奚永蘭,劉 洋,高 娣,曹風(fēng)雷,杜 靜,孔祥平,2,葉小梅,
農(nóng)村生活垃圾厭氧發(fā)酵產(chǎn)沼氣潛力研究
奚永蘭1,2,3,劉 洋3,高 娣1,曹風(fēng)雷4,杜 靜1,2,3,孔祥平1,2,葉小梅1,3※
(1. 江蘇省農(nóng)業(yè)科學(xué)院,南京 210014;2. 農(nóng)業(yè)農(nóng)村部農(nóng)村可再生能源華東科學(xué)觀測(cè)實(shí)驗(yàn)站,南京 210014;3.江蘇大學(xué)農(nóng)業(yè)裝備工程學(xué)院,鎮(zhèn)江 212013;4. 江蘇省徐州市沛縣大屯街道環(huán)衛(wèi)辦公室,徐州 221611)
旨在對(duì)農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)沼氣的潛力進(jìn)行研究。對(duì)江蘇省徐州市沛縣大屯街道王莊村生活垃圾分類處置中心每月1次采集樣品,并對(duì)一周年十二個(gè)月份的生活垃圾樣品進(jìn)行批式中溫厭氧發(fā)酵產(chǎn)氣潛力研究,考察農(nóng)村生活垃圾作為發(fā)酵原料周年沼氣產(chǎn)量和甲烷產(chǎn)量的變化,各月份試驗(yàn)組的累積沼氣產(chǎn)氣量范圍為447~1 398 mL、累積甲烷產(chǎn)氣量范圍為215~865 mL。并用SPSS數(shù)據(jù)分析發(fā)現(xiàn)農(nóng)村生活垃圾含水率、總磷TP、總鉀TK、總氮TN、有機(jī)質(zhì)、C/N、半纖維素、纖維素、木質(zhì)素的含量均對(duì)產(chǎn)沼氣潛力有影響,其中纖維素含量會(huì)對(duì)產(chǎn)沼氣潛力有顯著的正向影響關(guān)系,而TP會(huì)對(duì)產(chǎn)氣潛力產(chǎn)生顯著的負(fù)向影響關(guān)系,最后,該研究根據(jù)生活垃圾理化性質(zhì)數(shù)據(jù)基礎(chǔ)上建立了多元線性逐步回歸最優(yōu)方程,可根據(jù)農(nóng)村有機(jī)生活垃圾的含水率、纖維素和木質(zhì)素的含量預(yù)測(cè)其厭氧發(fā)酵產(chǎn)沼氣潛力。
農(nóng)村;垃圾;厭氧發(fā)酵;理化性質(zhì);產(chǎn)沼氣潛力
隨著生活水平的提高,農(nóng)村的垃圾產(chǎn)生量也迅速增加,僅2014年就達(dá)到了1.4億t[1-4]。近年來(lái),隨著中國(guó)農(nóng)村經(jīng)濟(jì)發(fā)展和新農(nóng)村建設(shè)逐步推進(jìn),中國(guó)農(nóng)村生活垃圾基本形成了“組保潔-村收集-鎮(zhèn)轉(zhuǎn)運(yùn)-縣處理”的集中處理模式[5-8]。而填埋技術(shù)是解決生活垃圾的主要方法[9-10],對(duì)自然環(huán)境產(chǎn)生很大的污染,因此有效處置農(nóng)村生活垃圾對(duì)改善農(nóng)村生活環(huán)境、打造綠色宜居村鎮(zhèn)有十分重要的意義。相比較城市處理生活垃圾的焚燒、填埋等技術(shù)手段,厭氧發(fā)酵技術(shù)可以有效的轉(zhuǎn)化生活垃圾,并產(chǎn)出沼氣清潔能源[11-13],沼渣和沼液也可以還田利用,最終達(dá)到處理垃圾和廢棄能源化利用的目的[14-17]。中國(guó)農(nóng)村生活垃圾因?yàn)榈赜?、生活?xí)慣、經(jīng)濟(jì)水平等因素有變化,各地的生活垃圾的組成也有差異[18-21]。當(dāng)前,農(nóng)村生活垃棄物等。其中包括大量的剩飯、菜葉、果皮圾主要來(lái)源于飲食、生活用品廢棄、農(nóng)業(yè)廢等有機(jī)垃圾,其他的廢棄物多通過(guò)廢品回收處理掉[22-23]。因此農(nóng)村生活垃圾具備作為厭氧發(fā)酵原料的潛力。
