朱浩朋,伍玉梅,唐峰華,靳少非,裴凱洋,崔雪森
采用卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型
朱浩朋1,2,伍玉梅2,唐峰華2,靳少非3,裴凱洋4,崔雪森2※
(1. 上海海洋大學(xué)海洋科學(xué)學(xué)院,上海 201306;2. 中國(guó)水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所農(nóng)業(yè)農(nóng)村部遠(yuǎn)洋與極地漁業(yè)創(chuàng)新重點(diǎn)實(shí)驗(yàn)室,上海 200090;3. 閩江學(xué)院海洋學(xué)院,福州 350108;4. 上海海洋大學(xué)信息學(xué)院,上海 201306)
對(duì)遠(yuǎn)洋漁場(chǎng)資源和位置進(jìn)行預(yù)報(bào)可以為遠(yuǎn)洋漁業(yè)生產(chǎn)及管理提供重要信息。該研究針對(duì)西北太平洋柔魚漁場(chǎng),利用海洋表面溫度遙感信息和中國(guó)遠(yuǎn)洋漁船生產(chǎn)資料,基于深度學(xué)習(xí)原理,選取卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型。根據(jù)不同月份、不同通道構(gòu)建了多種數(shù)據(jù)集,用于訓(xùn)練漁場(chǎng)預(yù)報(bào)模型。訓(xùn)練結(jié)果表明,4個(gè)通道組合的數(shù)據(jù)集的訓(xùn)練結(jié)果最優(yōu),漁汛早期(7—8月)、中期(9月)和后期(10—11月)測(cè)試集準(zhǔn)確率分別為80.5%、81.5%和81.4%。以2015年的真實(shí)漁場(chǎng)數(shù)據(jù)對(duì)模型進(jìn)行驗(yàn)證,模型的平均召回率為82.3%,平均精確率為66.6%,F(xiàn)1得分平均值為73.1%,預(yù)測(cè)的高產(chǎn)漁區(qū)與實(shí)際作業(yè)的高單位捕撈努力量漁獲量區(qū)基本匹配。該研究構(gòu)建的漁場(chǎng)預(yù)報(bào)模型可以獲得較好的準(zhǔn)確率,可為其他魚種的漁場(chǎng)預(yù)報(bào)模型構(gòu)建提供思路。
卷積神經(jīng)網(wǎng)絡(luò);模型;漁業(yè);西北太平洋;柔魚
柔魚()屬于頭足類,主要分布于太平洋、印度洋、大西洋溫帶與副熱帶海域,是西北太平洋的主要商業(yè)性開發(fā)性魚種之一[1]。全球?qū)ξ鞅碧窖笕狒~的商業(yè)性開發(fā)始于1974年,作業(yè)方式以釣捕為主,而中國(guó)對(duì)柔魚的捕撈則起步于20世紀(jì)90年代,歷經(jīng)30 a的高速發(fā)展,遠(yuǎn)洋魷釣產(chǎn)業(yè)已經(jīng)是中國(guó)遠(yuǎn)洋漁業(yè)的一個(gè)重要組成部分[2],截至2017年中國(guó)魷釣漁船總數(shù)高達(dá)706艘,歷史最高產(chǎn)量高達(dá)78 860萬(wàn)kg,已經(jīng)是全球產(chǎn)業(yè)和規(guī)模最大的國(guó)家[3],但是資源開發(fā)能力與遠(yuǎn)洋魷釣漁業(yè)強(qiáng)國(guó)的目標(biāo)尚有一定的差距,漁場(chǎng)預(yù)報(bào)技術(shù)的不足就是主要原因之一[4]。準(zhǔn)確而高效地進(jìn)行漁場(chǎng)預(yù)報(bào),可以節(jié)省尋找漁場(chǎng)的時(shí)間,提高捕撈地效率,有助于減少漁業(yè)生產(chǎn)成本,對(duì)中國(guó)漁業(yè)生產(chǎn)的發(fā)展有著重要意義。
魚類漁獲量受資源量大小的影響,漁場(chǎng)漁汛的形成也與周邊環(huán)境變化有關(guān)。因此,通過不同的海洋環(huán)境因子建立漁場(chǎng)預(yù)報(bào)模型是當(dāng)前進(jìn)行漁情預(yù)報(bào)的一個(gè)常用手段。遙感技術(shù)的普及使得獲取大范圍的海洋信息成為可能,為漁場(chǎng)預(yù)報(bào)模型的建立提供了便利。在眾多漁場(chǎng)預(yù)報(bào)模型中,貝葉斯方法是一種較為常用的單一環(huán)境因子建模方法。樊偉等[5]以海洋表面溫度與葉綠素共同建立了金槍魚貝葉斯概率模型。在此基礎(chǔ)上,崔雪森等[6]嘗試使用樸素貝葉斯思想,增加了西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型的輸入因子維度?;貧w模型也是一種較常見的建模方式[7-8],如Solanki等[8]利用廣義相加模型(Generalized Additive Model,GAM)進(jìn)行了阿拉伯海域的漁業(yè)資源預(yù)測(cè)研究。隨著海洋遙感技術(shù)的發(fā)展,海洋環(huán)境數(shù)據(jù)的種類越來越豐富,獲取方式越來越便捷,使多環(huán)境因子共同構(gòu)建模型提高漁場(chǎng)預(yù)報(bào)準(zhǔn)確率成為了可能。利用一系列規(guī)則對(duì)數(shù)據(jù)分類的決策樹算法[9-10]有利于構(gòu)建多環(huán)境因子的柔魚漁場(chǎng)預(yù)報(bào)模型,其中崔雪森等[11]利用分類回歸樹進(jìn)行漁場(chǎng)模型的構(gòu)建,便于分析復(fù)雜多因子,而在此基礎(chǔ)上產(chǎn)生的隨機(jī)森林模型,在漁場(chǎng)預(yù)報(bào)中也得到了應(yīng)用。隨著計(jì)算機(jī)技術(shù)的進(jìn)步,人工神經(jīng)網(wǎng)絡(luò)在漁場(chǎng)預(yù)報(bào)建模型中也得到了越來越多的應(yīng)用,在西北太平洋柔魚[12]、東南太平洋莖柔魚[13]、南太平洋長(zhǎng)鰭金槍魚[14]、中西太平洋鰹魚[15]等不同海域不同魚種漁場(chǎng)預(yù)報(bào)取得了一定的成效。針對(duì)西北太平洋柔魚漁場(chǎng)模型應(yīng)用方面,近年來關(guān)注較多的是棲息地指數(shù)(Habitat Suitability Index,HSI)模型[16-17]。Tian等[18]通過定量研究對(duì)比了以作業(yè)努力量和單位捕撈努力量漁獲量(Catch Per Unit Effort,CPUE)為基礎(chǔ)的HSI模型,并研究適合柔魚漁場(chǎng)形成的海洋環(huán)境,方學(xué)燕等[19]在對(duì)比基于作業(yè)努力量與CPUE的HSI模型基礎(chǔ)上優(yōu)化了智利外海莖柔魚漁場(chǎng)預(yù)報(bào)模型。