鞏有奎,王一冰,孫洪偉
生物反應(yīng)器電子受體反硝化聚磷PAOs-GAOs競(jìng)爭(zhēng)及N2O釋放特性
鞏有奎1,王一冰1,孫洪偉2
(1. 煙臺(tái)職業(yè)學(xué)院建筑工程系,煙臺(tái) 264670; 2. 煙臺(tái)大學(xué)環(huán)境與材料工程學(xué)院,煙臺(tái) 264005)
利用厭氧-缺氧-好氧序批式生物反應(yīng)器(Anaerobic/Anoxic/Oxic-Sequencing Batch Reactor, An/A/O-SBR),以乙酸鈉為電子供體,NO3-/NO2-為電子受體,控制反硝化電子受體電子需求為90 mmol/L,經(jīng)長(zhǎng)時(shí)間馴化,考察了不同電子受體馴化SBR反硝化除磷及N2O釋放特性,并利用化學(xué)計(jì)量法確定了聚磷菌(Phosphorus Accumulating Organisms, PAOs)和聚糖菌(Glycogen Accumulating Organisms, GAOs)間競(jìng)爭(zhēng)關(guān)系。結(jié)果表明,NO3-還原過(guò)程中,SBR系統(tǒng)總氮(Total Nitrogen, TN)和總磷(Total Phosphorus, TP)去除率均達(dá)95%以上,平均N2O產(chǎn)率為2.4%,PAOs轉(zhuǎn)化碳源(CODin)和反硝化脫氮比例分別為62.0%和76.2%。NO2-增加,厭氧段糖原(Gly)酵解性能增強(qiáng),Gly消耗與碳源轉(zhuǎn)化比例(ΔGly/CODin)由0.67增至0.80,PAOs活性受抑制,聚磷(Poly-P)合成減少,GAOs競(jìng)爭(zhēng)優(yōu)勢(shì)增強(qiáng)。NO2--N為30 mg/L,SBR內(nèi)TP去除率降至50.5%,PAOs轉(zhuǎn)化碳源和脫氮比例分別降至36%和50.6%。PAOs-GAOs共生體系內(nèi),GAOs反硝化脫氮過(guò)程,削弱了高NO2-對(duì)PAOs反硝化除磷的抑制,缺氧階段NO2-/HNO2積累耦合GAOs反硝化脫氮比例增加,導(dǎo)致高NO2-下TP去除率下降和N2O產(chǎn)率增加。
電子遷移;氮氧化物;污水;反硝化聚磷菌;聚糖菌;電子受體;氧化亞氮
隨著鄉(xiāng)鎮(zhèn)經(jīng)濟(jì)發(fā)展和農(nóng)村居民生活條件不斷改善,其產(chǎn)生的生活污水也日益增多。10 a前,農(nóng)村地區(qū)水污染物總量已達(dá)全國(guó)排放總量的50%,其總氮(Total Nitrogen,TN)、總磷(Total Phosphorus, TP)排放約占全國(guó)總排放量的57%和67%[1]。近幾年,中國(guó)推進(jìn)“美麗鄉(xiāng)村”建設(shè),農(nóng)村污水處理設(shè)施建設(shè)得以快速提升[2-3]。然而,傳統(tǒng)生物脫氮除磷工藝處理生活污水過(guò)程中,存在脫氮與除磷2個(gè)過(guò)程在碳源、溶解氧及污泥齡等方面矛盾,難以保證氮、磷同時(shí)達(dá)標(biāo)。
反硝化除磷(Denitrifying Phosphorus Removal,DPR)工藝可實(shí)現(xiàn)同步反硝化脫氮和缺氧吸磷,具有流程簡(jiǎn)單、節(jié)省外加碳源等諸多優(yōu)點(diǎn)[4]。該過(guò)程厭氧階段,聚磷菌(Phosphorus Accumulating Organisms, PAOs)吸收外碳源合成體內(nèi)聚羥基烷酸脂(Polyhydroxyalkanoates, PHA)并釋磷;缺氧階段,PAOs以NOx-為電子受體,以PHA為電子供體,完成反硝化脫氮并過(guò)量吸磷[5-6]。在厭氧-缺氧-好氧(Anaerobic/Anoxic/Oxic, An/A/O)交替運(yùn)行序批式反應(yīng)器(Sequencing Batch Reactor, SBR)內(nèi),常存在與PAOs競(jìng)爭(zhēng)碳源的聚糖菌(Glycogen Accumulating Organisms, GAOs),其反硝化過(guò)程不能實(shí)現(xiàn)磷去除,傳統(tǒng)研究認(rèn)為GAOs過(guò)多會(huì)導(dǎo)致除磷性能降低。然而,研究表明[7-9],在PAOs-GAOs共存系統(tǒng)內(nèi),菌群的多樣性可促進(jìn)同步反硝化除磷系統(tǒng)高效運(yùn)行。GAOs厭氧階段儲(chǔ)存PHA,可耦合PAOs實(shí)現(xiàn)高效脫氮除磷。Rubio-Rincón等[7]發(fā)現(xiàn),在PAOs- GAOs混合系統(tǒng)中,GAOs將NO3-還原至NO2-,PAOs利用NO2-完成缺氧吸磷,表現(xiàn)出更高的缺氧磷吸收活性。Wang等[8]研究也發(fā)現(xiàn),GAOs反硝化過(guò)程將NO3-還原至NO2-,亞硝酸鹽轉(zhuǎn)化率可達(dá)53%~67%,GAOs短程內(nèi)源反硝化與PAOs反硝化除磷協(xié)同,可充分利用微生物內(nèi)碳源,解決了城市污水脫氮過(guò)程中碳源不足的問(wèn)題[9]。GAOs利用NO2-能力大于PAOs,混合體系內(nèi)存在GAOs,可削弱NO2-對(duì)PAOs反硝化吸磷過(guò)程的抑制,促進(jìn)磷吸收[10]。
目前反硝化除磷過(guò)程研究多以NO3-為電子受體,通過(guò)全程內(nèi)源反硝化過(guò)程實(shí)現(xiàn)。盡管DPR系統(tǒng)內(nèi)同時(shí)存在PAOs和GAOs,但是,不同電子受體還原過(guò)程中,PAOs-GAOs之間碳源競(jìng)爭(zhēng)關(guān)系及兩者對(duì)反硝化過(guò)程的貢獻(xiàn)尚不明確[11-13]。部分研究指出,PAOs-GAOs內(nèi)源反硝化過(guò)程的終產(chǎn)物是N2O而非N2,導(dǎo)致反硝化除磷過(guò)程N(yùn)2O大量釋放[14-16]。N2O是導(dǎo)致臭氧層破壞最嚴(yán)重的因素之一,其溫室效應(yīng)是CO2的300倍,這勢(shì)必會(huì)削弱反硝化除磷技術(shù)作為新型污水處理過(guò)程的應(yīng)用優(yōu)勢(shì)[16]。本文采用An/A/O-SBR系統(tǒng),控制反硝化電子需求總量為90 mmol//L,通過(guò)改變NO3-與NO2-間比例,分別實(shí)現(xiàn)NO3-和NO2-反硝化過(guò)程,并基于DPR內(nèi)功能菌群(PAOs、GAOs)的代謝模型及計(jì)量學(xué)分析,考察了PAOs-GAOs耦合作用下SBR內(nèi)碳源轉(zhuǎn)化及同步脫氮除磷特性,確定了兩者碳源競(jìng)爭(zhēng)關(guān)系及系統(tǒng)N2O釋放特性,為提升農(nóng)村生活污水處理效率及減少溫室氣體排放提供理論支撐。