2017年6月,江蘇省徐州市沛縣被住建部確定為全國(guó)農(nóng)村垃圾分類和資源化利用示范縣,大屯街道成為江蘇省農(nóng)村生活垃圾分類試點(diǎn)鎮(zhèn)。沛縣創(chuàng)新性地采用“兩分法”的分類方式,將生活垃圾分為“可堆肥垃圾”和“其他垃圾”,每天定時(shí)收集垃圾,將“其他垃圾”經(jīng)中轉(zhuǎn)站壓縮后送到垃圾焚燒廠,對(duì)“可堆肥垃圾”進(jìn)行資源化處理。由于沛縣有機(jī)垃圾的前段分揀較為細(xì)致且大屯街道各個(gè)垃圾處理站點(diǎn)都采用同樣的垃圾分類模式收集,因此本研究選取大屯街道王莊村的生活垃圾分類處置中心為取樣點(diǎn)。目前已有一些對(duì)有機(jī)垃圾產(chǎn)沼氣的研究報(bào)道,如金鵬康等通過(guò)中溫厭氧發(fā)酵,發(fā)現(xiàn)生活垃圾的餐廚垃圾和紙類垃圾的比例為35:65時(shí),系統(tǒng)運(yùn)行效率最高[1]。文國(guó)來(lái)等[24]的堆肥裝置通過(guò)12d高溫發(fā)酵,24d編織袋2次發(fā)酵的處理方式,發(fā)酵后出倉(cāng)減容40%左右,在發(fā)酵過(guò)程未產(chǎn)生二次污染。證明該設(shè)備可以有效消化生活垃圾,且實(shí)現(xiàn)資源再利用。但是針對(duì)農(nóng)村有機(jī)生活垃圾的產(chǎn)氣潛力研究鮮有報(bào)道。
本研究通過(guò)對(duì)沛縣生活垃圾理化性質(zhì)分析后可知,分類后沛縣大屯街道有機(jī)生活垃圾含水率為75%~80%;有機(jī)質(zhì)占比約為40%;氮含量豐富,為20~25 g/kg;碳氮比(C/N)為17~23;木質(zhì)素質(zhì)量分?jǐn)?shù)為5%~10%,初步判斷分類后農(nóng)村有機(jī)生活垃圾較適合作為厭氧消化產(chǎn)沼氣的原料[25-28]。所以本研究主要針對(duì)徐州沛縣大屯街道一年十二個(gè)月份的有機(jī)生活垃圾進(jìn)行批式中溫厭氧發(fā)酵[29-30],考察農(nóng)村有機(jī)生活垃圾作為發(fā)酵原料的周年產(chǎn)氣潛力變化規(guī)律,并運(yùn)用SPSS分析軟件對(duì)沛縣厭氧發(fā)酵產(chǎn)沼氣潛力進(jìn)行分析,建立多元線性逐步回歸最優(yōu)方程,為農(nóng)村生活垃圾的無(wú)害化處理和資源化利用提供科學(xué)依據(jù)。
農(nóng)村生活垃圾采自江蘇省徐州市沛縣大屯街道王莊村生活垃圾分類處置中心,對(duì)該處置中心的生活垃圾原料堆垛進(jìn)行為期1 a的多點(diǎn)采樣,各點(diǎn)取2 kg樣品后混合,取2 kg混合樣品,采樣頻率為每月1次,然后粉碎至粒徑<4 mm,其理化指標(biāo)如表1所示。接種物取自江蘇省常州市金壇區(qū)永康農(nóng)牧科技公司養(yǎng)殖場(chǎng)的厭氧活性污泥。
表1 試驗(yàn)材料主要理化指標(biāo)
1.2.1 含水率的測(cè)定
總固體含量(Total Solid,TS)是將樣品放在105 ℃的烘干箱中烘干至恒質(zhì)量時(shí)的質(zhì)量占比,揮發(fā)性固體含量(Volatile Solid,VS)是將105 ℃烘干的原料置于550 ℃下灼燒4 h揮發(fā)掉的固體成分占比,剩余的物質(zhì)是樣品的灰分。具體計(jì)算如式(1)~式(3)所示:
TS=1/0×100%(1)
VS=(1?3)/0×100%(2)
含水率=(0?1)×100%(3)
式中1為樣品中干物質(zhì)的質(zhì)量,g;0為樣品的總質(zhì)量,g;3為樣品中的灰分,g。
1.2.2 有機(jī)碳的測(cè)定