盡管上述漁場(chǎng)預(yù)報(bào)模型的結(jié)構(gòu)或便利或復(fù)雜,但多為弱分類器或多個(gè)弱分類器的簡(jiǎn)單組合。另外,由于傳統(tǒng)模型在輸入數(shù)據(jù)的維度上存在限制,所以多選取漁區(qū)對(duì)應(yīng)經(jīng)緯度坐標(biāo)的單個(gè)點(diǎn)的環(huán)境數(shù)據(jù)在空間上進(jìn)行抽取,從而使得漁場(chǎng)環(huán)境數(shù)據(jù)的空間信息難以得到充分利用。近年來出現(xiàn)的卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是圖像識(shí)別的重要方法之一,是近幾年深度學(xué)習(xí)領(lǐng)域的研究熱點(diǎn),具備自動(dòng)提取圖像特征,兼顧空間信息,建模能力強(qiáng),可通過圖形處理器(Graphics Processing Unit,GPU)獲取超強(qiáng)的計(jì)算能力,降低網(wǎng)絡(luò)復(fù)雜度,有效抑制過擬合等優(yōu)點(diǎn)[20]。
目前,深度學(xué)習(xí)在漁場(chǎng)預(yù)報(bào)方面的研究鮮見報(bào)道。鑒于卷積神經(jīng)網(wǎng)絡(luò)其在圖像特征提取和分類等復(fù)雜問題方面取得的成功,本研究基于深度學(xué)習(xí)原理,以漁區(qū)周邊區(qū)域的環(huán)境數(shù)據(jù)及時(shí)空信息為輸入數(shù)據(jù),在考慮柔魚生物學(xué)特征和漁場(chǎng)時(shí)空特性情況下,構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)的西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型,并對(duì)漁場(chǎng)預(yù)報(bào)效果進(jìn)行檢驗(yàn),以期望在大數(shù)據(jù)背景下運(yùn)用深度學(xué)習(xí)方法提高遠(yuǎn)洋漁場(chǎng)的認(rèn)識(shí)水平,拓寬預(yù)報(bào)模型構(gòu)建思路,提高人工智能方法在遠(yuǎn)洋漁業(yè)領(lǐng)域的應(yīng)用能力。
研究區(qū)域位于西北太平洋海域(35°N~48°N,145°E~165°E),該海域有著比較特殊的海洋環(huán)境,溫差隨季節(jié)變化較大,平均季節(jié)溫差最高可達(dá)13 ℃[21],親潮寒流與黑潮暖流的交匯。柔魚一般隨暖流做向北洄游,會(huì)在黑潮與親潮的交匯區(qū)形成漁場(chǎng)[22],同時(shí),該海域也是中國(guó)魷釣漁船在太平洋的主要活動(dòng)水域(圖1)。根據(jù)世界糧農(nóng)組織2015年漁業(yè)和水產(chǎn)養(yǎng)殖統(tǒng)計(jì)年鑒[23],太平洋的柔魚漁獲量占全球總漁獲量的64%,其中西北太平洋這一海域的魷魚漁獲量占全太平洋柔魚產(chǎn)量的36%,是世界魷魚產(chǎn)業(yè)不可或缺的一部分。從地理位置上看,西北太平洋更接近于中國(guó);從柔魚產(chǎn)量上來說,西北太平洋是中國(guó)柔魚產(chǎn)量最高的海域,占中國(guó)柔魚總產(chǎn)量的43%[23]。
圖1 西北太平洋柔魚漁場(chǎng)分布
本研究中柔魚漁獲數(shù)據(jù)來自于中國(guó)遠(yuǎn)洋漁業(yè)分會(huì)魷釣工作組提供的西北太平洋柔魚的生產(chǎn)信息日?qǐng)?bào),時(shí)間范圍是2000—2015年的7—11月,數(shù)據(jù)包含作業(yè)日期、經(jīng)度與緯度、漁獲量、船數(shù)等。
環(huán)境數(shù)據(jù)來自美國(guó)航空航天局(National Aeronautics and Space Administration,NASA)網(wǎng)站提供的中分辨率成像光譜儀(Moderate-resolution Imaging Spectroradiometer,MODIS)衛(wèi)星傳感器獲取的海洋表面溫度(Sea Surface Temperature,SST)三級(jí)海洋環(huán)境數(shù)據(jù)產(chǎn)品,該數(shù)據(jù)精度和可靠性得到認(rèn)可[5,15,17],且擁有較高的時(shí)空分辨率(時(shí)間分辨率為8 d,空間分辨率是0.08°× 0.08°)。該數(shù)據(jù)相較于一些傳統(tǒng)方法的1°×1°的空間分辨率以及每月的時(shí)間分辨率能更好的滿足漁場(chǎng)預(yù)報(bào)實(shí)用性的要求,且其獲取來源可靠穩(wěn)定,數(shù)據(jù)質(zhì)量較高,有利于模型構(gòu)建完成后的業(yè)務(wù)化應(yīng)用。
1.3.1 生產(chǎn)數(shù)據(jù)預(yù)處理
單位捕撈努力量漁獲量(Catch Per Unit Effort,CPUE,103kg/d)表示漁業(yè)資源狀況及其豐度的常用指標(biāo)。本研究將柔魚生產(chǎn)數(shù)據(jù)以0.5°×0.5°的網(wǎng)格為最小漁區(qū)進(jìn)行統(tǒng)計(jì),根據(jù)漁區(qū)網(wǎng)格內(nèi)的漁獲數(shù)據(jù)計(jì)算8 d內(nèi)的平均CPUE,如式(1)所示
式中Catch為一個(gè)漁區(qū)內(nèi)的總漁獲量,103kg;Effort為一個(gè)漁區(qū)內(nèi)所有船的總作業(yè)天數(shù),d。
另外,將2000—2015年網(wǎng)格(0.5°×0.5°)CPUE樣本按月份分組,分別計(jì)算15 a中每個(gè)月份CPUE樣本數(shù)據(jù)的中位數(shù),然后分別將各年份中該月各個(gè)漁區(qū)網(wǎng)格CPUE與該中位數(shù)進(jìn)行比較。若漁區(qū)CPUE高于該中位數(shù),則將其定義為高產(chǎn)漁區(qū);反之,定義為低產(chǎn)漁區(qū)。
1.3.2 數(shù)據(jù)集構(gòu)建
數(shù)據(jù)集的每個(gè)樣本由2個(gè)部分組成,一是多通道二維灰度圖像,像素為65×65;二是漁區(qū)類型標(biāo)簽,以高產(chǎn)漁區(qū)或低產(chǎn)漁區(qū)(設(shè)高產(chǎn)漁區(qū)為1,低產(chǎn)漁區(qū)為0)作為每個(gè)樣本的標(biāo)簽,整個(gè)數(shù)據(jù)集中80%的樣本數(shù)據(jù)作為訓(xùn)練集,其余的20%作為測(cè)試集。其中單個(gè)樣本各通道代表意義如下:
