張智勇,艾 寧,,劉廣全,劉長(zhǎng)海,宗巧魚,劉 姣,郝寶寶
陜北黃土區(qū)退耕還林(草)地土壤質(zhì)量特征及其對(duì)降水的響應(yīng)
張智勇1,艾 寧1,2※,劉廣全2,劉長(zhǎng)海1,宗巧魚1,劉 姣1,郝寶寶1
(1. 延安大學(xué)生命科學(xué)學(xué)院/陜西省紅棗重點(diǎn)實(shí)驗(yàn)室(延安大學(xué)),延安 716000;2. 中國(guó)水利水電科學(xué)研究院,北京 100038)
為了解陜北黃土區(qū)退耕還林(草)地土壤質(zhì)量差異特征及其對(duì)降水的響應(yīng),該研究沿370~470 mm的降水梯度,選取了陜西省吳起縣境內(nèi)的王洼子(370~395 mm)、大吉溝(440~445 mm)和白豹(460~470 mm)3個(gè)降水梯度區(qū)作為研究區(qū),并結(jié)合土壤質(zhì)量指數(shù)法,定量評(píng)價(jià)降水梯度區(qū)廣泛栽植的刺槐林()、沙棘林()和草地的土壤物理結(jié)構(gòu)、持水性、鹽堿度、碳匯指標(biāo)以及速效養(yǎng)分指標(biāo)方面的綜合得分,明確植被恢復(fù)后土壤質(zhì)量隨降水梯度的變化特征。結(jié)果表明:1)降水量、植被類型以及二者的交互作用對(duì)土壤指標(biāo)影響顯著(<0.05)。2)在460~470 mm降水量區(qū),刺槐林對(duì)土壤質(zhì)量改良效果最好,其土壤質(zhì)量綜合指數(shù)為0.829,其次為沙棘林(0.808),二者土壤質(zhì)量均達(dá)到肥沃水平,且差異不顯著,草地土壤質(zhì)量綜合指數(shù)最低為0.679,土壤質(zhì)量為較肥沃水平;在440~445 mm降水量區(qū),刺槐林、沙棘林和草地的土壤質(zhì)量綜合指數(shù)分別為0.672、0.764和0.527,其中刺槐林和沙棘林下土壤質(zhì)量達(dá)到較肥沃水平,草地土壤質(zhì)量等級(jí)為中等水平;在370~395 mm降水量區(qū),3種植被類型土壤質(zhì)量綜合指數(shù)由大到小表現(xiàn)為沙棘林(0.792)>刺槐林(0.433)>草地(0.270),沙棘林土壤質(zhì)量等級(jí)最高為較肥沃水平,其次為刺槐林和草地,二者土壤質(zhì)量分別為中等水平和貧瘠水平。3)在370~470 mm降水梯度內(nèi),3種植被類型土壤質(zhì)量綜合指數(shù)均隨著降水量的減少而降低,其中沙棘林土壤質(zhì)量綜合指數(shù)變異系數(shù)較低為2.34%,刺槐林和草地土壤質(zhì)量綜合指數(shù)變異系數(shù)較高,分別為25.27%和34.34%。該研究結(jié)果可為陜北黃土區(qū)不同降水梯度下的植被恢復(fù)與重建等林業(yè)生態(tài)工程實(shí)施提供數(shù)據(jù)支撐與理論支持。
土壤;降水;退耕還林(草);質(zhì)量評(píng)價(jià);植被類型;降水梯度;陜北黃土區(qū)
土壤和植被是陸地生態(tài)系統(tǒng)的重要組成部分,二者相互依賴,相互制約[1]。土壤為植被生長(zhǎng)發(fā)育提供氮、磷、鉀等營(yíng)養(yǎng)元素,是植被生長(zhǎng)發(fā)育的重要載體[2],而植被又通過根系的物理作用力以及凋落物等有機(jī)物質(zhì)的歸還影響土壤容重、孔隙度、持水能力及養(yǎng)分狀況[3]。陜北黃土區(qū)位于中國(guó)水蝕風(fēng)蝕交錯(cuò)區(qū),水土流失嚴(yán)重,生態(tài)環(huán)境脆弱,植被恢復(fù)已成為當(dāng)?shù)亟鉀Q生態(tài)環(huán)境問題,提高土壤質(zhì)量的有效措施[4-6],然而,由于該地氣候干旱,水分已成為此地植被生長(zhǎng)發(fā)育的主控因子,研究表明,植被對(duì)土壤水分的利用方式會(huì)導(dǎo)致植被生長(zhǎng)狀態(tài)及分布特征發(fā)生變化,改變植被的凈初級(jí)生產(chǎn)力[7],這些變化會(huì)間接影響土壤質(zhì)量恢復(fù)[8-9],張志南等[10]研究發(fā)現(xiàn)黃土高原天然草地群落物種多樣性和豐富度與土壤含水率具有顯著正相關(guān)性;宋光等[11]發(fā)現(xiàn)黃土高原刺槐林()葉片厚度、根密度等功能性狀隨著降水量的減少發(fā)生適應(yīng)性改變。孫龍等[12]研究表明黃土丘陵區(qū)表層土壤有機(jī)碳含量沿著368~591 mm 年均降水量梯度而遞增,此外,還有研究指出降水減少會(huì)改變土壤團(tuán)聚體的穩(wěn)定性[13],抑制微生物活動(dòng)和酶活性[14-15]。在黃土高原氣候向暖干化態(tài)勢(shì)演變[16]以及植被覆蓋度顯著增加的生態(tài)背景下,了解降水-植被-土壤質(zhì)量的耦合關(guān)系,對(duì)于應(yīng)對(duì)氣候變化所引起的降水模式改變對(duì)生態(tài)系統(tǒng)的影響具有重要意義。
目前,有關(guān)陜北黃土區(qū)退耕還林(草)工程實(shí)施過程中,植被對(duì)土壤屬性改變的研究已有大量報(bào)道,但這些研究多集中于一種或少數(shù)幾種土壤屬性[12-13,17,18],而有關(guān)降水樣帶上不同植被類型土壤質(zhì)量隨降水變化的研究還比較少見。因此,本文在陜北黃土區(qū)的3個(gè)降水梯度(370~395、440~445和460~470 mm)上選擇了刺槐林、沙棘林()和草地共3種典型植被類型,通過調(diào)查取樣,利用土壤質(zhì)量指數(shù)法,定量評(píng)價(jià)研究區(qū)不同降水梯度3種植被類型在土壤物理結(jié)構(gòu)、持水性、鹽堿度、碳匯及速效養(yǎng)分等方面的綜合得分,了解植被恢復(fù)后土壤質(zhì)量對(duì)降水變化的響應(yīng),以期為今后陜北黃土區(qū)林業(yè)生態(tài)工程建設(shè)過程中植被配置與樹種選擇提供科學(xué)依據(jù)與數(shù)據(jù)支撐。