樣品有機(jī)碳的測(cè)定采用稀釋熱法[31]。利用濃硫酸和重鉻酸鉀迅速混合時(shí)所產(chǎn)生的熱量來(lái)氧化有機(jī)質(zhì),剩余的重鉻酸鉀用硫酸亞鐵來(lái)滴定,根據(jù)所消耗的重鉻酸鉀的量來(lái)計(jì)算有機(jī)碳的含量,具體計(jì)算如式(4)所示:
有機(jī)碳(%)=[(1?2)××0.003×1.33]/×100%(4)
式中1為滴定空白樣所用FeSO4溶液體積,mL;2為滴定樣品所用FeSO4溶液體積,mL;為所用FeSO4溶液的當(dāng)量濃度,N;0.003為1 mg當(dāng)量碳的質(zhì)量,g;1.33為氧化矯正系數(shù);1.724為有機(jī)碳轉(zhuǎn)化為有機(jī)質(zhì)的平均換算系數(shù);為樣品干質(zhì)量,g。
1.2.3 全氮的測(cè)定
樣品全氮的測(cè)定采用凱氏定氮法[31]。樣品烘干至恒質(zhì)量后,粉碎機(jī)粉碎再過(guò)0.42 mm(60目篩),取0.1~0.2 g樣品進(jìn)行消煮,消煮液冷卻、定容后取過(guò)濾液進(jìn)行蒸餾,然后采用酸式滴定方法進(jìn)行測(cè)定。具體計(jì)算如式(5)所示:
全氮=(?0)·×14×/1(5)
式中為滴定樣品所用酸標(biāo)準(zhǔn)溶液的體積,mL;0為滴定空白時(shí)所用的酸標(biāo)準(zhǔn)溶液體積,mL;為所用的酸標(biāo)準(zhǔn)溶液的濃度,mol/L;14為氮原子的摩爾質(zhì)量,g/mol;1為烘干樣品的質(zhì)量,g;為消煮溶液定容體積所取體積,L。
農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)沼氣試驗(yàn)均采用有效容積為108 mL的血清瓶模擬厭氧發(fā)酵裝置。進(jìn)料TS濃度為4%,并添加厭氧活性污泥與生活垃圾原料混勻調(diào)至有效容積108 mL,混勻調(diào)節(jié)pH值至7.5,之后密封置于37 ℃的恒溫水浴鍋里進(jìn)行發(fā)酵,發(fā)酵周期為25 d。共設(shè)計(jì)12個(gè)試驗(yàn)組,每組設(shè)置3個(gè)平行。每天定時(shí)記錄發(fā)酵裝置產(chǎn)氣量以及測(cè)定氣體里的甲烷含量。
使用排水法收集和測(cè)量所產(chǎn)沼氣。試驗(yàn)啟動(dòng)之后,每天定時(shí)記錄各組產(chǎn)氣量。甲烷含量采用型號(hào)為GC-9890B/T的氣相色譜儀進(jìn)行測(cè)定,該款氣相色譜儀采用TCD熱導(dǎo)檢測(cè)器,載氣為高純的氫氣,操作溫度分別設(shè)置檢測(cè)器溫度85 ℃,進(jìn)樣器溫度130 ℃,柱箱溫度130 ℃。本試驗(yàn)采用南京任華色譜科技應(yīng)用開(kāi)發(fā)中心制備的標(biāo)準(zhǔn)混合氣,其中氮?dú)鉂舛葹?4.5%,甲烷濃度為44.5%,二氧化碳濃度為31.0%。采用外標(biāo)法對(duì)樣品的譜圖進(jìn)行分析計(jì)算得出其對(duì)應(yīng)的氮?dú)?、甲烷及二氧化碳的濃度。pH值使用梅特勒-托利多儀器(上海)有限公司的FE20型號(hào)pH計(jì)測(cè)定。
試驗(yàn)共運(yùn)行25 d,各試驗(yàn)組的沼氣日產(chǎn)氣量和累積產(chǎn)氣量變化曲線如圖1所示。發(fā)酵試驗(yàn)啟動(dòng)迅速,第1天就開(kāi)始產(chǎn)氣,其中一月、三月、四月、五月份試驗(yàn)組的第1天產(chǎn)氣量均達(dá)到40 mL以上。此后各組均呈快速上升的趨勢(shì),其中第3個(gè)月份和第12個(gè)月份試驗(yàn)組的沼氣日產(chǎn)氣量在第三天達(dá)到峰值,分別為98.7 mL和90.7 mL;第二和第四月份試驗(yàn)組在第5天達(dá)到峰值,分別為78.6 mL和110.7 mL;其余月份試驗(yàn)組在第7~10天里達(dá)到峰值。此后,沼氣日產(chǎn)氣量總體為下降趨勢(shì),在發(fā)酵試驗(yàn)結(jié)束時(shí)各試驗(yàn)組沼氣日產(chǎn)氣量都在4 mL以下。