1)第一通道為SST二維圖像數(shù)據(jù)。以漁區(qū)為中心,首先根據(jù)經(jīng)緯度以及時(shí)間范圍將柔魚漁獲數(shù)據(jù)與海洋表面溫度數(shù)據(jù)SST相匹配,然后按照像素大小65×65以漁區(qū)為中心提取海洋表面溫度圖像,以此作為數(shù)據(jù)集單個(gè)樣本的第一通道(圖2a)。
2)第二、三、四通道分別表示經(jīng)度、緯度和作業(yè)月份,為了與第一通道的數(shù)據(jù)在維度上匹配,需要將這3個(gè)輸入數(shù)據(jù)從零維標(biāo)量擴(kuò)展為像素65×65的二維張量。
以經(jīng)度為例,首先根據(jù)樣本集中漁獲數(shù)據(jù)經(jīng)度信息確定其經(jīng)度最大變動(dòng)范圍(145°E~170°E),再生成一幅行列65×65的二維灰度圖像,依據(jù)當(dāng)前樣本中網(wǎng)格中心經(jīng)度在最大經(jīng)度范圍中的相對(duì)位置,在灰度圖像上將相對(duì)位置的上方像素的值填充為1,下方像素的值填充為0,如第二通道圖像表示的經(jīng)度為145 °E加上像素值為1的部分在圖像中所占的比例與最大、最小經(jīng)度差值的乘積(圖2b)。利用上述方法,對(duì)樣本中緯度信息(圖 2c)和月份信息(圖2d)也作同樣的處理,從而將零維時(shí)空數(shù)據(jù)擴(kuò)充成二維張量信息,使SST圖像、經(jīng)緯度及月份在形式上統(tǒng)一,作為不同通道的輸入數(shù)據(jù)供給模型訓(xùn)練。
圖2 某一樣本的4個(gè)通道數(shù)據(jù)示意圖
1.4.1 數(shù)據(jù)增強(qiáng)方法
因?yàn)橛行狒~生產(chǎn)數(shù)據(jù)的數(shù)據(jù)量較小(不足6 000條),為了增加訓(xùn)練樣本的數(shù)量以及多樣性(噪聲數(shù)據(jù)),提升模型魯棒性,減少模型對(duì)某些屬性的依賴程度,本研究通過SST圖像小角度隨機(jī)旋轉(zhuǎn)(±10°之間)、圖像中心點(diǎn)隨機(jī)偏移(±0.1個(gè)經(jīng)緯度)等方法對(duì)數(shù)據(jù)集進(jìn)行擴(kuò)充,使樣本量擴(kuò)充至29 084條,每個(gè)點(diǎn)位的實(shí)際漁獲量數(shù)據(jù)分別對(duì)應(yīng)以該點(diǎn)位為中心的行列為65×65的SST,空間跨度大于5個(gè)經(jīng)緯度。與此相比,小范圍內(nèi)隨機(jī)旋轉(zhuǎn)或偏移所帶來的偏差影響像素?cái)?shù)目小于整個(gè)樣本像素總數(shù)的2%,在可接受范圍內(nèi)。
1.4.2 AlexNet網(wǎng)絡(luò)模型結(jié)構(gòu)
本研究選擇AlexNet網(wǎng)絡(luò)模型結(jié)構(gòu),因其簡(jiǎn)單易實(shí)現(xiàn),而且通過隨機(jī)失活(Dropout)層可以有效防止過擬合[24]、通過局部響應(yīng)歸一化層(Local Response Normalization,LRN)增強(qiáng)模型的泛化能力。AlexNet網(wǎng)絡(luò)模型結(jié)構(gòu)[25]主要包含5個(gè)卷積層和3個(gè)全連接層,在第1、2、5層卷積層后各存在1層池化層和1層標(biāo)準(zhǔn)化層,1、2層全連接層后各存在一層Dropout層,使用的激活函數(shù)為Relu。
1.4.3 漁場(chǎng)概率計(jì)算方法
模型中全連接層輸出的是一個(gè)二維向量,代表模型根據(jù)權(quán)重計(jì)算的高產(chǎn)漁區(qū)、低產(chǎn)漁區(qū)對(duì)應(yīng)的線性預(yù)測(cè)值,然后通過Softmax函數(shù)將這2個(gè)值轉(zhuǎn)化為0~1之間的概率值,其計(jì)算如式(2)所示。
1.4.4 訓(xùn)練方案及評(píng)價(jià)指標(biāo)
不同季節(jié)柔魚漁場(chǎng)環(huán)境有較大的變化,根據(jù)Fan等[26]結(jié)論,本研究將數(shù)據(jù)集依據(jù)月份不同進(jìn)行分組,即分為7—8月、9月和10—11月3組,分別稱為漁汛早期、漁汛中期和漁汛后期。同時(shí),本研究采取7—11月不分組進(jìn)行訓(xùn)練,方便與季節(jié)分組的方案進(jìn)行對(duì)比,選擇較優(yōu)的訓(xùn)練集季節(jié)組合。
在此基礎(chǔ)上,為了考察通道數(shù)量對(duì)模型性能的影響,本研究對(duì)不同輸入通道進(jìn)行了4種組合,即單個(gè)通道(僅SST)、2個(gè)通道(即SST與月份)、3個(gè)通道(SST和經(jīng)緯度)和4個(gè)通道(SST、經(jīng)緯度和月份),最終確定最優(yōu)的訓(xùn)練方案,模型訓(xùn)練結(jié)果評(píng)價(jià)指標(biāo)是所有樣本中預(yù)測(cè)結(jié)果正確的比例即準(zhǔn)確率(Accuracy),計(jì)算如式(3)所示。
式中TP為真實(shí)高產(chǎn)漁場(chǎng)被正確預(yù)測(cè)為高產(chǎn)漁場(chǎng)的漁區(qū)個(gè)數(shù),F(xiàn)N為真實(shí)高產(chǎn)漁場(chǎng)被錯(cuò)誤預(yù)測(cè)為低產(chǎn)漁場(chǎng)的個(gè)數(shù),F(xiàn)P為真實(shí)低產(chǎn)漁場(chǎng)被錯(cuò)誤預(yù)測(cè)為高產(chǎn)漁場(chǎng)的個(gè)數(shù),TN為真實(shí)低產(chǎn)漁場(chǎng)正確預(yù)測(cè)為低產(chǎn)漁場(chǎng)的個(gè)數(shù)。
1.4.5 模型預(yù)報(bào)效果檢驗(yàn)
通過計(jì)算模型預(yù)測(cè)結(jié)果的精確率(Precision)、高產(chǎn)漁場(chǎng)的召回率(Recall)、F1得分(F1-score)來檢驗(yàn)?zāi)P驮趯?shí)際應(yīng)用中的效果,精確率、召回率、F1得分分別是預(yù)測(cè)為高產(chǎn)的漁場(chǎng)中預(yù)測(cè)結(jié)果正確的比例、高產(chǎn)漁場(chǎng)被準(zhǔn)確預(yù)測(cè)出來的比例、綜合衡量精確率與召回率的一個(gè)指標(biāo)。其計(jì)算如式(4)~式(6)所示。