研究區(qū)位于陜西省延安市吳起縣(107°38′57″~108°32′49″E,36°33′33″~37°24′27″N),該縣被譽(yù)為中國(guó)“退耕還林第一縣”,總面積為3791.5 km2,盛行半干旱溫帶大陸性季風(fēng)氣候,年均溫為7.8 ℃,地貌以黃土高原梁狀丘陵溝壑為主,海拔在1 233~1 809 m之間,土壤多為黃綿土。該縣自1998年實(shí)施退耕還林還草工程以來(lái),逐漸形成了以側(cè)柏()、刺槐、油松()、檸條()、沙棘、賴草()、針茅()、達(dá)烏里胡枝子()、百里香()、鐵桿蒿()、委陵菜()刺兒菜()、苦荬菜()以及翠雀()等植被為主的林草地。
課題組于2017年7—9月進(jìn)行土壤樣品采集,并確保每次采集樣品前7 d無(wú)降水。選取吳起縣境內(nèi)的3個(gè)降水梯度區(qū)[18]作為研究區(qū),分別為王洼子(370~395 mm)、大吉溝(440~445 mm)和白豹(460~470 mm)(圖1)。在每個(gè)降水梯度區(qū)選取具有相似生境條件(坡度、坡向、海拔以及恢復(fù)年限)的刺槐、沙棘和草地3種典型植被類型作為研究對(duì)象,在每個(gè)研究區(qū)的每種植被類型分布區(qū)分別布設(shè)3塊20 m×20 m的獨(dú)立標(biāo)準(zhǔn)樣地,共計(jì)27塊樣地,并記錄樣地信息(表1),其中每個(gè)樣地按五點(diǎn)法取樣,取樣剖面深度為100 cm,去除地表枯落物,自地表垂直向下分為5層,依次為0~20、>20~40、>40~60、>60~80、>80~100 cm,共計(jì)135個(gè)土壤剖面,采用環(huán)刀取樣時(shí),同一剖面每層取3個(gè)重復(fù),以用于測(cè)定土壤物理結(jié)構(gòu)及持水性指標(biāo),共計(jì)2025個(gè)環(huán)刀樣品,同時(shí)將同一樣地5個(gè)樣點(diǎn)相同土層的土壤混合為1個(gè)土壤樣品,裝入自封袋帶回實(shí)驗(yàn)室自然風(fēng)干,過篩進(jìn)行土壤化學(xué)性質(zhì)測(cè)定,共計(jì)135袋土壤混裝樣品。
圖1 樣地點(diǎn)位圖
表1 樣地基本信息
烘干法測(cè)定土壤含水率;環(huán)刀法測(cè)定土壤容重及計(jì)算孔隙度、飽和含水率和毛管持水量等指標(biāo)[19];重鉻酸鉀氧化法測(cè)定土壤有機(jī)碳含量;火焰光度計(jì)法測(cè)定土壤速效鉀;堿解擴(kuò)散法測(cè)定土壤堿解氮;鉬銻抗比色法測(cè)定土壤有效磷[20];土壤pH值和電導(dǎo)率分別由PHS—320高精度智能酸度計(jì)和DDS—608多功能電導(dǎo)率儀測(cè)定。
采用加權(quán)求和法建立研究區(qū)土壤質(zhì)量評(píng)價(jià)模型,將單因素評(píng)價(jià)結(jié)果轉(zhuǎn)化為多因素評(píng)價(jià)結(jié)果,以綜合評(píng)價(jià)370~470 mm降水梯度下不同植被類型土壤狀況及其變化特征,評(píng)價(jià)方法步驟如下[21-22]:
1)選擇評(píng)價(jià)指標(biāo)
本研究綜合考慮前人研究成果[23-24]及試驗(yàn)條件,選取了對(duì)土壤質(zhì)量有重要影響的12項(xiàng)土壤理化指標(biāo),分別為土壤容重、非毛管孔隙度、總孔隙度、土壤含水率、飽和含水率、毛管持水量、pH值、電導(dǎo)率、有機(jī)碳含量、有效磷、堿解氮以及速效鉀,以綜合評(píng)價(jià)土壤質(zhì)量。
將土壤容重、非毛管孔隙度、總孔隙度歸為土壤物理結(jié)構(gòu)指標(biāo);將土壤含水率、飽和含水率和毛管持水量歸為土壤持水性指標(biāo);將pH值和電導(dǎo)率歸為土壤鹽堿度指標(biāo);將有機(jī)碳含量歸為土壤碳匯指標(biāo);將有效磷、堿解氮和速效鉀歸為土壤速效養(yǎng)分指標(biāo),
2)計(jì)算各評(píng)價(jià)指標(biāo)權(quán)重
通過相關(guān)矩陣確定各指標(biāo)間的相關(guān)系數(shù),求出各評(píng)價(jià)指標(biāo)間的相關(guān)系數(shù)平均值,并將該平均值與所有評(píng)價(jià)指標(biāo)的平均相關(guān)系數(shù)之和的比作為評(píng)價(jià)指標(biāo)的權(quán)重R[22]。
3)計(jì)算各評(píng)價(jià)指標(biāo)隸屬度