圖1 沼氣日產(chǎn)氣量和累積產(chǎn)氣量變化
整個(gè)厭氧發(fā)酵過(guò)程沼氣累積產(chǎn)氣量曲線先快速上升后趨于平緩。在發(fā)酵的前15 d,各組累積產(chǎn)氣量快速增長(zhǎng)。第6個(gè)月份試驗(yàn)組的累積產(chǎn)氣量明顯高于其他組,達(dá)到了1 398.1 mL,快速增長(zhǎng)后各組曲線趨向水平。在整個(gè)發(fā)酵周期中,各試驗(yàn)組發(fā)酵前15 d累積產(chǎn)氣量均達(dá)到了總產(chǎn)氣量的85%以上,第15 天之后,除第6個(gè)月份試驗(yàn)組在持續(xù)增加外,其余月份試驗(yàn)組累積產(chǎn)氣量趨于穩(wěn)定。這表明農(nóng)村生活垃圾厭氧發(fā)酵產(chǎn)沼氣主要集中在發(fā)酵周期的前15 d。第6月、8月份試驗(yàn)組的累積沼氣產(chǎn)量均明顯高于其他試驗(yàn)組,由表1可知這2個(gè)月的有機(jī)生活垃圾C/N在20~30之間,其余組均不在此范圍內(nèi),并且已有文獻(xiàn)表明厭氧發(fā)酵的最佳C/N比是20~30[6],表明C/N對(duì)農(nóng)村生活垃圾厭氧發(fā)酵產(chǎn)沼氣的潛力具有重要影響。
在試驗(yàn)進(jìn)行過(guò)程中,每天測(cè)定各試驗(yàn)組沼氣的甲烷含量,甲烷含量變化曲線如圖2所示。發(fā)酵啟動(dòng)后第1天,各試驗(yàn)組的甲烷含量普遍較低,在2.19%~29%之間。這是由于厭氧發(fā)酵的初期是酸化和產(chǎn)酸的階段,該階段主要產(chǎn)生甲酸、乙酸等簡(jiǎn)單脂肪酸,產(chǎn)生的氣體主要以N2、CO2為主,甲烷含量較低。各試驗(yàn)組的甲烷含量變化趨勢(shì)相似,快速增加后在最高值附近浮動(dòng),直至產(chǎn)氣結(jié)束。各試驗(yàn)組的甲烷含量峰值都達(dá)到了60%以上,說(shuō)明厭氧消化過(guò)程運(yùn)行良好。其中第二月、三月、四月和十二月份試驗(yàn)組在第3天就達(dá)到了60%附近;第一月、五月、六月份試驗(yàn)組的增速較為緩慢,直至發(fā)酵7 d時(shí)甲烷含量達(dá)到60%;第七月、八月、九月、十月、十一月份試驗(yàn)組的甲烷含量增速最慢,在發(fā)酵的第12天時(shí)才達(dá)到60%。結(jié)果表明農(nóng)村有機(jī)生活垃圾周年產(chǎn)氣潛力隨月份差異較大,不同月份的農(nóng)村生活垃圾因組分差異,難降解物質(zhì)和易降解物質(zhì)的含量不同,也導(dǎo)致產(chǎn)氣量差異較大。
圖2 甲烷含量變化
各試驗(yàn)組甲烷日產(chǎn)氣量和累積甲烷產(chǎn)量的變化曲線如圖3所示。發(fā)酵試驗(yàn)啟動(dòng)后甲烷體積日產(chǎn)氣量迅速達(dá)到產(chǎn)氣高峰,其中第3、12月份試驗(yàn)組在發(fā)酵第3天達(dá)到產(chǎn)氣高峰,峰值分別為64.0 mL和61.5 mL;第2和第4月份試驗(yàn)組甲烷日產(chǎn)氣量在第5天達(dá)到峰值,分別為51.5和77.2 mL;其余月份試驗(yàn)組的產(chǎn)甲烷高峰在發(fā)酵的7~9 d出現(xiàn),說(shuō)明厭氧消化過(guò)程運(yùn)行良好。各試驗(yàn)組累積甲烷產(chǎn)量在快速增長(zhǎng)后趨于穩(wěn)定,第6個(gè)月份試驗(yàn)組的甲烷產(chǎn)量一直在快速增長(zhǎng),累計(jì)產(chǎn)量達(dá)到865.3 mL,第11個(gè)月份試驗(yàn)組累積甲烷產(chǎn)氣量最低,為215.6 mL??芍r(nóng)村生活垃圾具有良好的厭氧發(fā)酵產(chǎn)沼氣潛力,并且不同月份之間的產(chǎn)氣潛力有較大差別。