按照柔魚產(chǎn)卵孵化的高峰期,可以分為冬春生群體、秋生群體2個(gè)種群[1,27],西北太平洋的柔魚主要是冬春生群體,無(wú)論是秋生還是冬春生群體一般都會(huì)隨季節(jié)做南北洄游,西北太平洋柔魚的早期幼體一般生活在35°N以南的黑潮逆流海區(qū),9月份柔魚會(huì)進(jìn)入索餌洄游期,向北或東北進(jìn)入黑潮和親潮交匯區(qū),隨著柔魚群體生長(zhǎng)成熟,開始進(jìn)入產(chǎn)卵洄游期,秋季成熟的雄性個(gè)體在10 —11月份向南洄游產(chǎn)卵,雌性個(gè)體成熟得較晚,于11月開始向南產(chǎn)卵洄游[28-29]。在柔魚洄游的不同階段,柔魚適宜的棲息環(huán)境不同。單就SST而言,7—8月、9月和10—11月的最適宜溫度分別為16~21 ℃、14~19 ℃和11~17 ℃,但7—8月CPUE與SST呈正相關(guān)關(guān)系,9月SST僅在低溫范圍呈正相關(guān),而10—11月為負(fù)相關(guān)[30]。
鑒于此,為了分析柔魚生長(zhǎng)階段及洄游規(guī)律對(duì)模型精度的影響,以2組數(shù)據(jù)集進(jìn)行訓(xùn)練對(duì)比結(jié)果,一組是訓(xùn)練集不按月份進(jìn)行分組,即以7—11月整體參與訓(xùn)練,另一組是根據(jù)柔魚洄游的規(guī)律將訓(xùn)練數(shù)據(jù)分組為7—8月(漁汛早期)、9月(漁汛中期)、10—11月(漁汛后期)3個(gè)數(shù)據(jù)集進(jìn)行訓(xùn)練,通道數(shù)量為4個(gè),訓(xùn)將練數(shù)據(jù)輸入基于Python語(yǔ)言構(gòu)建的Alexnet網(wǎng)絡(luò)模型,學(xué)習(xí)率設(shè)置為0.000 1,訓(xùn)練集每完成100次迭代,計(jì)算1次測(cè)試集準(zhǔn)確率。經(jīng)過訓(xùn)練集的80 000次迭代后,7—8月、9月、10—11月3組數(shù)據(jù)的測(cè)試集準(zhǔn)確率分別達(dá)到80.5%、81.5%和81.4%(圖3),之后不再提高,3組數(shù)據(jù)間的訓(xùn)練效果差別較小,但相較于同等條件訓(xùn)練的不分組數(shù)據(jù)集(7—11月)的74.4%,測(cè)試集準(zhǔn)確率的提升幅度均大于6.1個(gè)百分點(diǎn)。因此,在構(gòu)建西北太平洋的漁場(chǎng)預(yù)報(bào)模型時(shí),柔魚的洄游規(guī)律是必須要考慮的因素之一,本研究中將7—8月、9月、10—11月的數(shù)據(jù)集分開訓(xùn)練是合理的。
柔魚是一種高度洄游的魚種,每年都往返于西北太平洋南部亞熱帶的產(chǎn)卵場(chǎng)與北部索餌場(chǎng)之間的海域。在該海域的經(jīng)度方向上,CPUE也會(huì)發(fā)生較大的變化,通常由西向東CPUE呈逐漸減少的趨勢(shì)[26]。根據(jù)1995—2001年的調(diào)查結(jié)果,140°~150°E、150°~165°E和165°~180°E區(qū)域的平均CPUE分別為2.41、1.94和1.18×103kg/d。緯度方向上同樣與CPUE有關(guān)。全年來看,柔魚CPUE大體上會(huì)隨著緯度的增加而增加,但從季節(jié)上來看,在7—9月期間隨著緯度的升高而增加,而到了10—11月份,CPUE隨著緯度的增加而減少[26-27]。
注:訓(xùn)練集每完成100次迭代,計(jì)算1次測(cè)試集準(zhǔn)確率。
為了驗(yàn)證時(shí)空信息對(duì)CPUE的影響以及對(duì)模型準(zhǔn)確率的影響,在得到月份組合方式構(gòu)建數(shù)據(jù)集的基礎(chǔ)上,分別利用4種不同通道組合構(gòu)建數(shù)據(jù)集訓(xùn)練,即SST+經(jīng)緯度+月份、SST+經(jīng)緯度、SST+月份、SST單個(gè)通道,結(jié)果如圖4所示??傮w上,每個(gè)月份組合中都是4個(gè)通道測(cè)試集的準(zhǔn)確率均明顯優(yōu)于3、2、1個(gè)通道,準(zhǔn)確率之差最高達(dá)到7.9個(gè)百分點(diǎn)。在4個(gè)通道組合的模型中,7—8月數(shù)據(jù)的測(cè)試集準(zhǔn)確率為80.5%,9月的數(shù)據(jù)集為81.5%,10—11月的數(shù)據(jù)集為81.4%,模型輸入因子中在加入經(jīng)緯度、月份通道后,模型準(zhǔn)確率提高將近7個(gè)百分點(diǎn)。本研究結(jié)果與Fan等[26]研究結(jié)果吻合,可見時(shí)間、空間位置信息是預(yù)測(cè)柔魚漁場(chǎng)變動(dòng)不可缺少的重要因素。
圖4 7—11月不同通道組合的測(cè)試集準(zhǔn)確率
海洋表面溫度與空間信息都是影響漁場(chǎng)時(shí)空分布的重要因子[31],對(duì)比海洋表面溫度、葉綠素濃度、海表面高度、鹽度等幾種海洋環(huán)境因子,SST是對(duì)柔魚資源豐度及分布影響最大的關(guān)鍵因子,而且SST會(huì)影響到柔魚的南北洄游[32]。Shen等[33]的研究表明,在西北太平洋魷釣漁場(chǎng),葉綠素a的含量與SST有很好的相關(guān)性,而葉綠素a能反映浮游植物的生長(zhǎng)狀況,因此SST通過影響葉綠素a的含量間接影響柔魚在這一水域的攝食。而且,太平洋柔魚的生產(chǎn)效率也直接與SST密切相關(guān),太平洋魷釣漁船在7月份之前一般產(chǎn)量較低,而7—8月以后柔魚隨著暖水的北上而向北洄游,使得暖水側(cè)漁獲量增加,在10月份的冷水南下后冷水一側(cè)的柔魚漁場(chǎng)增加,漁獲量增加[34]。由厄爾尼諾與南方濤動(dòng)(El Ni?o-Southern Oscillation,ENSO)現(xiàn)象引起的SST變動(dòng)也會(huì)使?jié)O場(chǎng)發(fā)生有規(guī)律的移動(dòng)[35],以上的研究證明SST這一環(huán)境因子對(duì)柔魚漁場(chǎng)的影響較大,是建立柔魚漁場(chǎng)預(yù)報(bào)模型所必需的重要因素。鑒于此,本研究預(yù)報(bào)因子選擇SST一種海洋環(huán)境數(shù)據(jù)及其時(shí)空信息,在所有月份的訓(xùn)練中取得了至少80.5%的測(cè)試集準(zhǔn)確率,只包含SST的單通道數(shù)據(jù)的訓(xùn)練也取得了至少74.4%的測(cè)試集準(zhǔn)確率,不僅驗(yàn)證了海洋表面溫度與時(shí)空信息是影響漁場(chǎng)時(shí)空分布的重要因子這一結(jié)論,而且說明了利用單海洋環(huán)境因子SST構(gòu)建漁場(chǎng)預(yù)報(bào)模型的可行性。
