 91国产中文字幕| 天堂俺去俺来也www色官网| 91国产中文字幕| 欧美日韩黄片免| 中文欧美无线码| 欧美日韩黄片免| 久久久国产成人免费| 中文字幕制服av| 视频区图区小说| 99久久人妻综合| 女人精品久久久久毛片| 日韩 欧美 亚洲 中文字幕| 高清av免费在线| 日韩欧美一区视频在线观看| 精品第一国产精品| 天堂√8在线中文| 国产1区2区3区精品| 色94色欧美一区二区| 精品国产国语对白av| 日韩欧美免费精品| 亚洲色图av天堂| 一边摸一边抽搐一进一小说 | 一进一出抽搐动态| 91成人精品电影| 久久精品国产99精品国产亚洲性色 | 亚洲熟女精品中文字幕| 国产欧美日韩一区二区三区在线| 久久这里只有精品19| 涩涩av久久男人的天堂| 国产精品亚洲av一区麻豆| 欧美av亚洲av综合av国产av| 夫妻午夜视频| 男女床上黄色一级片免费看| 美女福利国产在线| 男女之事视频高清在线观看| 亚洲欧美精品综合一区二区三区| 中文欧美无线码| 老熟妇仑乱视频hdxx| 精品一区二区三区四区五区乱码| 国产成人系列免费观看| 日韩欧美在线二视频 | 啦啦啦视频在线资源免费观看| 国产精品免费一区二区三区在线 | 国产熟女午夜一区二区三区| 黄色片一级片一级黄色片| 欧美不卡视频在线免费观看 | 色尼玛亚洲综合影院| av线在线观看网站| 亚洲人成电影观看| 午夜91福利影院| 日韩三级视频一区二区三区| av一本久久久久| 亚洲片人在线观看| 成人三级做爰电影| 国产男靠女视频免费网站| 视频区图区小说| 久久久精品区二区三区| 久久人妻福利社区极品人妻图片| 亚洲在线自拍视频| 午夜福利欧美成人| 欧美精品一区二区免费开放| 在线十欧美十亚洲十日本专区| 国产三级黄色录像| 多毛熟女@视频| 欧美av亚洲av综合av国产av| 亚洲免费av在线视频| 99精国产麻豆久久婷婷| 免费av中文字幕在线| 久久久国产欧美日韩av| 女警被强在线播放| 不卡一级毛片| 99riav亚洲国产免费| 在线观看66精品国产| 亚洲精品国产区一区二| 真人做人爱边吃奶动态| 捣出白浆h1v1| 国产精品电影一区二区三区 | 国产av又大| 欧美亚洲日本最大视频资源| 麻豆国产av国片精品| 久久婷婷成人综合色麻豆| 国产精品偷伦视频观看了| 国产精品免费视频内射| 亚洲黑人精品在线| 国产精品国产高清国产av | 午夜福利影视在线免费观看| 香蕉丝袜av| 欧美人与性动交α欧美软件| 亚洲av日韩在线播放| 美女国产高潮福利片在线看| 国产精品久久久久久人妻精品电影| 9热在线视频观看99| 天天添夜夜摸| 王馨瑶露胸无遮挡在线观看| 精品久久久久久久久久免费视频 | 婷婷成人精品国产| 国产欧美日韩一区二区精品| 国产一区二区三区视频了| 亚洲人成电影观看| 精品一区二区三区视频在线观看免费 | 亚洲中文字幕日韩| 1024视频免费在线观看| 亚洲精品成人av观看孕妇| 丝袜人妻中文字幕| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 国产一区二区三区视频了| tocl精华| 三上悠亚av全集在线观看| 99久久国产精品久久久| 国产野战对白在线观看| 国产区一区二久久| tube8黄色片| 欧美另类亚洲清纯唯美| 两个人免费观看高清视频| 欧美国产精品一级二级三级| 精品人妻在线不人妻| 国产aⅴ精品一区二区三区波| 亚洲,欧美精品.| xxxhd国产人妻xxx| 日本精品一区二区三区蜜桃| 欧美久久黑人一区二区| 99热只有精品国产| 欧美最黄视频在线播放免费 | 久久狼人影院| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美一区视频在线观看| 国产高清videossex| 国产91精品成人一区二区三区| 中文字幕最新亚洲高清| 国产91精品成人一区二区三区| 色尼玛亚洲综合影院| 国产精品香港三级国产av潘金莲| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 国产亚洲欧美精品永久| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| avwww免费| 国产精品 欧美亚洲| 精品国产美女av久久久久小说| 正在播放国产对白刺激| a级片在线免费高清观看视频| 久久久久精品国产欧美久久久| 一进一出好大好爽视频| 久久影院123| 99re6热这里在线精品视频| 久久青草综合色| 在线天堂中文资源库| 日日爽夜夜爽网站| 国产一区二区激情短视频| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| 女性被躁到高潮视频| av网站免费在线观看视频| 亚洲欧美精品综合一区二区三区| av超薄肉色丝袜交足视频| 黑人巨大精品欧美一区二区mp4| 又大又爽又粗| 动漫黄色视频在线观看| 在线观看免费午夜福利视频| 人人妻,人人澡人人爽秒播| 久久草成人影院| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 91精品三级在线观看| 丁香六月欧美| 一个人免费在线观看的高清视频| 一级a爱视频在线免费观看| 国产精品秋霞免费鲁丝片| 80岁老熟妇乱子伦牲交| netflix在线观看网站| 高清毛片免费观看视频网站 | 久久狼人影院| 啦啦啦视频在线资源免费观看| cao死你这个sao货| 女人被躁到高潮嗷嗷叫费观| www.精华液| 91成年电影在线观看| 在线观看免费视频日本深夜| 久久久久久亚洲精品国产蜜桃av| 美女高潮喷水抽搐中文字幕| 欧美国产精品va在线观看不卡| 国产欧美日韩一区二区精品| 精品视频人人做人人爽| 少妇猛男粗大的猛烈进出视频| av超薄肉色丝袜交足视频| 久久精品国产a三级三级三级| 久久久久精品国产欧美久久久| 国产一区二区三区在线臀色熟女 | 少妇被粗大的猛进出69影院| 午夜91福利影院| 两性夫妻黄色片| 日韩 欧美 亚洲 中文字幕| 久久国产亚洲av麻豆专区| a级毛片在线看网站| 十八禁高潮呻吟视频| 亚洲在线自拍视频| 国产成人精品无人区| 自线自在国产av| av一本久久久久| 精品国产乱码久久久久久男人| 欧美日韩黄片免| 欧美另类亚洲清纯唯美| 一个人免费在线观看的高清视频| 中文亚洲av片在线观看爽 | 欧美午夜高清在线| 欧美乱色亚洲激情| 别揉我奶头~嗯~啊~动态视频| 午夜福利乱码中文字幕| 欧美日韩国产mv在线观看视频| 亚洲人成电影观看| 日本欧美视频一区| 美女福利国产在线| 久久精品亚洲av国产电影网| 精品一区二区三卡| 在线国产一区二区在线| 大香蕉久久成人网| 一a级毛片在线观看| 亚洲国产欧美网| 欧美精品一区二区免费开放| 国产精品香港三级国产av潘金莲| 色播在线永久视频| 香蕉国产在线看| 国产高清激情床上av| 欧美乱码精品一区二区三区| 欧美色视频一区免费| 国产蜜桃级精品一区二区三区 | 久久亚洲真实| 午夜影院日韩av| 啦啦啦在线免费观看视频4| 丝袜人妻中文字幕|