根據(jù)土壤指標(biāo)值對(duì)土壤質(zhì)量評(píng)價(jià)的正負(fù)相關(guān)性,本文選擇了3種隸屬度函數(shù),分別為正相關(guān)S型隸屬度函數(shù)、負(fù)相關(guān)S型隸屬度函數(shù)和梯形隸屬度函數(shù)[21-22]。其中,將土壤非毛管孔隙度、總孔隙度、土壤含水率、飽和含水率、毛管持水量、有機(jī)碳含量、有效磷、堿解氮以及速效鉀歸納為正相關(guān)S型隸屬度函數(shù),此類指標(biāo)值越高,表明評(píng)價(jià)對(duì)象土壤質(zhì)量越高。將pH值和電導(dǎo)率歸納為梯形隸屬度函數(shù),同時(shí)參考中華人民共和國(guó)農(nóng)業(yè)行業(yè)標(biāo)準(zhǔn)(NY/T391—2000)以及前人研究結(jié)果[21]確定該地區(qū)土壤pH值界點(diǎn)分別為8.1、8.3、8.6和8.8;電導(dǎo)率界點(diǎn)分別為70、90、110和130,此類指標(biāo)值在中間值范圍內(nèi),評(píng)價(jià)對(duì)象土壤質(zhì)量最高。將土壤容重歸納為負(fù)相關(guān)S型隸屬度函數(shù),此類指標(biāo)值越高,評(píng)價(jià)對(duì)象土壤質(zhì)量越差。
4)計(jì)算土壤質(zhì)量指數(shù)
計(jì)算不同植被的各土壤評(píng)價(jià)指標(biāo)的隸屬度值和權(quán)重值,然后將兩者相乘并進(jìn)行累加,即可得到不同植被土壤質(zhì)量指數(shù),土壤質(zhì)量指數(shù)越大,表明該植被對(duì)土壤質(zhì)量恢復(fù)效果越好具體如式(1)所示:
式中SOI為土壤質(zhì)量評(píng)價(jià)指數(shù),R為第個(gè)指標(biāo)的權(quán)重,代表評(píng)價(jià)指標(biāo)個(gè)數(shù),=12,Y為各個(gè)評(píng)價(jià)指標(biāo)的隸屬度值。
運(yùn)用Excel 2016 計(jì)算土壤指標(biāo)權(quán)重、隸屬度、土壤質(zhì)量指數(shù)及其變異系數(shù);運(yùn)用ArcMap10.3 和Origin 2018制圖;運(yùn)用SPSS 22.0對(duì)數(shù)據(jù)進(jìn)行正態(tài)分布檢驗(yàn)、相關(guān)性分析和多因素方差分析,探討降水量、植被類型以及二者對(duì)土壤指標(biāo)的主效應(yīng)和交互效應(yīng),確定指標(biāo)之間的相關(guān)性與相關(guān)系數(shù)。
多因素方差分析表明,降水量和植被類型對(duì)土壤指標(biāo)存在顯著主效應(yīng)(<0.05),且降水量和植被類型存在顯著交互作用的指標(biāo)占比為 100%,降水量對(duì)這些土壤指標(biāo)在植被類型間的差異具有顯著影響(<0.05)(表 2)。
不同植被類型的土壤物理指標(biāo)隨著降水量的變化而表現(xiàn)出顯著差異(<0.05),土壤物理指標(biāo)對(duì)降水量的響應(yīng)程度不同。在370~470 mm降水量區(qū),各植被SWC均隨著降水量的減少而降低,但沙棘林SWC顯著高于刺槐林和草地(<0.05)。同時(shí),沙棘林TP、SMC和CWC方面也具有明顯的優(yōu)勢(shì),表明沙棘林的透氣、保水性較好(表3)。
表2 降水量、植被類型對(duì)土壤指標(biāo)的影響及交互作用
注:*在0.05水平上顯著相關(guān);**在0.01水平上顯著相關(guān)。
Note:* Significance(<0.05); **Significance(<0.01).
表3 不同降水梯度區(qū)各植被類型下的土壤物理指標(biāo)
注:不同小寫字母表示同一降水梯度下不同植被類型間差異顯著(<0.05);不同大寫字母表示同一植被類型下不同降水梯度間差異顯著(<0.05)。下同。
Note: Different lowercase letters indicate significant differences between different vegetation types under the same precipitation gradient (<0.05); Different capital letters indicate significant differences under different precipitation gradients under the same vegetation type (<0.05). Same as below.
不同降水梯度區(qū),植被的土壤化學(xué)指標(biāo)亦具有顯著差異(<0.05)。相較于刺槐林和草地,沙棘林的多數(shù)土壤化學(xué)指標(biāo)也具有明顯優(yōu)勢(shì)。在370~470 mm降水量區(qū),沙棘林土壤pH值和OC變化較穩(wěn)定,且在低降水量區(qū)其AN和AK含量均顯著高于刺槐林和草地(<0.05),固氮能力較好(表4)。
表4 不同降水梯度區(qū)各植被類型下的土壤化學(xué)指標(biāo)
研究區(qū)不同土壤指標(biāo)權(quán)重值大小不一,CWC與CMC指標(biāo)權(quán)重值較高,二者在土壤質(zhì)量評(píng)價(jià)中具有重要地位(圖2)。
圖2 土壤各項(xiàng)指標(biāo)權(quán)重
在370~470 mm的降水梯度上,研究區(qū)刺槐林、沙棘林和草地的土壤物理結(jié)構(gòu)指標(biāo)、持水性指標(biāo)、鹽堿度指標(biāo)、碳匯指標(biāo)以及速效養(yǎng)分指標(biāo)得分隨降水量的減少,表現(xiàn)出不同的變化趨勢(shì)(圖3)。
刺槐林的物理結(jié)構(gòu)指標(biāo)、持水性指標(biāo)、鹽堿度指標(biāo)、碳匯指標(biāo)以及速效養(yǎng)分指標(biāo)得分均隨降水量的減少而降低,其物理指標(biāo)和持水性指標(biāo)得分在460~470和440~445 mm降水量區(qū)間差異不顯著。各指標(biāo)得分變異系數(shù)分別為9.81%、10.86%、67.25%、59.09%、50.26%,其鹽堿度指標(biāo)、碳匯指標(biāo)和速效養(yǎng)分指標(biāo)得分變異性較強(qiáng)。