傳統(tǒng)漁場(chǎng)預(yù)報(bào)方法中,樸素貝葉斯分類器需要假設(shè)環(huán)境因子對(duì)漁場(chǎng)的形成具有相互獨(dú)立的影響[6],棲息地適宜性指數(shù)模型是建立在一個(gè)基本假設(shè)之上即魚群會(huì)出現(xiàn)在環(huán)境條件適宜的區(qū)域,而不會(huì)在環(huán)境條件不適宜的區(qū)域出現(xiàn),基于計(jì)算機(jī)領(lǐng)域高速發(fā)展而出現(xiàn)的人工神經(jīng)網(wǎng)絡(luò)方法的漁場(chǎng)預(yù)報(bào)研究至少需要2種環(huán)境因子[14-15],并且僅僅考慮漁區(qū)一點(diǎn)的海洋環(huán)境信息,忽略了漁區(qū)周圍海洋環(huán)境空間特征,而基于卷積神經(jīng)網(wǎng)絡(luò)的預(yù)報(bào)模型避免了過往模型對(duì)環(huán)境數(shù)據(jù)空間信息利用率不足的局限性,與傳統(tǒng)預(yù)報(bào)模型相比有著一定的優(yōu)勢(shì)。
為了與傳統(tǒng)方法的預(yù)報(bào)模型進(jìn)行對(duì)比,直觀展示卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建柔魚漁場(chǎng)預(yù)報(bào)模型的方法在預(yù)測(cè)準(zhǔn)確率上的優(yōu)勢(shì),本研究選擇隨機(jī)森林算法構(gòu)建漁場(chǎng)預(yù)報(bào)模型,輸入變量與構(gòu)建基于卷積神經(jīng)網(wǎng)絡(luò)的預(yù)報(bào)模型相同(SST、經(jīng)度、緯度和月份)及數(shù)據(jù),訓(xùn)練結(jié)果如表1所示。在變量種類相同的情況下,隨機(jī)森林算法的測(cè)試集準(zhǔn)確率要低于本研究的卷積神經(jīng)網(wǎng)絡(luò)方法,測(cè)試集準(zhǔn)確率的差值在8.5~22.6個(gè)百分點(diǎn)之間。
表1 AlexNet與隨機(jī)森林算法的測(cè)試集準(zhǔn)確率對(duì)比
為了檢驗(yàn)?zāi)P偷膶?shí)際應(yīng)用效果,將2015年7—11月的SST、經(jīng)度、緯度和月份共4個(gè)通道數(shù)據(jù)作為驗(yàn)證數(shù)據(jù)集輸入訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,得到各月份研究區(qū)域每個(gè)坐標(biāo)柔魚CPUE超過歷年同月份CPUE中位數(shù)即高產(chǎn)漁場(chǎng)的概率,然后將概率圖與驗(yàn)證數(shù)據(jù)對(duì)應(yīng)日期范圍內(nèi)的實(shí)際CPUE疊加(圖5)。結(jié)果顯示,每個(gè)月的高產(chǎn)漁場(chǎng)高概率值區(qū)域與相同日期的高CPUE漁區(qū)分布大體一致,并且隨時(shí)間的推移,高概率值區(qū)域的移動(dòng)趨勢(shì)與西北太平洋漁船作業(yè)漁區(qū)的移動(dòng)趨勢(shì)也基本吻合。根據(jù)驗(yàn)證數(shù)據(jù)集輸入模型得到的預(yù)測(cè)結(jié)果與2015年7—11月西北太平洋實(shí)際漁獲數(shù)據(jù)計(jì)算模型評(píng)價(jià)指標(biāo)(表2),模型對(duì)真實(shí)漁場(chǎng)的平均精確率為66.6%,平均召回率為82.3%,F(xiàn)1得分平均數(shù)為73.1%,該模型在預(yù)測(cè)高產(chǎn)漁場(chǎng)時(shí)準(zhǔn)確率較高,對(duì)低產(chǎn)漁場(chǎng)的預(yù)測(cè)準(zhǔn)確率有待模型的進(jìn)一步優(yōu)化,綜合精確率、召回率對(duì)模型預(yù)報(bào)效果進(jìn)行評(píng)價(jià)的指標(biāo)F1得分達(dá)到了預(yù)期,均說明以卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型具備一定的可行性。
圖5 2015年7—11月模型預(yù)報(bào)結(jié)果與實(shí)際生產(chǎn)的對(duì)比
表2 2015年7—11月本研究模型實(shí)際應(yīng)用效果檢驗(yàn)
本研究利用西北太平洋柔魚歷史生產(chǎn)數(shù)據(jù)以及海洋表面溫度(Sea Surface Temperature,SST)遙感數(shù)據(jù),結(jié)合漁場(chǎng)的時(shí)空信息,制作了訓(xùn)練集,根據(jù)深度學(xué)習(xí)原理構(gòu)建了基于AlexNet網(wǎng)絡(luò)模型的柔魚漁場(chǎng)預(yù)報(bào)模型,檢驗(yàn)了訓(xùn)練效果,并利用真實(shí)漁場(chǎng)數(shù)據(jù)進(jìn)行了實(shí)際驗(yàn)證,結(jié)果表明:
1)按照柔魚洄游規(guī)律,訓(xùn)練集被分為漁汛早期、漁汛中期和漁汛后期3組數(shù)據(jù)集后,分別得出80.5%、81.5%和81.4%的測(cè)試集準(zhǔn)確率,而不分組數(shù)據(jù)集的測(cè)試集準(zhǔn)確率為74.4%。由此可見,考慮柔魚洄游特性后,漁場(chǎng)預(yù)報(bào)測(cè)試集的準(zhǔn)確率提升幅度均大于6.1個(gè)百分點(diǎn),因此構(gòu)建西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型時(shí)結(jié)合柔魚洄游的規(guī)律的研究成果,將有助于預(yù)報(bào)模型準(zhǔn)確率的提高。
2)在最優(yōu)月份組合方式的基礎(chǔ)上,對(duì)比分析了SST+經(jīng)緯度+月份、SST+經(jīng)緯度、SST+月份和SST單個(gè)通道4種不同通道數(shù)據(jù)集的訓(xùn)練結(jié)果,4個(gè)通道數(shù)據(jù)集的測(cè)試集準(zhǔn)確率均明顯優(yōu)于第三、二、一通道,測(cè)試集準(zhǔn)確率之差最高為7.9個(gè)百分點(diǎn)。