試驗(yàn)用序批式生物反應(yīng)器(Sequencing Batch Reactor,SBR)有效容積為12 L,充水比為0.75。SBR設(shè)有攪拌裝置,內(nèi)置pH值和溶解氧(Dissolved Oxygen,DO)傳感器,以實(shí)現(xiàn)在線監(jiān)測(cè)和實(shí)時(shí)調(diào)控(圖1)。試驗(yàn)期間,SBR的固體停留時(shí)間(SRT)控制為20 d,懸浮固體濃度(Mixed Liquor Suspended Solid, MLSS)為2 800 mg/L左右,揮發(fā)性懸浮固體(Mixed Liquid Volatile Suspended Solids,VSS)與MLSS質(zhì)量濃度比約為0.75,試驗(yàn)溫度=(20±1) ℃。缺氧和好氧反應(yīng)階段分別以高純氮?dú)夂涂諝膺M(jìn)行曝氣,DO=(1.5±0.5) mg/L。曝氣量為30 L/h,每30 min更換一次采樣袋。
圖1 SBR試驗(yàn)裝置及運(yùn)行方式
試驗(yàn)接種污泥取自實(shí)驗(yàn)室內(nèi)具有良好脫氮除磷性能A2/O反應(yīng)器二沉池。試驗(yàn)開(kāi)始前,A2/O反應(yīng)器已連續(xù)運(yùn)行100 d以上,脫氮及除磷效率分別穩(wěn)定在80%和95%以上,經(jīng)FISH測(cè)定,反硝化聚磷菌(Denitrifying Phosphorus Accumulating Organisms, DPAOs)與PAOs比值(DPAOs/PAOs)約為0.7。試驗(yàn)過(guò)程中,以厭氧(90 min)-缺氧(180 min)-好氧(60 min)-沉淀排水(30 min)-閑置(120 min)方式運(yùn)行SBR,每天運(yùn)行3個(gè)周期,以PLC控制SBR運(yùn)行過(guò)程。試驗(yàn)采用模擬廢水,厭氧階段廢水進(jìn)入SBR混合后,化學(xué)需氧量(Chemical Oxygen Demand,COD,乙酸鈉)為(120±20)mg/L,PO43--P(K2HPO4)為(6.0±1.0)mg/L,NH4+-N(NH4Cl)為(5.0±1.0)mg/L,并含有0.5 mL/L微量元素營(yíng)養(yǎng)液[17]。缺氧初始,脈沖投加NaNO3/NaNO2提供電子受體,控制NOx-全部還原所需電子為90 mmol/L,并采用調(diào)整NO3/NO2-比例,即逐級(jí)增加NO2-、減小NO3-方式,將電子受體由 NO3-逐漸轉(zhuǎn)變?yōu)镹O2-,整個(gè)試驗(yàn)過(guò)程共分為4個(gè)階段(表1)。
表1 厭氧/缺氧/好氧運(yùn)行序批式反應(yīng)器試驗(yàn)過(guò)程
分別取第30、60、90和135 d厭氧反應(yīng)結(jié)束后污泥進(jìn)行批次試驗(yàn),確定污泥反硝化吸磷特性。試驗(yàn)采用有效容積為0.75 L錐形瓶。試驗(yàn)開(kāi)始前,利用蒸餾水將污泥清洗3次,去除污泥表現(xiàn)殘留有機(jī)物。各批次試驗(yàn)初始,加入18.0 mg/L的NO3--N或30 mg/L的NO2--N,測(cè)定不同電子受體反硝化過(guò)程N(yùn)O2--N和NO3-還原速率(NiRR,NaRR),并確定對(duì)應(yīng)的吸磷速率(PURi,PURa)。
1)水質(zhì)測(cè)定方法:以便攜式 DO 和 pH 值測(cè)定儀(WTW,Multi340i 型)測(cè)定反應(yīng)器中 DO、pH值,COD、NO3-、NO2-、MLSS和MLVSS均采用標(biāo)準(zhǔn)方法分析[17]。
2)N2O測(cè)定方法[18]:試驗(yàn)過(guò)程中,以濕式流量計(jì)確定采樣袋內(nèi)收集氣體體積,以氣相色譜儀(Agilent公司6890N型)測(cè)定氣相N2O濃度。色譜測(cè)定條件:爐溫180 ℃,進(jìn)樣口溫度110 ℃,ECD檢測(cè)器300 ℃。
3)內(nèi)源物測(cè)定方法:聚--羥基丁酸(Poly-- Hydroxybutyrate,PHB)、聚--羥基戊酸(Poly-- Hydro- xyvalerate,PHV)采用內(nèi)標(biāo)法以氣相色譜分析[19],兩者之和為PHA;Gly采用蒽酮法測(cè)定[20]。
An/A/O-SBR內(nèi)厭氧階段碳源消耗量(CODcon)主要包括異養(yǎng)反硝化菌(OHO)COD耗量(CODdn)[21]、PAOs、DAOs內(nèi)碳源儲(chǔ)存COD量(CODin)[22]。其中,CODin和CODdn計(jì)算分別見(jiàn)式(1)~式(2),PAOs和GAOs儲(chǔ)存內(nèi)碳源消耗的COD比例以PAO, An和GAO, An計(jì),計(jì)算方法如式(3)和式(4)所示[23]。
CODin=CODcon-CODdn(1)
CODdn=2.86ΔNO3--N +1.71ΔNO2--N(2)
0.5PAO,An=PRA/CODin(3)
1.12GAO,An=?GlyAn/CODin-0.5PAO,An(4)
式中ΔNO3--N和ΔNO2--N分別為厭氧段NO3--N和NO2--N變化量,mg/L;2.86和1.71分別為單位質(zhì)量濃度NO3--N和NO2--N異養(yǎng)反硝化過(guò)程所消耗COD,mg/mg;PRA為厭氧階段釋磷量,mmol/L;?GlyAn為厭氧階段Gly消耗量,mmol/L;0.5和1.12分別為PAOs和GAOs消耗外碳源轉(zhuǎn)化為內(nèi)碳源時(shí),單位有機(jī)物釋磷和Gly消耗量[23]。
缺氧階段,無(wú)外加碳源,NOx--N通過(guò)DPAOs和GAOs內(nèi)源反硝化去除,以PDPAOs,A和PGAOs,A表示DPAOs和GAOs在缺氧脫氮過(guò)程中的貢獻(xiàn)比例。計(jì)算如式(5)~式(7)所示:[14]
式中NRADPAOs和NRAGAOs分別為DPAOs和GAOs的NOx--N去除量,mg/L;NaRA為缺氧階段NO3-去除量,mg/L;NiRA為缺氧階段NO2-去除量,mg/L;PUA為缺氧階段吸磷量,mg/L。