沙棘林的土壤物理結(jié)構(gòu)指標(biāo)、持水性指標(biāo)、鹽堿度指標(biāo)、碳匯指標(biāo)以及速效養(yǎng)分指標(biāo)得分變異系數(shù)分別為12.4%、7.54%、6.82%、19.29%和19.37%,整體土壤指標(biāo)得分變異系數(shù)較低。隨著降水量的減少,其土壤物理結(jié)構(gòu)指標(biāo)得分表現(xiàn)出顯著的上升趨勢(shì),速效養(yǎng)分指標(biāo)得分則表現(xiàn)出顯著的下降趨勢(shì),持水性指標(biāo)得分和鹽堿度指標(biāo)得分表現(xiàn)出先下降后上升的趨勢(shì),而碳匯指標(biāo)表現(xiàn)出先上升后下降的趨勢(shì)。
草地的土壤物理結(jié)構(gòu)指標(biāo)、持水性指標(biāo)、鹽堿度指標(biāo)、碳匯指標(biāo)以及速效養(yǎng)分指標(biāo)得分的變異系數(shù)分別為34.58%、56.48%、59.83%、56.18%、26.18%和34.34%。同刺槐林指標(biāo)得分變異系數(shù)相似,其整體的土壤指標(biāo)得分變異系數(shù)較高。隨著降水量的減少,其土壤物理結(jié)構(gòu)指標(biāo)、持水性指標(biāo)和碳匯指標(biāo)得分表現(xiàn)出下降的趨勢(shì),而鹽堿度指標(biāo)和速效養(yǎng)分指標(biāo)得分雖然也呈降低趨勢(shì),但二者的波動(dòng)趨勢(shì)表現(xiàn)為先下降后有回升的狀態(tài)。
綜合土壤各項(xiàng)指標(biāo)得分及土壤質(zhì)量綜合指數(shù)等級(jí)劃分標(biāo)準(zhǔn)[25]發(fā)現(xiàn),3種植被類型土壤質(zhì)量綜合指數(shù)均表現(xiàn)出隨降水量的減少而降低的趨勢(shì),其中刺槐林和草地土壤質(zhì)量的下降趨勢(shì)最明顯,二者的土壤質(zhì)量綜合指數(shù)變異系數(shù)分別為25.27%和34.34%,而沙棘林的下降趨勢(shì)較平緩,其土壤質(zhì)量綜合指數(shù)變異系數(shù)為2.34%。
3種植被類型土壤質(zhì)量綜合指數(shù)具有顯著差異(<0.05)。在460~470 mm降水量區(qū),刺槐林土壤質(zhì)量綜合指數(shù)最高為0.829,其對(duì)土壤質(zhì)量改良效果最好,其次為沙棘林(0.808),二者土壤質(zhì)量均達(dá)到肥沃水平,且差異不顯著,草地土壤質(zhì)量綜合指數(shù)最低為0.679,其土壤質(zhì)量為較肥沃水平;在440~445 mm降水量區(qū),沙棘林對(duì)土壤改良效果最好,其土壤質(zhì)量綜合指數(shù)為0.764,其次為刺槐林(0.672)和草地(0.527),其中沙棘林和刺槐林土壤質(zhì)量為較肥沃水平,草地土壤質(zhì)量為中等水平;在370~395 mm降水量區(qū),3種植被的土壤質(zhì)量綜合指數(shù)由大到小依次為沙棘林(0.792)、刺槐林(0.433)和草地(0.270),沙棘林土壤質(zhì)量為較肥沃水平,刺槐林土壤質(zhì)量為中等水平,草地土壤質(zhì)量為貧瘠水平(圖3f)。
陸地生態(tài)系統(tǒng)對(duì)氣候變化的敏感性很大程度上源于降水時(shí)空格局的變化,特別是在干旱與半干旱地區(qū),降水量是影響植被生長(zhǎng)、分布的重要因子[26],張欽弟等[27]研究指出370 mm降水量以下,水分對(duì)物種多樣性等生態(tài)系統(tǒng)服務(wù)的制約會(huì)愈加強(qiáng)烈,本研究數(shù)據(jù)所指出的土壤持水性指標(biāo)權(quán)重值較高,也印證了在干旱半干旱地區(qū)水分的限制性特點(diǎn)。吳起縣降水量自東南向西北方向逐漸減少[18],這種水熱分布格局控制著植被生物量的多少及枯落物等分解進(jìn)程,本文在調(diào)查取樣時(shí)也發(fā)現(xiàn),在退耕年限、海拔、坡度以及坡向等立地條件相似的情況下,刺槐林、沙棘林以及草地的相關(guān)生物指標(biāo)值(樹高、胸徑、基徑以及蓋度等)會(huì)隨著降水量的減少而降低,此外,濮陽(yáng)雪華等[18]在研究吳起縣草本植物群落構(gòu)成時(shí)也指出,草本植物群落的物種豐富度、生物量等重要值與降水量表現(xiàn)出顯著的正相關(guān)性。
降水量減少導(dǎo)致植被生長(zhǎng)受干旱脅迫程度變高,植被長(zhǎng)勢(shì)變差,凈初級(jí)生產(chǎn)力降低[28],進(jìn)而導(dǎo)致輸入土壤的有機(jī)物質(zhì)減少,抑制土壤養(yǎng)分循環(huán)進(jìn)程及微生物分解活動(dòng),同時(shí)地表微環(huán)境發(fā)生變化,植被覆蓋率降低,土壤表面易受侵蝕,最終使得退耕還林(草)地土壤質(zhì)量隨著降水量的減少而降低,特別是在370~395 mm降水量較低的區(qū)域,土壤質(zhì)量整體較差。郭寧等[29]在黃土丘陵區(qū)進(jìn)行人工模擬降雨試驗(yàn)時(shí)也發(fā)現(xiàn)控制降雨量對(duì)土壤C含量影響顯著,趙珊宇等[30]也指出科爾沁沙地自西向東,隨降水量增加,沙地樟子松人工林土壤C、N、P含量也呈現(xiàn)增加趨勢(shì),本文研究結(jié)果與其相似。