3)本研究中基于單環(huán)境因子及其時(shí)空信息建立的預(yù)報(bào)模型最高達(dá)到了81.5%的測(cè)試集準(zhǔn)確率,優(yōu)于傳統(tǒng)模型的訓(xùn)練效果,而且根據(jù)2015年的實(shí)際柔魚漁場(chǎng)信息預(yù)報(bào)的高產(chǎn)漁區(qū)與實(shí)際作業(yè)高單位捕撈努力量漁獲量(Catch Per Unit Effort,CPUE)區(qū)基本吻合,預(yù)報(bào)的高產(chǎn)漁區(qū)隨月份移動(dòng)的趨勢(shì)也與實(shí)際漁獲數(shù)據(jù)高CPUE區(qū)域移動(dòng)的趨勢(shì)相吻合。
本研究基于AlexNet網(wǎng)絡(luò)模型構(gòu)建的柔魚漁場(chǎng)預(yù)報(bào)模型的訓(xùn)練結(jié)果一方面驗(yàn)證了海洋表面溫度與時(shí)空信息是影響漁場(chǎng)時(shí)空分布的重要因子這一結(jié)論,另一方面證實(shí)了利用SST單環(huán)境因子遙感圖像構(gòu)建漁場(chǎng)預(yù)報(bào)模型的可行性,表明AlexNet網(wǎng)絡(luò)模型在西北太平洋柔魚漁場(chǎng)預(yù)報(bào)中具有一定的實(shí)用性和有效性。
[1]Murata M. Oceanic resources of squids[J]. Marine Behaviour and Physiology, 1990, 18(1): 19-71.
[2]唐峰華,陸良峰,朱金鑫,等. 我國(guó)北太平洋魷釣漁業(yè)的現(xiàn)狀、面臨的問題及發(fā)展對(duì)策[J]. 漁業(yè)信息與戰(zhàn)略,2013,28(1):14-19. Tang Fenghua, Lu Liangfeng, Zhu Jinxin, et al. Present situation, problems and development strategy for the North Pacific squid fishing fishery[J]. Fishery Information & Strategy, 2013, 28(1): 14-19. (in Chinese with English abstract)
[3]陳新軍,錢衛(wèi)國(guó),劉必林,等. 主要經(jīng)濟(jì)大洋性魷魚資源漁場(chǎng)生產(chǎn)性調(diào)查與漁業(yè)概況[J]. 上海海洋大學(xué)學(xué)報(bào),2019,28(3):344-356. Chen Xinjun, Qian Weiguo, Liu Bilin, et al. Productive survey and fishery for major pelagic economic squid in the world[J]. Journal of Shanghai Ocean University, 2019, 28(3): 344-356. (in Chinese with English abstract)
[4]陳新軍. 世界頭足類資源開發(fā)現(xiàn)狀及我國(guó)遠(yuǎn)洋魷釣漁業(yè)發(fā)展對(duì)策[J]. 上海海洋大學(xué)學(xué)報(bào),2019,28(3):321-330. Chen Xinjun. Development status of world cephalopod fisheries and suggestions for squid jigging fishery in China[J]. Journal of Shanghai Ocean University, 2019, 28(3): 321-330. (in Chinese with English abstract)
[5]樊偉,陳雪忠,沈新強(qiáng). 基于貝葉斯原理的大洋金槍魚漁場(chǎng)速預(yù)報(bào)模型研究[J]. 中國(guó)水產(chǎn)科學(xué),2006,13(3):426-431. Fan Wei, Chen Xuezhong, Shen Xinqiang. Tuna fishing grounds prediction model based on Bayes probability[J]. Journal of Fishery Sciences of China, 2006, 13(3): 426-431. (in Chinese with English abstract)
[6]崔雪森,唐峰華,張衡,等. 基于樸素貝葉斯的西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型的建立[J]. 中國(guó)海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2015,45(2):37-43. Cui Xuesen, Tang Fenghua, Zhang Heng, et al. The establishment of Northwest Pacificfishing ground forecasting model based on naive bayes method[J]. Periodical of Ocean University of China: Natural Science Edition, 2015, 45(2): 37-43. (in Chinese with English abstract)
[7]Bo D, Cau L H, Thanh N D. Fishing ground forecast in the offshore waters of Central Vietnam (Experimental results for purse-seine and drift-gillnet fisheries)[J]. Vietnam National University Journal of Science: Earth and Environmental Sciences Edition, 2010, 26(2): 57-63.
[8]Solanki H U, Bhatpuria D, Chauhan P. Applications of Generalized Additive Model (GAM) to satellite-derived variables and fishery data for prediction of fishery resources distributions in the Arabian Sea[J]. Geocarto International, 2017, 32(1): 30-43.
[9]李航. 統(tǒng)計(jì)學(xué)習(xí)方法[M]. 北京:清華大學(xué)出版社,2012.