圖2所示為An/A/O-SBR長(zhǎng)期運(yùn)行特性。馴化初期,SBR缺氧末存在部分NO2-積累,NOx-去除率(NOx-去除/進(jìn)水NOx-,%)為58.5%。NO3-加入促進(jìn)了以NO3-為電子受體的DPAOs富集,經(jīng)30 d馴化,NO3-去除量(NaRA)達(dá)16.5 mg/L,N2O產(chǎn)率(N2O釋放量/NOx-去除量)由馴化初始的3.23%降至2.4%。NOx-去除率增加是在進(jìn)水COD/N恒定條件下實(shí)現(xiàn)的,得益于系統(tǒng)內(nèi)以NO3-為電子受體的DPAOs富集和GAOs減少。DPAOs反硝化吸磷過(guò)程以體內(nèi)PHA為碳源,被降解更為徹底,GAOs反硝化過(guò)程中,降解的部分PHA用于再生Gly,降低了PHA利用效率。II階段,NO2-加入導(dǎo)致NOx-去除率迅速降至70.0%。I階段NO2-積累較低,未馴化出可大量利用NO2-的DPAOs,脈沖加入的NO2-抑制DPAOs活性,NOx-去除率迅速降低,經(jīng)馴化,NOx-去除率達(dá)80.8%,電子耗量為71.2 mmol/L,比階段I降低20.9%。Meinhold等[24]指出,NO2-加入會(huì)導(dǎo)致反硝化活性降低。階段IV,僅投加NO2-,NO2-去除量(NiRA)為18.7 mg/L,NOx-去除率降至69.9%,電子耗量降至56.1 mmol/L。
階段I,厭氧末PO4-由17.6增至29.5 mg/L并趨于穩(wěn)定,缺氧末PO43-由3.43 降至0.65 mg/L,NO3-投加促進(jìn)了DPAOs富集,微生物吸收等量碳源時(shí)的聚磷(Poly-P)水解數(shù)量增加,平均厭氧釋磷量(PRA)和單位污泥釋磷量分別達(dá)26.0 mg/L和10.1 mg/g。缺氧階段,DPAOs氧化PHA獲得能量,過(guò)量攝取PO43-并以Poly-P形式儲(chǔ)存于細(xì)胞內(nèi),平均PUA為28.9 mg/L,TP去除率(進(jìn)水總磷/缺氧末總磷,%)達(dá)95%以上;階段II,NO2-抑制釋磷和吸磷,單位污泥釋磷量降至8.91 mg/g,TP去除率降至74.7%;IV階段,PRA和PUA分別降至12.9和15.7 mg/L,TP去除率僅為50.5%。缺氧Poly-P合成通過(guò)ATP/ADP來(lái)反映。以NO2-為電子受體,其生成的游離亞硝酸(FNA)能穿過(guò)細(xì)胞膜,降低胞內(nèi)pH值并影響ATP合成,導(dǎo)致ATP/ADP合成低下,進(jìn)而降低Poly-P合成,宏觀上則表現(xiàn)為微生物吸磷活性受到抑制[25-26];另一方面,F(xiàn)NA進(jìn)入細(xì)胞,通過(guò)破壞多聚磷酸鹽激酶(PPK)來(lái)抑制Poly-P合成,影響吸磷[27]。此外,缺氧反硝化活性受到FNA抑制,產(chǎn)生的能量減少,為維持胞內(nèi)能量平衡,發(fā)生部分Poly-P水解,磷吸收能量受限,也導(dǎo)致缺氧吸磷速率降低[28]。
圖3所示分別為I(a、b)和IV階段(c、d)典型周期內(nèi)COD、N、P、PHA和Gly變化特性。以NO3-作為電子受體(階段I),經(jīng)18 mg/L NO3--N馴化,PRA達(dá)0.85 mmol/L,PRA與厭氧階段PHA合成(ΔPHA)之比(PRA/ΔPHA)為0.29 mmol/mmol,低于典型PAOs厭氧代謝模型值(0.625 mmol/mmol[14]),接近DPAOs代謝模型值(0.24 mmol/mmol[29]),NO3-加入促進(jìn)SBR內(nèi)DPAOs增殖,釋磷主要由DPAOs完成。Gly酵解(ΔGly)與PHA合成之比(ΔGly/ΔPHA)為0.63 mmol/mmol,大于典型PAOs和DPAOs厭氧ΔGly/ΔPHA(0.385[29]和0.43[30]mmol/mmol),SBR內(nèi)存在GAOs以降解Gly方式獲得能量,將有機(jī)物合成體內(nèi)PHA。階段IV厭氧過(guò)程,PRA至0.42 mmol/L,PHA合成為2.44 mmol/L,PRA/ΔPHA降至0.17 mmol/mmol,ΔGly/ΔPHA則增至0.817 mmol/mmol。NO2-加入抑制缺氧Poly-P合成,導(dǎo)致下一周期厭氧段Poly-P分解提供能量降低,微生物通過(guò)增加Gly酵解的方式獲得能量,導(dǎo)致了SBR內(nèi)GAOs增殖,部分PAOs被淘洗出系統(tǒng)。也有研究表明,高濃度NO2-(20~30 mg/L)能夠抑制DPAOs活性,而幾乎不影響GAOs反硝化過(guò)程[10]。以NO2-作為電子受體,GAOs較DPAOs具優(yōu)勢(shì)。
以NO3-作為電子受體,90~210 min內(nèi)完成NO3-還原,反硝化過(guò)程出現(xiàn)了NO2-積累。PHA降解速率是可溶性外碳源的1/20~1/6[31],提供電子速率較低。與硝態(tài)氮還原酶(Nar)相比,亞硝態(tài)氮還原酶(Nir)競(jìng)爭(zhēng)電子能力較弱,導(dǎo)致NO2-積累。反硝化PUA為29.5 mg/L,PUA/NaRA=1.78,略低于典型DPAOs缺氧吸磷理論值(2.10 mg/mg[23]),主要通過(guò)DPAOs反硝化過(guò)程去除NO3-,部分NO3-利用GAOs去除;階段IV,PUA降至15.7 mg/L,PUA/NiRA=0.83,遠(yuǎn)低于典型DPAOs利用NO2-反硝化吸磷理論值(1.71 mg/mg),該階段GAOs大量增殖促進(jìn)了其對(duì)NO2-的利用,此過(guò)程無(wú)磷吸收,導(dǎo)致PUA/NiRA下降。缺氧末,IV階段仍殘留部分NO2-,此部分NO2-在后續(xù)好氧階段被氧化至NO3-,并在后一反應(yīng)周期的厭氧段消耗外碳源,減少厭氧段PHA積累并進(jìn)一步削弱SBR脫氮性能。
圖3 不同電子受體典型周期內(nèi)COD、氮和磷及內(nèi)碳源變化情況