植被在土壤質(zhì)量恢復(fù)過程中起關(guān)鍵作用,其主要通過根系生長(zhǎng)[31]、枯落物的累積和分解[32]以及生物活動(dòng)[33]3個(gè)過程來(lái)作用于土壤。植被會(huì)影響生態(tài)系統(tǒng)的結(jié)構(gòu)和功能,進(jìn)而影響土壤性質(zhì)及其演化進(jìn)程,其與土壤相互作用和協(xié)同進(jìn)化成為生態(tài)系統(tǒng)能否被成功恢復(fù)的關(guān)鍵。本研究發(fā)現(xiàn),不同植被類型土壤質(zhì)量差異顯著(<0.05)。刺槐林和草地的土壤質(zhì)量隨降水量的減少而迅速下降,對(duì)降水梯度變化的響應(yīng)性較強(qiáng)。這可能是由于本文研究對(duì)象為喬木(刺槐)、灌木(沙棘)和草地,雖然三者均為黃土高原退耕植被,但是其對(duì)水分需求的適應(yīng)性差異很大程度上決定了其對(duì)土壤改良的效果。喬木適宜生長(zhǎng)在500 mm以上降水量的地區(qū)[34],結(jié)合本研究區(qū)的降水梯度,這就解釋了在460~470 mm降水量區(qū),刺槐林土壤質(zhì)量達(dá)到肥沃水平的現(xiàn)象,即該降水梯度區(qū)接近500 mm降水量線,滿足刺槐生長(zhǎng)水分需求,進(jìn)而對(duì)土壤質(zhì)量恢復(fù)產(chǎn)生正向作用,而降水量較少的區(qū)域不滿足其生長(zhǎng)需求,導(dǎo)致土壤質(zhì)量較差,特別是在370~395 mm降水量區(qū),刺槐林的土壤質(zhì)量與草地相近,均為貧瘠水平(圖3)。
研究表明,一般在500 mm降水量以下,屬于干旱半干旱地區(qū),天然植被類型為灌木和草地[35],本研究指出沙棘林在3個(gè)降水梯度區(qū)對(duì)土壤質(zhì)量改良具有良好的普遍適宜性,對(duì)降水梯度變化不敏感,這可能是由于沙棘生理特性對(duì)干旱環(huán)境的強(qiáng)烈適應(yīng)能力,淺根系量大且根系伸展范圍較寬,根蘗能力強(qiáng),生長(zhǎng)速率高,此外楊建偉等[36]指出,沙棘在嚴(yán)重干旱情況其根冠比均比刺槐要高,且在中度干旱情況下,沙棘的單葉水分利用率(Water Use Efficiency)也是最高的。沙棘群落發(fā)展成熟,地表叢生小沙棘幼苗較多,植被郁閉度高,加之地表枯落物的遮蓋、截留作用,可以在一定程度上緩解土壤水分的蒸發(fā),且其相比于刺槐、楊樹等高大喬木,其生長(zhǎng)耗水量低,對(duì)土壤水分吸收慢,利于水分保持。
草地根系主要分布在0~30 cm的土壤表層[37],根系較短,生物量低,對(duì)土壤的影響程度較小,導(dǎo)致其在3個(gè)降水梯度下對(duì)土壤質(zhì)量改良效果均低于刺槐和沙棘。
植被歸還土壤的生物量是影響土壤質(zhì)量恢復(fù)的關(guān)鍵因素,特別是土壤有機(jī)碳及N、P、K等營(yíng)養(yǎng)元素,受植被類型、群落結(jié)構(gòu)、空間區(qū)域等條件的影響,植被凋落物及根系分泌物,枯落物蓄積量表現(xiàn)出明顯的差異,王忠禹等[38]在研究中指出沙棘林地表枯落物蓄積量高于刺槐林,高于草地,此結(jié)論與本研究沙棘林平均土壤有機(jī)碳含量高于刺槐林和草地的結(jié)果可相互印證。
1)在退耕還林(草)過程中,降水量、植被類型以及二者的交互作用對(duì)土壤指標(biāo)影響顯著(< 0.05)。
2)研究區(qū)3種植被類型土壤質(zhì)量綜合指數(shù)介于0.270~0.829之間。在460~470 mm降水量區(qū),3種植被類型土壤質(zhì)量綜合指數(shù)由高到低依次為刺槐林(0.829)、沙棘林(0.808)和草地(0.679),其中刺槐林和沙棘林的土壤質(zhì)量綜合指數(shù)差異不顯著。在440~445 mm降水量區(qū),3種植被類型土壤質(zhì)量綜合指數(shù)差異顯著(<0.05),土壤質(zhì)量綜合指數(shù)由高到低為沙棘林(0.764)、刺槐林(0.672)、草地(0.527)。在370~395 mm降水量區(qū),土壤質(zhì)量綜合指數(shù)由高到低為沙棘林(0.792)、刺槐林(0.433)、草地(0.270)。
3)在研究區(qū)370~470 mm的降水梯度下,刺槐林、沙棘林和草地的土壤質(zhì)量均隨降水量的減少而降低,土壤質(zhì)量綜合指數(shù)分別介于0.829~0.433、0.808~0.764、0.679~0.270之間。且隨著降水量的減少,刺槐林、沙棘林和草地的土壤質(zhì)量等級(jí)的變化分別為肥沃-較肥沃-中等、肥沃-較肥沃-較肥沃和較肥沃-中等-貧瘠,3 種植被類型的土壤質(zhì)量綜合指數(shù)變異系數(shù)分別為25.27%、2.34%和34.34%,刺槐林和草地的土壤質(zhì)量對(duì)降水量的變化較敏感,而沙棘林土壤質(zhì)量對(duì)降水量的變化不敏感。
4)不同降水梯度區(qū)林草地土壤質(zhì)量差異顯著(<0.05),刺槐林和沙棘林的土壤質(zhì)量顯著高于草地。沙棘林在不同降水梯度均具有普遍的適宜性,適合在研究區(qū)推廣種植。
[1]Oliveira E A D, Marimon-Junior B H, Marimon B S, et al. Legacy of Amazonian Dark Earth soils on forest structure and species composition[J]. Global Ecology and Biogeography, 2020, 29(9): 1458-1473.