[10]陳雪忠,樊偉,崔雪森,等. 基于隨機(jī)森林的印度洋長(zhǎng)鰭金槍魚漁場(chǎng)預(yù)報(bào)[J]. 海洋學(xué)報(bào):中文版,2013,35(1):158-164. Chen Xuezhong, Fan Wei, Cui Xuesen, et al. Fishing ground forecasting ofin Indian Ocean based on random forest[J]. Acta Oceanologica Sinica: Chinese Edition, 2013, 35(1): 158-164. (in Chinese with English abstract)
[11]崔雪森,伍玉梅,張晶,等. 基于分類回歸樹算法的東南太平洋智利竹筴魚漁場(chǎng)預(yù)報(bào)[J]. 中國(guó)海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2012,42(7/8):53-59. Cui Xuesen, Wu Yumei, Zhang Jing, et al. Fishing ground forecasting of Chilean jack mackerel () in the Southeast Pacific Ocean based on CART decision tree[J]. Periodical of Ocean University of China: Natural Science Edition, 2012, 42(7/8): 53-59. (in Chinese with English abstract)
[12]魏聯(lián),陳新軍,雷林,等. 西北太平洋柔魚BP神經(jīng)網(wǎng)絡(luò)漁場(chǎng)預(yù)報(bào)模型比較研究[J]. 上海海洋大學(xué)學(xué)報(bào),2017,26(3):450-457. Wei Lian, Chen Xinjun, Lei Lin, et al. Comparative study on the forecasting models of squid fishing ground in the Northwest Pacific Ocean based on BP artificial neural network[J]. Journal of Shanghai Ocean University, 2017, 26(3): 450-457. (in Chinese with English abstract)
[13]汪金濤,高峰,雷林,等. 基于神經(jīng)網(wǎng)絡(luò)的東南太平洋莖柔魚漁場(chǎng)預(yù)報(bào)模型的建立及解釋[J]. 海洋漁業(yè),2014,36(2):131-137. Wang Jintao, Gao Feng, Lei Lin, et al. Modeling of fishing grounds forbased on BP neural network in Southeast Pacific[J]. Marine Fisheries, 2014, 36(2): 131-137. (in Chinese with English abstract)
[14]毛江美,陳新軍,余景. 基于神經(jīng)網(wǎng)絡(luò)的南太平洋長(zhǎng)鰭金槍魚漁場(chǎng)預(yù)報(bào)[J]. 海洋學(xué)報(bào),2016,38(10):34-43. Mao Jiangmei, Chen Xinjun, Yu Jing. Forecasting fishing ground ofbased on BP neural network in the South Pacific Ocean[J]. Acta Oceanologica Sinica, 2016, 38(10): 34-43. (in Chinese with English abstract)
[15]陳洋洋,陳新軍,郭立新,等. 基于BP神經(jīng)網(wǎng)絡(luò)的中西太平洋鰹魚漁場(chǎng)預(yù)報(bào)模型構(gòu)建與比較[J]. 廣東海洋大學(xué)學(xué)報(bào),2017,37(6):65-73. Chen Yangyang, Chen Xinjun, Guo Lixin, et al. Comparison of fishing ground of skipjack based on BP neural network in the Western and Central Pacific Ocean[J]. Journal of Guangdong Ocean University, 2017, 37(6): 65-73. (in Chinese with English abstract)
[16]Li Gang, Cao Jie, Zou Xiaorong, et al. Modeling habitat suitability index for Chilean jack mackerel () in the South East Pacific[J]. Fisheries Research, 2016, 178: 47-60.
[17]崔雪森,周為峰,唐峰華,等. 基于約束線性回歸的柔魚棲息地指數(shù)漁場(chǎng)預(yù)報(bào)模型構(gòu)建[J]. 漁業(yè)科學(xué)進(jìn)展,2018,39(1):64-72. Cui Xuesen, Zhou Weifeng, Tang Fenghua, et al. The construction of habitat suitability index forecast model offishing ground based on constrained linear regression[J]. Progress in Fishery Sciences, 2018, 39(1): 64-72. (in Chinese with English abstract)
[18]Tian Siquan, Chen Xinjun, Chen Yong, et al. Evaluating habitat suitability indices derived from CPUE and fishing effort data forin the Northwestern Pacific Ocean[J]. Fisheries Research, 2009, 95(2/3): 181-188.
[19]方學(xué)燕,陳新軍,丁琪. 基于棲息地指數(shù)的智利外海莖柔魚漁場(chǎng)預(yù)報(bào)模型優(yōu)化[J]. 廣東海洋大學(xué)學(xué)報(bào),2014,34(4):67-73. Fang Xueyan, Chen Xinjun, Ding Qi. Optimization fishing ground prediction models ofin the high sea off Chile based on habitat suitability index[J]. Journal of Guangdong Ocean University, 2014, 34(4): 67-73. (in Chinese with English abstract)
[20]周飛燕,金林鵬,董軍. 卷積神經(jīng)網(wǎng)絡(luò)研究綜述[J]. 計(jì)算機(jī)學(xué)報(bào),2017,40(6):1229-1251. Zhou Feiyan, Jin Linpeng, Dong Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251. (in Chinese with English abstract)
[21]李占強(qiáng). 全球常年周平均海表溫度場(chǎng)構(gòu)建及其在西北太平洋中的應(yīng)用[D]. 大連:大連海洋大學(xué),2014. Li Zhanqiang. Long-Term Weekly Average Field of Sea Surface Temperature and Used in Northwest Pacific[D]. Dalian: Dalian Ocean University, 2014. (in Chinese with English abstract)
[22]汪金濤. 大洋性經(jīng)濟(jì)柔魚類漁情預(yù)報(bào)與資源量評(píng)估研究[D]. 上海:上海海洋大學(xué),2015. Wang Jiangtao. Fishery Forecasting and Stock Assessment for Commercial Oceanic Ommastrephid Squid[D]. Shanghai: Shanghai Ocean University, 2015. (in Chinese with English abstract)
[23]Food and Agriculture Organization of the United Nations (FAO). Global capture production (Online query)[EB/OL]. 2015, http: //www. fao. org/fishery/topic/16140/en.
[24]Srivastava N, Hinton G E, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[25]Krizhevsky A, Sutskever I, Hinton G E, et al. ImageNet classification with deep convolutional neural networks[C]//Neural information processing systems, 2012, 60(6): 1097-1105.
[26]Fan Wei, Wu Yumei, Cui Xueseng. The study on fishing ground of neon flying squid,, and ocean environment based on remote sensing data in the Northwest Pacific Ocean[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(2): 408-414.
[27]馬金,陳新軍,劉必林,等. 北太平洋柔魚漁業(yè)生物學(xué)研究進(jìn)展[J]. 上海海洋大學(xué)學(xué)報(bào),2011,20(4):563-570. Ma Jin, Chen Xinjun, Liu Bilin, et al. Review of fisheries biology of neon flying squid () in the North Pacific Ocean[J]. Journal of Shanghai Ocean University, 2011, 20(4): 563-570. (in Chinese with English abstract)
[28]Tian Siquan, Chen Xinjun, Chen Yong, et al. Standardizing CPUE offor Chinese squid-jigging fishery in Northwest Pacific Ocean[J]. Chinese Journal of Oceanology and Limnology, 2009, 27(4): 729-739.