批次試驗(yàn)過(guò)程不同電子受體還原速率(NiRR、NaRR)及相應(yīng)吸磷速率(PURi、PURa)如圖4所示。I階段污泥,NaRR和PURa分別為0.78 和0.67 mg/(g·h),NaRR/PURa為1.16 mg/mg,Jiang等[32]和Wang等[33]對(duì)DPAOs反硝化過(guò)程研究指出,NaRR/PURa分別為0.89和1.31 mg/mg,與本研究大致相當(dāng);I階段污泥NiRR和PURi分別為0.34 和0.14 mg/(g·h)。I階段,SBR內(nèi)除存在部分同時(shí)以NO3-和NO2-為電子受體的反硝化聚磷菌進(jìn)行NO2-反硝化吸磷外,GAOs也可利用NO2-完成內(nèi)源反硝化過(guò)程,而此過(guò)程不過(guò)量吸磷,NiRR/PURi=2.43 mg/mg,遠(yuǎn)大于典型短程N(yùn)O2-反硝化除磷過(guò)程計(jì)量值(1.00[32]和0.94[34])。高NO2-對(duì)反硝化吸磷活性產(chǎn)生抑制,但對(duì)GAOs反硝化過(guò)程影響較小,NiRR/PURi增加。階段IV污泥,經(jīng)高濃度NO2-馴化,SBR內(nèi)以NO2-為電子受體DPAOs增殖,淘洗出部分僅能利用NO3-的DPAOs,NaRR降至0.37 mg/g·h,PURa降至0.41 mg/(g·h),NiRR和PURi則分別增至0.82和0.78 mg/(g·h),NiRR/PURi也由2.43降至1.05 mg/mg,與報(bào)導(dǎo)NiRR/PURi相當(dāng)[35]。經(jīng)NO2-馴化,SBR內(nèi)微生物利用NO2-反硝化吸磷能力增強(qiáng),PURi迅速增加。Yuan等[35]指出,經(jīng)長(zhǎng)時(shí)間厭氧-微氧馴化,SBR內(nèi)可馴化出以NO2-為電子受體的反硝化聚磷菌,其脫氮和吸磷速率均大于全程反硝化吸磷過(guò)程。
注:NiRR:亞硝態(tài)氮還原速率,(mg·g-1·h-1);NaRR:硝態(tài)氮還原速率,(mg·g-1·h-1);PURi:亞硝態(tài)氮為電子受體缺氧吸磷速率,(mg·g-1·h-1);PURa:硝態(tài)氮為電子受體缺氧吸磷速率,(mg·g-1·h-1)。
PAOs和GAOs共存,厭氧階段同時(shí)利用外碳源進(jìn)行PHA儲(chǔ)存,缺氧段,反硝化聚磷菌利用NOx-完成脫氮吸磷,GAOs利用儲(chǔ)存PHA,進(jìn)行內(nèi)源反硝化脫氮。運(yùn)行條件及底物濃度變化,均會(huì)導(dǎo)致系統(tǒng)內(nèi)功能菌群活性變化,影響其脫氮除磷性能。
2.3.1 厭氧過(guò)程內(nèi)碳源儲(chǔ)存特性
圖5所示分別為I~IV階段厭氧過(guò)程內(nèi)碳源及COD轉(zhuǎn)化特性。階段I和II,厭氧段微生物體內(nèi)儲(chǔ)存足量?jī)?nèi)碳源,且反硝化聚磷菌具有較強(qiáng)活性,NOx-去除率>95%,無(wú)NOx-殘留,下一周期CODdn為0;階段III、IV,NOx-去除率下降,殘留NO3-消耗下一階段外源COD,CODin分別降為2.56和2.50 mmol/L。Gly酵解是GAOs合成PHA過(guò)程中還原力和能量的唯一來(lái)源,Gly/CODin由0.67增至0.80,表明GAOs活性增強(qiáng)。I~I(xiàn)V階段,PAOs,An由62.0%降至36.0%,GAOs,An由32.2%增至55.7%,GAOs碳源競(jìng)爭(zhēng)能力隨NO2-濃度增加而增強(qiáng)。根據(jù)反硝化聚磷菌代謝關(guān)系式
式中PAO為厭氧階段PAOs運(yùn)輸乙酸進(jìn)入細(xì)胞膜內(nèi)所需能量,kJ。典型反硝化聚磷菌厭氧代謝過(guò)程,ΔPO43--P/CODin和ΔGly/CODin分別為0.31和0.45 mmol/mmol。本研究中,I~I(xiàn)V階段厭氧過(guò)程,單位內(nèi)碳源轉(zhuǎn)化釋磷量(厭氧釋磷量與內(nèi)碳源轉(zhuǎn)化之比ΔPO43--P/CODin)由0.31降至0.18 mmol/mmol,糖原酵解與內(nèi)碳源轉(zhuǎn)化之比(ΔGly/CODin)由0.67增至0.80。Welles等[36]指出,除磷系統(tǒng)內(nèi),ΔPO43--P/CODin在0.01~0.93 mmol/mmol之間。I~I(xiàn)V階段,ΔPO43--P/CODin變化特性表明系統(tǒng)具有PAOs和GAOs共存特征,且電子受體由NO3-調(diào)整為NO2-,SBR內(nèi)微生物降解特性更偏離于高富集PAOs。即:NO2-投加抑制了PAOs活性而促進(jìn)了系統(tǒng)內(nèi)GAOs的競(jìng)爭(zhēng)能力。本研究I~I(xiàn)V階段厭氧反應(yīng)過(guò)程合成PHAs內(nèi),PHV增量逐漸由0.30 增至0.56 mmol/L,相應(yīng)PHB/PHV由2.66降至1.90,也表明隨電子受體由NO3-調(diào)整為NO2-,系統(tǒng)內(nèi)GAOs活性逐漸增強(qiáng),且GAOs吸收的部分VFAs用于合成體內(nèi)PHV[37]。
注:CODde:反硝化COD,(mmol·L-1);CODin:轉(zhuǎn)化為內(nèi)碳源有機(jī)物,(mmol·L-1);CODPAOs:PAOs轉(zhuǎn)化COD比例,%;CODGAOs:PAOs轉(zhuǎn)化COD比例,%;P/C:?jiǎn)挝挥袡C(jī)物釋磷量,(mmol·g-1);PHV:聚--羥基戊酸,(mmol·L-1);PHB:聚--羥基丁酸酯,(mmol·L-1);PHA:聚-β-羥基烷酸;Gly:糖原,(mmol·L-1)。Gly/CODin:轉(zhuǎn)化單位有機(jī)物所需糖原,(mmol·mmol-1);PHA/CODin:轉(zhuǎn)化單位有機(jī)物合成PHA,(mmol·mmol-1);PHB/PHA:合成PHA中PHB比例,%。
Note: CODde: denitrification COD consumption, (mmol·L-1); CODin: COD removal as intracellular carbon sources, (mmol·L-1); CODPAOs: COD absorption by PAOs, %; CODGAOs: COD absorption by GAOs,%; P/C: PO43-release per VSS, (mmol·g-1); PHV: Polyhydroxypentanoic, (mmol·L-1); PHB: poly-- hydroxybutyrate, (mmol·L-1); PHA: Polyhydro- xyalkanoates, (mmol·L-1); Gly: Glycogen, (mmol·L-1); Gly/CODin: Glycogen demand per CODin, mmol·mmol-1; PHA/CODin: PHA Synthesis per CODin, (mmol·mmol-1); PHB/PHA: PHB ratio in PHA, %.