[2]Ndou E , Ruwanza S . Soil and vegetation recovery following alien tree clearing in the Eastern Cape Province of South Africa[J]. African Journal of Ecology, 2016, 54(4): 460-470.
[3]Wang Feng, Pan Xubin, Gerlein‐Safdi C, et al. Vegetation restoration in Northern China: A contrasted picture[J]. Land Degradation & Development. 2020, 31(6): 669-676.
[4]Xu Hongwei, Wang Xiukang, Qu Qing, et al. Cropland abandonment altered grassland ecosystem carbon storage and allocation and soil carbon stability in the Loess Hilly Region, China[J]. Land Degradation & Development, 2020, 31(8): 1001-1013.
[5]楊玉婷,石玉林,李戰(zhàn)剛,等. 陜北“三北”防護(hù)林下草本群落特征及其與林分結(jié)構(gòu)和土壤養(yǎng)分的關(guān)系[J]. 生態(tài)學(xué)報(bào),2020,40(18):6542-6551. Yang Yuting, Shi Yulin, Li Zhangang, et al. Community characteristics of understory herb layer and its relationships with stand structure and soil nutrient availability in the Three-North shelterbelt of Shaanxi, China[J]. Acta Ecologica Sinica, 2020, 40(18): 6542-6551. (in Chinese with English abstract)
[6]Yu Haiyan, Zha Tonggang, Zhang Xiaoxia, et al. Vertical distribution and influencing factors of soil organic carbon in the Loess Plateau, China[J]. Science of the Total Environment, 2019, 693: 133632.
[7]Chen Guangzhou, Huang Yong, Chen Jun, et al. Spatiotemporal variation of vegetation net primary productivity and its responses to climate change in the Huainan coal mining area[J]. Journal of the Indian Society of Remote Sensing, 2019, 47(11): 1905-1916.
[8]魏霞,賀燕,魏寧,等. 祁連山區(qū)主要植被類型下土壤團(tuán)聚體變化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(2):148-155. Wei Xia, He Yan, Wei Ning, et al. Variation characteristics of soil aggregates under main vegetation types in Qilian Mountainous areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(2): 148-155. (in Chinese with English abstract)
[9]Mcguire K L, Treseder K K. Microbial communities and their relevance for ecosystem models: Decomposition as a case study[J]. Soil Biology & Biochemistry, 2009, 42(4): 529-535.
[10]張志南,武高林,王冬,等. 黃土高原半干旱區(qū)天然草地群落結(jié)構(gòu)與土壤水分關(guān)系[J]. 草業(yè)學(xué)報(bào),2014,23(6):313-319. Zhang Zhinan, Wu Gaolin, Wang Dong, et al. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau[J]. Acta Prataculturae Sinica, 2014, 23(6): 313-319. (in Chinese with English abstract)
[11]宋光,溫仲明,鄭穎,等. 陜北黃土高原刺槐植物功能性狀與氣象因子的關(guān)系[J]. 水土保持研究,2013,20(3):125-130. Song Guang, Wen Zhongming, Zheng Ying, et al. Relationships between plant functional traits ofand meteorological factors in Loess Plateau, north Shaanxi, China[J]. Research of Soil and Water Conservation, 2013, 20(3): 125-130. (in Chinese with English abstract)
[12]孫龍,張光輝,欒莉莉,等. 黃土丘陵區(qū)表層土壤有機(jī)碳沿降水梯度的分布[J]. 應(yīng)用生態(tài)學(xué)報(bào),2016,27(2): 532-538. Sun Long, Zhang Guanghui, Luan Lili, et al. Distribution of soil organic carbon in surface soil along a precipitation gradient in loess hilly area[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 532-538. (in Chinese with English abstract)
[13]耿韌,張光輝,洪大林,等. 黃土高原農(nóng)地草地林地土壤團(tuán)聚體穩(wěn)定性沿降水梯度的變化特征[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(3):141-148. Geng Ren, Zhang Guanghui, Hong Dalin, et al. Variation characteristics of aggregate stability of cropland, grassland and woodland along precipitation gradient in Loess Plateau[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(3): 141-148. (in Chinese with English abstract)
[14]Ilstedt U, Nordgren A, Malmer A. Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer[J]. Soil Biology and Biochemistry, 2000, 32(11): 1591-1599.
[15]閆鐘清,齊玉春,李素儉,等. 降水和氮沉降增加對(duì)草地土壤微生物與酶活性的影響研究進(jìn)展[J]. 微生物學(xué)通報(bào),2017,44(6):1481-1490. Yan Zhongqing, Qi Yuchun, Li Sujian, et al. Soil microorganisms and enzyme activity of grassland ecosystem affected by changes in precipitation pattern and increase in nitrogen deposition–a review[J]. Microbiology China, 2017, 44(6): 1481-1490. (in Chinese with English abstract)
[16]顧朝軍,穆興民,高鵬,等. 1961-2014年黃土高原地區(qū)降水和氣溫時(shí)間變化特征研究[J]. 干旱區(qū)資源與環(huán)境,2017,31(3):136-143. Gu Chaojun, Mu Xingmin, Gao Peng, et al. Characteristics of temporal variation in precipitation and temperature in the Loess Plateau from 1961 to 2014[J]. Journal of Arid Land Resources and Environment, 2017, 31(3): 136-143. (in Chinese with English abstract)
[17]Ye Luping, Fang Linchuan, Shi Zhihua, et al. Spatio-temporal dynamics of soil moisture driven by ‘Grain for Green’ program on the Loess Plateau, China[J]. Agriculture, Ecosystems and Environment, 2019, 269: 204-214.