[29]魏廣恩,陳新軍,李綱. 西北太平洋柔魚洄游重心年際變化及預(yù)測(cè)[J]. 上海海洋大學(xué)學(xué)報(bào),2018,27(4):573-583. Wei Guangen, Chen Xinjun, Li Gang. Interannual variation and forecasting ofmigration gravity in the Northwest Pacific Ocean[J]. Journal of Shanghai Ocean University, 2018, 27(4): 573-583. (in Chinese with English abstract)
[30]陳新軍,田思泉. 西北太平洋海域柔魚的產(chǎn)量分布及作業(yè)漁場(chǎng)與表溫的關(guān)系研究[J]. 中國(guó)海洋大學(xué)學(xué)報(bào):自然科學(xué)版,2005,35(1):101-107. Chen Xinjun, Tian Siquan. Study on the catch distribution and relationship between fishing ground and surface temperature forin the Northwestern Pacific Ocean[J]. Periodical of Ocean University of China: Natural Science Edition, 2005, 35(1): 101-107. (in Chinese with English abstract)
[31]唐峰華,史赟榮,朱金鑫,等. 海洋環(huán)境因子對(duì)日本海太平洋褶柔魚漁場(chǎng)時(shí)空分布的影響[J]. 中國(guó)水產(chǎn)科學(xué),2015,22(5):1036-1043. Tang Fenghua, Shi Yunrong, Zhu Jinxin, et al. Influence of marine environment factors on temporal and spatial distribution of Japanese common squid fishing grounds in the Sea of Japan[J]. Journal of Fishery Sciences of China, 2015, 22(5): 1036-1043. (in Chinese with English abstract)
[32]余為,陳新軍,易倩,等. 西北太平洋柔魚傳統(tǒng)作業(yè)漁場(chǎng)資源豐度年間差異及其影響因子[J]. 海洋漁業(yè),2013,35(4):373-381. Yu Wei, Chen Xinjun, Yi Qian, et al. Annual difference of abundance index and its influencing factors ofin traditional fishing grounds in the Northwest Pacific[J]. Marine Fisheries, 2013, 35(4): 373-381. (in Chinese with English abstract)
[33]Shen Xinqiang, Wang Yunlong, Yuan Qi, et al. Distributional characteristics of chlorophyll a and relation to the fishing ground in the squid fishing ground of the Northern Pacific Ocean[J]. Acta Oceanologica Sinica, 2004, 26(6): 118-123.
[34]唐峰華,樊偉,伍玉梅,等. 北太平洋柔魚漁場(chǎng)資源與海洋環(huán)境關(guān)系的季節(jié)性變化[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2015,32(3):242-249. Tang Fenghua, Fan Wei, Wu Yumei, et al. Seasonal changes of relationship between marine environment and squid fishing resources in North Pacific Ocean[J]. Journal of Agricultural Resources and Environment, 2015, 32(3): 242-249. (in Chinese with English abstract)
[35]唐峰華,靳少非,張勝茂,等. 北太平洋柔魚漁場(chǎng)時(shí)空分布與海洋環(huán)境要素的研究[J]. 中國(guó)環(huán)境科學(xué),2014,34(8):2093-2100. Tang Fenghua, Jin Shaofei, Zhang Shengmao, et al. Study for marine environmental elements on spatio-temporal distribution of neon flying squid in the North Pacific fishing ground[J]. China Environmental Science, 2014, 34(8): 2093-2100. (in Chinese with English abstract)
Construction of fishing ground forecast model ofusing convolutional neural network in the Northwest Pacific
Zhu Haopeng1,2, Wu Yumei2, Tang Fenghua2, Jin Shaofei3, Pei Kaiyang4, Cui Xuesen2※
(1.,,201306,; 2,,,,, 200090,; 3,,350108,; 4,,201306,)
To improve the accuracy and practicability of fishery forecast in the Northwest Pacific, a method of constructing a forecast model of squid was proposed based on the principle of deep learning. In this study, the data included the fishery catch data from the North Pacific squid fishing boat production information and the Sea Surface Temperature (SST) from the moderate-resolution imaging spectroradiometer, from July to November 2000-2015. According to the combination of different channels, four kinds of datasets were formed for the model training, including the single-channel dataset only containing SST; 2-channels dataset of SST and month; 3-channels dataset of SST, longitude, and latitude; 4-channels dataset of SST, month, longitude, and latitude. To match the data of the first channel in dimensionality, the three-input data of longitude, latitude, and month needed to be expanded from a 0-dimensional scalar quantity to a 2-dimensional tensor with pixels of 65×65 and regarded as the second, third, and fourth channel. Because of the insufficiency of effective fishery catch data, these datasets were enhanced by random rotation of the SST image with a small-angle between -10° and +10° and a random 0.1° offset of the image center in four directions, including north, south, east and west. The AlexNet was chosen as the structure of the Convolutional Neural Network (CNN) model, and it consisted of five convolutional layers, three max-pooling layers, and three fully-connected layers with a final 2-way softmax. Different from traditional fishery forecast methods, this method used the Graphics Processing Unit (GPU) to accelerate training, and its extraction of environmental features was automatically completed by computer. SST, latitude, longitude, and month were all factors that needed to be considered when constructing a fishing ground forecast model. The impact of these factors on the accuracy of the fishing ground forecast was compared and analyzed. The results showed that 1) According to the migration laws of squid, the datasets from July to November were divided into three sub-datasets, including July to August, September, and October to November. This way of month combination increased the testing accuracy by at least 6.1 percent points. The testing accuracies of three sub-datasets of July to August, September, October to November were much higher than that of the whole dataset (74.4%) from July to November. 2) The training result of the 4-channels dataset was the best, and the testing accuracy was significantly higher than that of others. The single-channel dataset only containing SST achieved the testing accuracy of at least 73.5%, which indicated that SST was the most important factor among the four factors of SST, longitude, latitude, and month. 3) The actual fishery catch data of 2015 was used to validate the accuracy of the forecast model, and precision and recall were chosen as the evaluation indexes of this model. The average precision, recall, and F1-score were 66.6%, 82.3%, and 73.1%, respectively. The predicted high-yield fishing areas basically matched the actual high-CPUE (Catch Per Unit Effort) areas, and the monthly movement trends of both were also basically consistent. 4) The training results were satisfactory, and the testing accuracy converged to about 80.5% after 80 000 iterations of training. The accuracy of three testing datasets with 4-channels dataset of July to August, September, and October to November was 80.5%, 81.5%, and 81.4%, respectively. It could be concluded that SST and its temporal and spatial information played an important role in the forecast of the Northwest Pacific squid fishery. And the training results demonstrated that it was feasible to construct a squid fishery forecast model by using a dataset of single environmental factor SST and CNN. It also could be concluded that the migratory laws of squid were significant and could not be ignored in the process of the fishery forecast model construction.
convolutional neural network; models; fisheries; Northwest Pacific;
朱浩朋,伍玉梅,唐峰華,等. 采用卷積神經(jīng)網(wǎng)絡(luò)構(gòu)建西北太平洋柔魚漁場(chǎng)預(yù)報(bào)模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):153-160.doi:10.11975/j.issn.1002-6819.2020.24.018 http://www.tcsae.org
Zhu Haopeng, Wu Yumei, Tang Fenghua, et al. Construction of fishing ground forecast model ofusing convolutional neural network in the Northwest Pacific[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 153-160. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.018 http://www.tcsae.org
2020-08-05
2020-09-15
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2019YFD0901405);上海市自然科學(xué)基金項(xiàng)目(17ZR1439700);中國(guó)水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費(fèi)項(xiàng)目(2019T08);中國(guó)水產(chǎn)科學(xué)研究院院級(jí)基本科研業(yè)務(wù)費(fèi)(2018GH13)
朱浩朋,主要從事柔魚漁場(chǎng)預(yù)報(bào)研究。Email:zhuhaop_v@163.com
崔雪森,副研究員,主要從事漁業(yè)信息與遙感方向研究。Email:cui1012@sh163.net
10.11975/j.issn.1002-6819.2020.24.018
S931.3
A
1002-6819(2020)-24-0153-08