圖5 An/A/O-SBR厭氧階段COD消耗及內(nèi)碳源轉(zhuǎn)化
Fig.5 COD consumption and internal polymers variation during anaerobic stages in An/A/O-SBRs
2.3.2 缺氧階段內(nèi)碳源消耗及轉(zhuǎn)化特性
缺氧階段,反硝化聚磷菌利用體內(nèi)PHA完成反硝化吸磷,不同階段缺氧反應(yīng)過(guò)程微生物內(nèi)源物變化及反硝化特性如圖6。NO2-增加,反硝化吸磷過(guò)程糖原儲(chǔ)存與PHA消耗之比(Glystor/PHAcon)由0.61 mmol/mmol增至0.81 mmol/mmol,介于反硝化聚磷菌吸磷過(guò)程模型值(0.45 mmol/mmol)與GAOs反硝化模型值(0.95 mmol/mmol)之間,這與厭氧過(guò)程COD轉(zhuǎn)化過(guò)程相對(duì)應(yīng),即:電子受體由NO3-轉(zhuǎn)化之NO2-,更多COD由GAOs吸收并轉(zhuǎn)化為體內(nèi)PHA。GAOs消耗等量PHA合成Gly增加。與之對(duì)應(yīng),階段I~IV,PUA由0.92降至0.52 mmol/L,吸磷量與糖原儲(chǔ)存量之比(PUA/Glystor)由0.53降至0.26 mmol/mmol,與PHA消耗量之比(PUA/PHAcon)則由0.32 降至0.21 mmol/mmol,均小于且逐漸偏離反硝化聚磷菌缺氧吸磷模型值(0.53 mmol/mmol。其主要原因是:除DPAOs外,缺氧階段存在部分GAOs參與PHA消耗與Gly合成過(guò)程。GAOs消耗體內(nèi)PHA更多用于Gly再生,系統(tǒng)糖代謝能力增強(qiáng),PUA/Glystor和PUA/PHAcon降低,DPAOs反硝化吸磷過(guò)程對(duì)脫氮過(guò)程貢獻(xiàn)逐漸降低,PDPAOs,A由76.2%降至50.6%(圖6)。微生物進(jìn)行內(nèi)源反硝化過(guò)程中,分解利用的PHA以PHB為主。在DPAOs缺氧吸磷過(guò)程中,所消耗的內(nèi)碳源幾乎全部為PHB,而PHV無(wú)變化[37];僅在PHA合成減少的反硝化后期,GAOs消耗部分Gly為反硝化過(guò)程提供電子。缺氧結(jié)束,階段I~I(xiàn)V,SBR內(nèi)Gly增量分別占PHA消耗量的61.2%、72.6%、73.8%和81.1%,表明Gly代謝能力隨系統(tǒng)內(nèi)NO2-增加不斷加強(qiáng),Poly-P合成不斷減弱。
注:PHAcon:聚-β-羥基烷酸消耗量,(mmol·L-1);PHBcon:聚-β-羥基丁酸消耗量,(mmol·L-1);Glystor:糖原儲(chǔ)存量,(mmol·L-1)。
電子受體改變引起PAOs-GAOs間比例變化,導(dǎo)致系統(tǒng)反硝化吸磷過(guò)程N(yùn)2O釋放改變。圖7所示為不同階段典型周期缺氧階段N2O產(chǎn)生特性。階段I,反硝化初始系統(tǒng)內(nèi)無(wú)NO2-,溶解態(tài)N2O接近0。反硝化進(jìn)行,SBR內(nèi)出現(xiàn)NO2-積累,溶解態(tài)N2O(N2Od)與NO2-積累存在正相關(guān)。階段II~IV,NO2-加入即導(dǎo)致SBR內(nèi)N2Od迅速增加。反硝化聚磷菌吸收有機(jī)物轉(zhuǎn)化為體內(nèi)PHA過(guò)程中,積累了大量還原態(tài)電子,投加的NO2-與厭氧階段積累的電子快速反應(yīng),N2Od迅速增加;此外,反硝化過(guò)程各還原酶反應(yīng)活性需由底物激發(fā),其中,氧化亞氮還原酶(Nos)合成速率小于Nir和Nar,這也是II~IV階段缺氧初出現(xiàn)大量溶解態(tài)N2O的原因。
圖7 An/A/O-SBR內(nèi)缺氧階段NO2-與溶解態(tài)N2O和N2O釋放量與釋放速率
Wei等[38]指出,內(nèi)源反硝化過(guò)程中,N2Od常與NO2-在同一時(shí)間達(dá)最大值,當(dāng)NO2-降至0時(shí),溶解態(tài)N2O也降至0 mg/L。Zhou等[25]則認(rèn)為,F(xiàn)NA對(duì)Nos的抑制作用則是導(dǎo)致N2O釋放的主要原因。FNA達(dá)0.5×10-4mg/L,其對(duì)反硝化聚磷菌缺氧吸磷活性抑制即可達(dá)50%。階段III、IV內(nèi),初始FNA分別達(dá)1.5×10-3和2.3×10-3mg/L,對(duì)Nos活性產(chǎn)生抑制作用,導(dǎo)致N2O積累并釋放;FNA與Nos內(nèi)含Cu+的活性位點(diǎn)相結(jié)合,引起N2O的還原競(jìng)爭(zhēng)性抑制,反硝化過(guò)程電子傳遞受阻,N2O釋放;同時(shí),III、IV階段NOx-去除率下降,后一周期厭氧初始OHO消耗外碳源進(jìn)行反硝化,微生物合成PHA減少,加劇了后續(xù)反硝化階段還原酶之間電子競(jìng)爭(zhēng),Nos電子競(jìng)爭(zhēng)能最弱,引起N2O積累并釋放。