[18]濮陽(yáng)雪華,王春春,茍清平,等. 陜北黃土區(qū)植被群落特征與土壤水分關(guān)系研究[J]. 草業(yè)學(xué)報(bào),2019,28(11):184-191. Puyang Xuehua, Wang Chunchun, Gou Qingping, et al. Relationship between vegetation community and soil moisture in the Loess region of northern Shaanxi Province[J]. Acta Prataculturae Sinica, 2019, 28(11): 184-191. (in Chinese with English abstract)
[19]卜耀軍,朱清科,包耀賢,等. 陜北黃土區(qū)微地形土壤質(zhì)量指標(biāo)變異性及敏感性[J]. 水土保持學(xué)報(bào),2014,28(3):153-157. Bo Yaojun, Zhu Qingke, Bao Yaoxian, et al. Variability and sensitivities of soil quality indicators of microtopographies in Loess Regions of Northern Shaanxi[J]. Journal of Soil and Water Conservation, 2014, 28(3): 153-157. (in Chinese with English abstract)
[20]鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000:20-114.
[21]李鵬飛,張興昌,朱首軍,等. 植被恢復(fù)對(duì)黑岱溝礦區(qū)排土場(chǎng)土壤性質(zhì)的影響[J]. 水土保持通報(bào),2015,35(5):64-70. Li Pengfei, Zhang Xingchang, Zhu Shoujun, et al. Effects of vegetation restoration on soil properties in Heidaigou mine dump[J]. Bulletin of Soil and Water Conservation, 2015, 35(5): 64-70. (in Chinese with English abstract)
[22]李強(qiáng),許明祥,趙允格,等. 黃土高原坡耕地溝蝕土壤質(zhì)量評(píng)價(jià)[J]. 自然資源學(xué)報(bào),2012,27(6):1001-1012. Li Qiang, Xu Mingxiang, Zhao Yunge, et al. Gully erosion soil quality assessment on the cultivated slope land in the Loess Plateau region, China[J]. Journal of Natural Resources, 2012, 27(6): 1001-1012. (in Chinese with English abstract)
[23]李鵬飛,張興昌,郝明德,等. 基于最小數(shù)據(jù)集的黃土高原礦區(qū)復(fù)墾土壤質(zhì)量評(píng)價(jià)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(16):265-273. Li Pengfei, Zhang Xingchang, Hao Mingde, et al. Soil quality evaluation for reclamation of mining area on Loess Plateau based on minimum data set[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 265-273. (in Chinese with English abstract)
[24]于博威,劉高煥,劉慶生,等. 晉西黃土丘陵區(qū)不同退耕年限刺槐林土壤養(yǎng)分效應(yīng)[J]. 水土保持學(xué)報(bào),2016,30(4):188-193. Yu Bowei, Liu Gaohuan, Liu Qingsheng, et al. Effects of soil nutrient inforests with various ages in the Loess Hilly region of Western Shanxi province[J]. Journal of Soil and Water Conservation, 2016, 30(4): 188-193. (in Chinese with English abstract)
[25]龐世龍,歐芷陽(yáng),申文輝,等. 廣西喀斯特地區(qū)不同植被恢復(fù)模式土壤質(zhì)量綜合評(píng)價(jià)[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào):自然科學(xué)版,2016,36(7):60-66. Pang Shilong, Ou Zhiyang, Shen Wenhui, et al. Edaphic characteristics of different regeneration patterns in karst mountainous areas of Guangxi[J]. Journal of Central South University of Forestry & Technology: Natural Sciences Edition, 2016, 36(7): 60-66. (in Chinese with English abstract)
[26]高露,張圣微,朱仲元,等. 干旱半干旱區(qū)退化草地土壤水分變化及其對(duì)降雨時(shí)間格局的響應(yīng)[J]. 水土保持學(xué)報(bào),2020,34(1):195-201. Gao Lu, Zhang Shengwei, Zhu Zhongyuan, et al. Soil moisture changes in degraded grassland and its response to rainfall temporal pattern in arid and semi-arid areas[J]. Journal of Soil and Water Conservation, 2020, 34(1): 195-201. (in Chinese with English abstract)
[27]張欽弟,衛(wèi)偉,陳利頂,等. 黃土高原草地土壤水分和物種多樣性沿降水梯度的分布格局[J]. 自然資源學(xué)報(bào),2018,33(8):1351-1362. Zhang Qindi, Wei Wei, Chen Liding, et al. Spatial variation of soil moisture and species diversity patterns along a precipitation gradient in the grasslands of the Loess Plateau[J]. Journal of Natural Resources, 2018, 33(8): 1351-1362. (in Chinese with English abstract)
[28]Li Zhen, Pan Jinghu. Spatiotemporal changes in vegetation net primary productivity in the arid region of Northwest China, 2001 to 2012[J]. Frontiers of Earth Science, 2018, 12(1): 108-124.
[29]郭寧,姜基春,王國(guó)強(qiáng),等. 黃土丘陵區(qū)不同降水梯度對(duì)草地群落化學(xué)計(jì)量學(xué)特征的影響[J]. 水土保持通報(bào),2020,40(2):1-8. Guo Ning, Jiang Jichun, Wang Guoqiang, et al. Effects of different precipitation gradients on stoichiometric characteristics of grassland communities in Loess Hilly Region[J]. Bulletin of Soil and Water Conservation, 2020, 40(2): 1-8. (in Chinese with English abstract)
[30]趙姍宇,黎錦濤,孫學(xué)凱,等. 樟子松人工林原產(chǎn)地與不同自然降水梯度引種地土壤和植物葉片生態(tài)化學(xué)計(jì)量特征[J]. 生態(tài)學(xué)報(bào),2018,38(20):7189-7197. Zhao Shanyu, Li Jintao, Sun Xuekai, et al. Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions[J]. Acta Ecologica Sinica, 2018, 38(20): 7189-7197. (in Chinese with English abstract)
[31]鄭明新,黃鋼,彭晶. 不同生長(zhǎng)期多花木蘭根系抗拉拔特性及其根系邊坡的穩(wěn)定性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(20):175-182. Zheng Mingxin, Huang Gang, Peng Jing. Tensile-pullout properties of roots ofin different growth stages and stability of slope with its root[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 175-182. (in Chinese with English abstract)
[32]Giweta M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review[J]. Journal of Ecological and Environment, 2020, 44(8): 339-360.
[33]Liu Guangyao, Chen Lili, Deng Qiang, et al. Vertical changes in bacterial community composition down to a depth of 20 m on the degraded Loess Plateau in China[J]. Land Degradation & Development, 2020, 31(10): 1300-1313.