階段I~I(xiàn)V,GAOs活性不斷增強(qiáng)并競(jìng)爭(zhēng)碳源儲(chǔ)存PHA用于內(nèi)源反硝化。GAOs內(nèi)各亞群具有不同反硝化特性[15]。能分別將NO3-和NO2-還原至N2,而僅能還原NO3-至NO2-,從而引起NO2-積累并對(duì)PAOs活性產(chǎn)生抑制。經(jīng)NO2-馴化,GAOs反硝化活性幾乎不受NO2-影響,加劇了GAOs的競(jìng)爭(zhēng)優(yōu)勢(shì)。部分GAOs內(nèi)源反硝化過(guò)程的終產(chǎn)物是N2O而非N2[14],這也是導(dǎo)致高NO2-下N2O產(chǎn)率增加的重要原因。
為明確PAOs-GAOs競(jìng)爭(zhēng)及氮、磷去除特性,根據(jù)GAOs、PAOs反應(yīng)計(jì)量學(xué)模型(式1~式7),確定I、IV階段各菌群碳源轉(zhuǎn)化及反硝化特性,如圖8所示。I階段,62.0%外碳源由PAOs/DPAOs吸收轉(zhuǎn)化為體內(nèi)PHA,約為GAOs的2倍,少量外碳源(6%)用于異養(yǎng)菌反硝化;IV階段,PAOs/DPAOs轉(zhuǎn)化碳源比例降至36%,GAOs碳源轉(zhuǎn)化增至56%,異養(yǎng)菌反硝化外碳源增至8%。缺氧階段,DPAOs和GAOs分別完成進(jìn)行內(nèi)源反硝化。階段I,系統(tǒng)內(nèi)馴化出大量以NO3-為電子受體DPAOs,其脫氮比例達(dá)76%,與其外碳源轉(zhuǎn)化相吻合,部分GAOs參與NO3-還原(24%);階段IV,高濃度NO2-抑制DPAOs活性,有利于GAOs競(jìng)爭(zhēng)優(yōu)勢(shì),DPAOs脫氮比例降至51%,GAOs脫氮比例則增至49%。
圖8 An/A/O-SBR內(nèi)PAOs-GAO碳源競(jìng)爭(zhēng)及反硝化特性示意圖(I、IV階段)
在PAOs-GAOs共生體系內(nèi),不同電子受體缺氧馴化,PAOs、GAOs體內(nèi)Poly-P、PHA和Gly等合成及降解特性均會(huì)改變,進(jìn)而引起系統(tǒng)反硝化除磷性能變化。當(dāng)脫氮過(guò)程中存在大量NO2-時(shí),GAOs較PAOs更具競(jìng)爭(zhēng)優(yōu)勢(shì),高濃度NO2-會(huì)抑制DPAOs的反硝化除磷過(guò)程,但是幾乎不影響GAOs的內(nèi)源反硝化過(guò)程,NO2-去除主要通過(guò)GAOs實(shí)現(xiàn)[10]。GAOs-PAOs共生體系有利于削弱高濃度NO2-對(duì)DPAOs的抑制作用,促進(jìn)同步脫氮除磷。GAOs脫氮比例增加導(dǎo)致部分反硝化過(guò)程以N2O作為反硝化終產(chǎn)物并釋放。
1)經(jīng)不同電子受體馴化,An/A/O-SBR內(nèi)污染物降解、內(nèi)碳源轉(zhuǎn)化均具有PAOs-GAOs共存特性。缺氧階段NO3-有利于DPAOs富集,SBR內(nèi)NOx-和TP去除率均大于95%,N2O產(chǎn)率為2.4%;NO2-還原過(guò)程DPAOs活性受到抑制,GAOs競(jìng)爭(zhēng)碳源能力增強(qiáng),厭氧階段Poly-P分解減弱,缺氧吸磷活性降低,NOx-和TP去除率分別降至69.9%和50.5%,N2O產(chǎn)率達(dá)9.9%。
2)電子受體由NO3-調(diào)整為NO2-,厭氧過(guò)程ΔGly/CODin由0.67增至0.80,PAOs/DPAOs轉(zhuǎn)化碳源由62.0%降至36.0%,ΔPO43-/CODin由0.31 mmol/mmol降至0.18 mmol/mmol;缺氧階段PUA/PHAcon由0.32降至0.21 mmol/mmol,PUA/ΔGly由0.53 mmol/mmol降至0.21 mmol/mmol,微生物降解特性偏離于高度富集PAOs,GAOs代謝能力增強(qiáng)。
3)An/A/O-SBR內(nèi),NO2-投加抑制Nos活性,導(dǎo)致N2O大量釋放。HNO2對(duì)Nos活性抑制以及系統(tǒng)內(nèi)GAOs增殖促進(jìn)了以N2O為反硝化終產(chǎn)物的反硝化脫氮過(guò)程,是導(dǎo)致階段IV內(nèi)N2O釋放量大量增加主要原因。
[1]中華人民共和國(guó)生態(tài)環(huán)境部. 第一次全國(guó)污染源普查公報(bào)[R]. 2010:9-11.
[2]劉夢(mèng)雪,曾非凡,文紅平,等. 生物滴濾塔/景觀濾床工藝高效處理農(nóng)村污水[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2020,39(5):1094-1102.
Liu Mengxue, Zeng Feifan, Wen Hongping, et al. An efficient trickling filter/landscape biofilter-bed technique for rural domestic sewage treatment[J]. Journal of Agro-Environment Science, 2020, 39(5): 1094-1102. (in Chinese with English abstract)
[3]潘碌亭,謝欣遷,王九成,等. 脫氮除磷生物濾池填料制備及其對(duì)農(nóng)村生活污水的處理效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):230-236.
Pan Luting, Xie Xinqian, Wang Jiucheng, et al. Preparation of denitrification and dephosphorization biological fillers and its effect on treatment of rural domestic sewage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 230-236. (in Chinese with English abstract)
[4]Chen Y, Li S, Lu Y, et al. Simultaneous Nitrification, Denitrification and Phosphorus Removal (SNDPR) at low atmosphere pressure[J]. Biochemical Engineering Journal, 2020, 160(15): 107629
[5]張?zhí)m河,莊艷萍,王旭明,等. 溫度對(duì)改良A2/O工藝反硝化除磷性能的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(10):213-219.
Zhang Lanhe, Zhuang Yanping, Wang Xuming, et al. Effect of temperature on denitrifying phosphorus removal efficiency using modified A2/O process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 213-219. (in Chinese with English abstract)
[6]Li C, Liu S, Ma T, et al. Simultaneous nitrification, denitrification and phosphorus removal in a Sequencing Batch Reactor (SBR) under low temperature[J]. Chemosphere, 2020, 229: 132-141.
[7]Rubio-Rincon F J, Lopez-Vazquez C M , Welles L, et al. Cooperation between candidatus competibacter and candidatus accumulibacter clade I, in denitrification and phosphate removal processes[J]. Water Research, 2017, 120: 156-164.
[8]Wang X, Wang S, Zhao J, et al. A novel stoichiometries methodology to quantify functional microorganisms in Simultaneous (partial) Nitrification Endogenous Denitrification and Phosphorus Removal (SNEDPR)[J]. Water Research, 2016, 95: 319-329.
[9]Fan Z, Zeng W, Wang B, et al. Microbial community at transcription level in the synergy of GAOs andfor saving carbon source in wastewater treatment[J]. Bioresource Technology, 2020, 297: 122454.
[10]王曉霞,王淑瑩,趙驥,等. SPNED-PR系統(tǒng)內(nèi)PAOs- GAOs的競(jìng)爭(zhēng)關(guān)系及其氮磷去除特性[J]. 中國(guó)環(huán)境科學(xué),2018,38(2):551-559.
Wang Xiaoxia, Wang Shuying, Zhao Ji, et al. The competitive relationships of PAOs-GAOs in Simultaneous Partial Nitrification-Endogenous Denitrification and Phosphorous Removal (SPNED-PR) systems and their nutrient removal characteristics[J]. China Environmental Science, 2018, 38(2): 551-559. (in Chinese with English abstract)
[11]Wang X, Wang S, Xue T, et al. Treating low carbon/nitrogen (C/N) wastewater in Simultaneous Nitrification-endogenous Denitrification and Phosphorous Removal (SNDPR) systems by strengthening anaerobic intracellular carbon storage[J]. Water Research, 2015, 77: 191-200.
[12]Wang X, Zhao J, Yu D, et al. Stable nitrite accumulation and phosphorous removal from nitrate and municipal wastewaters in a combined process of Endogenous Partial Denitrification and Phosphorus Removal (EPDPR)[J]. Chemical Engineering Journal, 2019, 355: 560-571.
[13]Ji J, Peng Y, Wang B, et al. A novel SNPR process for advanced nitrogen and phosphorus removal from mainstream wastewater based on anammox, endogenous partial- denitrification and denitrifying dephosphatation[J]. Water Research, 2020, 170: 115363.
[14]Ribera-Guardia A, Marques R, Arangio C, et al. Distinctive denitrifying capabilities lead to differences in N2O production by denitrifying polyphosphate accumulating organisms and denitrifying glycogen accumulating organisms[J]. Bioresource Technology, 2016, 219: 106-113.
[15]Zhou Y, Pijuan M, Zeng R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying- enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42: 8260-8265.
[16]Theoni Maria Massara, Simos Malamis, Albert Guisasol, et al. A review on nitrous oxide (N2O) emissions during biological nutrient removal from municipal wastewater and sludge reject water[J]. Science of the Total Environment, 2017(596/597): 106-123.
[17]APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater. Baltimore[M]. Port City Press, 1998.
[18]Yang Q, Liu X H, Peng C Y, et al. N2O production during nitrogen removal via nitrite from domestic wastewater: Main sources and control method[J]. Environmental Science & Technology, 2009, 43(24): 9400-9406.
[19]Oehmen A, Keller-Lehmann B, Zeng R J, et al. Optimisation of poly-beta-hydroxyalkanoate analysis using gas chromatography for enhanced biological phosphorus removal systems[J]. Journal of Chromatography A, 2005, 1070(1/2): 131-136.
[20]Oehmen A, Zeng R J, Yuan Z, et al. Anaerobic metabolism of propionate by polyphosphate- accumulating organisms in enhanced biological phosphorus removal systems[J]. Biotechno- logy and Bioengineering, 2005, 91(1): 43-53.
[21]Cho E, Molof A H. Effect of sequentially combining methanol and acetic acid on the performance of biological nitrogen and phosphorus removal[J]. Journal of Environmental management 2004, 73(3): 183-187.
[22]Guerrero J, Guisasola A, Baeza J A. Controlled crude glycerol dosage to prevent EBPRfailures in C/N/P removal WWTPs[J]. Chemical Engineering Journal, 2015, 271: 114-127.
[23]Wang X, Wang S, Zhao J, et al. A novel stoichio- metries methodology to quantify functional microor- ganisms in Simultaneous Nitrification-Endogenous Denitrification and Phosphorous Removal (SNEDPR)[J]. Water Research, 2015, 95: 319-329.
[24]Meinhold J, Arnold E, Isaacs S. Effect of nitrite on anoxic phosphate uptake in biological phosphorus removal activated sludge[J]. Water Research, 1999, 33(8): 1871-1883.
[25]Zhou Y, Oemen A, Lim M, et al. The role of nitrite and Free Nitrous Acid (FNA) in wastewater treatment plants[J]. Water Research, 2011, 45(15): 4672-4682.
[26]Zhou Y, Ganda L, Lim M, et al. Free Nitrous Acid (FNA) inhibition on Denitrifying Polyphosphate Accumulating Organisms (DPAOs)[J]. Applied Microbiology and Biotechnology, 2010, 88(1): 359-369.
[27]Zhou Y, Pijuan M, Yuan Z, et al. Free nitrous acid inhibition on anoxic phosphorus uptake and denitrification by polyphosphate accumulating organisms[J]. Biotechnology and Bioengineering, 2007, 98(4): 903-912.
[28]Wang Y, Geng J, Ren Z, et al. Effect of anaerobic reaction time on denitrifying phosphorus removal and N2O production[J]. Bioresource Technology, 2011, 102(10): 5674-5684.