[34]陳克利,孟敏,張鵬,等. 黃土高原降雨梯度對(duì)刺槐不同器官內(nèi)源激素分布格局及生長(zhǎng)的影響[J]. 水土保持研究,2020,27(1):298-304. Chen Keli, Meng Min, Zhang Peng, et al. Effects of rainfall gradients on the distribution pattern and growth of endogenous hormones in different organs ofon the Loess Plateau[J]. Research of Soil and Water Conservation, 2020, 27(1): 298-304. (in Chinese with English abstract)
[35]李玲芬,延軍平,劉冬梅,等. 干旱—半干旱地區(qū)不同植被條件下土壤含水量變化及植被建設(shè)途徑分析[J]. 水土保持通報(bào), 2009, 29(1):18-22,27.
Li Lingfen, Yan Junping, Liu Dongmei, et al. Variation of soil moisture in arid and semi-arid areas under different vegetations and the ways of ecological construction[J]. Bulletin of Soil and Water Conservation, 2009, 29(1): 18-22, 27.
[36]楊建偉,梁宗鎖,韓蕊蓮. 黃土高原常用造林樹種水分利用特征[J]. 生態(tài)學(xué)報(bào),2006,26(2):558-565. Yang Jianwei, Liang Zongsuo, Han Ruilian. Water use efficiency characteristics of four tree species under different soil water conditions in the Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(2): 558-565. (in Chinese with English abstract)
[37]白于,蘇紀(jì)帥,程積民. 黃土區(qū)不同封育時(shí)期天然草地的根系生物量分布[J]. 草業(yè)科學(xué),2013,30(11):1824-1830. Bai Yu, Su Jishuai, Cheng Jimin. Root biomass distribution of natural grasslands with different enclosing years in the Loess Plateau[J]. Pratacultural Science, 2013, 30(11): 1824-1830. (in Chinese with English abstract)
[38]王忠禹,劉國(guó)彬,王兵,等. 黃土丘陵區(qū)典型植物枯落物凋落動(dòng)態(tài)及其持水性[J]. 生態(tài)學(xué)報(bào),2019,39(7): 2416-2425. Wang Zhongyu, Liu Guobin, Wang Bing, et al. Litter production and its water holding capability in typical plants communities in the hilly region of the Loess Plateau[J]. Acta Ecologica Sinica, 2019, 39(7): 2416-2425. (in Chinese with English abstract)
Soil quality characteristics of forests and grasslands returned from farmland and their responses to precipitation in the Loess Region of Northern Shaanxi, China
Zhang Zhiyong1, Ai Ning1,2※, Liu Guangquan2, Liu Changhai1, Zong Qiaoyu1, Liu Jiao1, Hao Baobao1
(1.,(),716000,; 2,100038,)
This study aims to characterize the soil quality of returning farmland to forest (grass) land in the loess region of northern Shaanxi, particularly on its response to the precipitation. Taking Wuqi county, Shaanxi Province as the research area, three precipitation gradients were divided into 370-395, 440-445, and 460-470 mm. Correspondingly, three typical locations were also selected as Wangwazi (370-395 mm), Dajigou (440-445 mm), and Baibao (460-470 mm). A quantitative evaluation was carried out in three precipitation areas, combining with the soil quality index. The comprehensive scores were achieved, including the soil physical structure, water holding capacity, salinity, carbon sink index, and available nutrient index, for the widespread,, and grassland. An attempt was made to clarify that the soil quality characteristics changed with precipitation gradients after vegetation restoration. The results showed that: 1) Precipitation, vegetation types, and their interaction had significant effects on soil indicators (<0.05). 2) In the 460-470 mm precipitation area,forest (0.829) had the best effect on soil quality improvement, followed byforest (0.808). The soil quality of both reached the fertile level, and the difference was not significant. Grassland (0.679) had the lowest soil quality index, and the soil was at a more fertile level. In the 440~445 mm precipitation area, the(0.764)had the best comprehensive soil quality indexes, followed by the(0.672), both of which reached a relatively fertile level, whereas, the grassland (0.479) had the lowest soil quality index at a medium level. In the 370-395 mm precipitation area, the comprehensive soil quality index of the three vegetation types from large to small wasforest (0.792),forest (0.433), grassland (0.270). The soil quality grade offorest was relatively higher.forest and grassland were at the medium and barren level, respectively. 3) Within the precipitation gradient of 370-470 mm, the soil quality index of three planting types all decreased with the decrease of precipitation. Among them, theforest (2.34%) had the lowest coefficient of variation of the comprehensive index of soil quality, whereas, theforest and grassland had higher coefficient of variation (25.27% and 34.34%, respectively). The findings can provide scientific datum and theoretical support to implement ecological forestry projects, with an emphasis on the vegetation restoration and reconstruction under the precipitation gradient of 370-470 mm in the loess area of northern Shaanxi, China.
soils; precipitation; returning farmland to forest (grass); quality evalution; vegetation types; precipitation gradient; Loess Region of Northern Shaanxi
張智勇,艾寧,劉廣全,等. 陜北黃土區(qū)退耕還林(草)地土壤質(zhì)量特征及其對(duì)降水的響應(yīng)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(24):73-80.doi:10.11975/j.issn.1002-6819.2020.24.009 http://www.tcsae.org
Zhang Zhiyong, Ai Ning, Liu Guangquan, et al. Soil quality characteristics of forests and grasslands returned from farmland and their responses to precipitation in the Loess Region of Northern Shaanxi, China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 73-80. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.009 http://www.tcsae.org
2020-08-21
2020-11-05
“十三五”國(guó)家重點(diǎn)研發(fā)計(jì)劃(2016YFC0501602,2016YFC0501705);國(guó)家自然基金項(xiàng)目(32060297);延安市科技計(jì)劃項(xiàng)目(2019ZDQY-036)
張智勇,主要從事林業(yè)生態(tài)工程與水土保持方面的研究。Email:18853813917@163.com
艾寧,博士,講師,主要從事林業(yè)生態(tài)工程與水土保持方面的研究。Email:aining_office@126.com
10.11975/j.issn.1002-6819.2020.24.009
S151.9;S158
A
1002-6819(2020)-24-0073-08