[29]Smolders GJF, Vandermeij J, Vanloosdrecht MCM, et al. Model of the anaerobic metabolism of the biological phosphorus removal process stoichiometry and pH influence[J].Biotechnology Bioengineering, 1994,43: 461-470.
[30]Zeng RJ, SaundersAM, Yuan Z,et al. Identification and comparison of aerobic and denitrifying polyphosphate accumulating organisms[J]. Biotechnology Bioengineering, 2003,83:140-148.
[31]Third K A, Burnett N, Cord-Ruwisch R, Simultaneous nitrifification and denitrifification using stored substrate (PHB) as the electron donor in an SBR[J]. Biotechnology Bioengeering, 2003, 83: 706-720.
[32]Jiang Y, Wang B, Wang L, et al. Dynamic response of denitrifying poly-P accumulating organisms batch culture to increased nitrite concentration as electron acceptor[J]. J. Enviromental Science Health A, 2006, 41: 2557-2570.
[33]Wang Y, Pan M, Yan M, et al. Characteristics of anoxic phosphors removal in sequence batch reactor[J]. Environmental Science in China,2007, 19:776-782.
[34]Rubio-Rincon FJ, Lopez-Vazquez CM, Welles L, et al. Cooperation betweenandI, in denitrification and phosphate removal processes[J]. Water Reseach,2017, 120: 156-164.
[35]Yuan C, Wang B, Peng Y, et al. Enhanced nutrient removal of Simultaneous Partial Nitrification, Denitrification and Phosphorus Removal (SPNDPR) in a single-stage anaerobic/ micro-aerobic sequencing batch reactor for treating real sewage with low carbon/nitrogen[J]. Chemosphere, 2020, 257:127744.
[36]Welles L, Tian W D, Saad S, et al. Accumulibacter clades TypeⅠand Ⅱ performing kinetically different glycogen- accumulating organisms metabolisms for anaerobic substrate uptake[J]. Water Research, 2015, 83: 354-366.
[37]張建華,王淑瑩,張淼,等. 不同反應(yīng)時(shí)間內(nèi)碳源轉(zhuǎn)化對(duì)反硝化除磷的影響[J]. 中國(guó)環(huán)境科學(xué),2017,37(3):989-997.
Zhang Jianhua,Wang Shuying, Zhang Miao, et al. Effect of conversion of internal carbon source on denitrifying phosphorus removal under different reaction time[J]. China Environmental Science 2017, 37(3): 989-997. (in Chinese with English abstract)
[38]Wei Y, Wang S Y, Ma B, et al. The effect of poly-- hydroxyalkanoates degradation rate on nitrous oxide production in a denitrifying phosphorus removal[J]. Bioresource Technology, 2014, 170: 175-182.
Electronic acceptor denitrifying polyphosphorous PAOs-GAOs competition and N2O emission characteristics in bioreactor
Gong Youkui1, Wang Yibing1, Sun Hongwei2
(1.,,264670,; 2.,264005,)
Denitrifying Phosphorus Removal (DPR) was considered as one of the most promising biological treatment technologies, due to some superiorities of saving 50% carbon source, 30% energy requirement, and reducing 50% sludge production, regarding to N and P removal depend on nitrite and nitrate instead of oxygen. As a mixed cultivation process, limited carbon sources induced the competition of functional groups between Phosphorus Accumulation Organism (PAOS) and Glycogen Accumulation Organism (GAOs), as well as Ordinary Heterotrophic Organisms (OHOs). In this study, a lab scale Anaerobic/Anoxic/aerobic Sequencing Batch Reactor (An/A/O-SBR) was established to achieve a DPR process, with the sodium acetate (120 mg/L as COD) as electron donor, and NO3-/NO2-as electron acceptor (90 mmol/L). An investigation was made for the characteristics of nutrient removal, N2O release, as well as the contribution and competitive relationships between phosphorus and glycogen accumulating organisms (PAOs and GAOs) in the process after long term of acclimatization. During the anaerobic stage, the carbon source in raw wastewater was efficiently absorbed by PAOs (36%-62.3%)and GAOs (32.2%-55.7%), according to the sort of electron acceptor to enhance intracellular carbon storage. With NO3-as electron acceptor, the NO3-and PO43-removal efficiency was more than 95%, with 76.2% of nitrogen removal conducted by PAOs, and the rest by GAOs. In the anaerobic stage, the consumption of COD was stored in the form of PHA, while Gly was decomposed to provide energy for P release. The average P Release Amount (PRA) was 0.85 mmol/L with the PRA/ΔPHA of 0.29 mmol/mmol, close to the value of stoichiometry of typical DPAOs (0.24 mmol/mmol). During the anoxic stage, the average P Uptake Aamount (PUA) reached 28.9 mg/L. With NO2-as electron acceptor only, the N and P removal efficiency decreased to 69.9% and 50.5%, respectively. GAOs had a great advantage over PAOs at the presence of 30 mg/L nitrite, and it contributed to 76.2% of carbon absorption in an anaerobic stage and 49% of nitrogen removal in an anoxic stage. The PRA in anaerobic stage and PUA in anoxic stage decreased to 0.42 and 0.52mmol/L, respectively, with the PRA/ΔPHA decreased to 0.17 mmol/mmol and ΔGly/ΔPHA increased from 0.63 to 0.817 mmol/mmol. GAOs had a great tolerance to nitrite than PAOs, which alleviated the nitrite inhibition on PAOs at high nitrite concentration, thereby to ensure the nutrient removal in An/A/O-SBR.
electron migration; nitrogen compand; wastewater; denitrifying phosphorus accumulating organisms; glycogen accumulating organisms; electron acceptor; N2O
鞏有奎,王一冰,孫洪偉. 生物反應(yīng)器電子受體反硝化聚磷PAOs-GAOs競(jìng)爭(zhēng)及N2O釋放特性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):241-249.doi:10.11975/j.issn.1002-6819.2020.23.028 http://www.tcsae.org
Gong Youkui, Wang Yibing, Sun Hongwei. Electronic acceptor denitrifying polyphosphorous PAOs-GAOs competition and N2O emission characteristics in bioreactor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 241-249. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.028 http://www.tcsae.org
2020-07-31
2020-09-20
國(guó)家自然科學(xué)基金項(xiàng)目(51668031);煙職博士基金2018002號(hào)
鞏有奎,博士,教授,研究方向?yàn)樯钗鬯摰^(guò)程副產(chǎn)物釋放及減量。Email:260943813@qq.com
10.11975/j.issn.1002-6819.2020.23.028
X703.1
A
1002-6819(2020)-23-0241-09
農(nóng)業(yè)工程學(xué)報(bào)2020年23期