本研究以沼氣揮發(fā)性固體(VS)產(chǎn)氣率為判斷農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)氣潛力的指標(biāo)。在對(duì)沛縣的十二個(gè)月份的農(nóng)村有機(jī)生活垃圾進(jìn)行發(fā)酵試驗(yàn)后,計(jì)算各個(gè)月份試驗(yàn)組的沼氣VS產(chǎn)氣率,各月份產(chǎn)氣情況如表2所示。
由表2可知,第六月份試驗(yàn)組的揮發(fā)性固體(VS)產(chǎn)氣率是最高的為633.2 mL/g,最低為第十二月份試驗(yàn)組的181.6 mL/g),相差約4倍,夏季試驗(yàn)組揮發(fā)性固體(VS)產(chǎn)氣率最大,約為冬季的1.5倍。農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵有較大的潛力,且季節(jié)性差異明顯。
圖3 甲烷日產(chǎn)氣量和累積產(chǎn)氣量變化
表2 各月份產(chǎn)氣情況
農(nóng)村有機(jī)生活垃圾的理化性質(zhì)與其產(chǎn)氣潛力間的相關(guān)性分析如表3所示,從表中可以看出總磷(TP)、C/N、半纖維素與產(chǎn)氣潛力具有相關(guān)性??偭祝═P)和有機(jī)垃圾揮發(fā)性固體(VS)產(chǎn)氣率之間的相關(guān)系數(shù)值為?0.687,并且呈現(xiàn)出0.01水平的顯著性,說(shuō)明產(chǎn)氣潛力和總磷(TP)之間有著顯著的負(fù)相關(guān)關(guān)系;碳氮比和有機(jī)垃圾揮發(fā)性固體(VS)產(chǎn)氣率之間的相關(guān)系數(shù)值為0.680,并且呈現(xiàn)出0.01水平的顯著性,說(shuō)明產(chǎn)氣潛力和碳氮比之間有著顯著的正相關(guān)關(guān)系;半纖維素與有機(jī)垃圾揮發(fā)性固體(VS)產(chǎn)氣率相關(guān)系數(shù)值為0.487,并且呈現(xiàn)出0.05水平的顯著性,說(shuō)明產(chǎn)氣潛力和半纖維素之間有著顯著的正相關(guān)關(guān)系,生活垃圾的其他理化性質(zhì)和產(chǎn)氣潛力的顯著性水平均高于0.05,不具有相關(guān)性。
通過(guò)相關(guān)性分析,可以得出影響農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)氣潛力的因素,可為有機(jī)生活垃圾處理的相關(guān)研究提供科學(xué)依據(jù)。
多元線性回歸分析是確定2種或2種以上變量間相互依賴的定量關(guān)系的一種統(tǒng)計(jì)方法,在厭氧發(fā)酵產(chǎn)氣預(yù)測(cè)中應(yīng)用十分廣泛[32]。
本研究以農(nóng)村有機(jī)生活垃圾的含水率、總氮(TN)、總磷(TP)、有機(jī)質(zhì)、總鉀(TK)、C/N、纖維素、半纖維素、木質(zhì)素作為自變量,以揮發(fā)性固體(VS)所示。經(jīng)過(guò)模型自動(dòng)識(shí)別,剩下含水率、總磷(TP)、纖維素和木質(zhì)素共4項(xiàng)自變量在模型中,2為0.727,說(shuō)明這4項(xiàng)指標(biāo)與揮發(fā)性固體(VS)產(chǎn)氣率之間的顯著相關(guān)性較好,并且模型通過(guò)檢驗(yàn)(=8.653,=0.001<0.05),說(shuō)明模型有效,SPSS軟件中可直接得出此結(jié)果。得出了置信度較高、相關(guān)性較顯著的模型,模型方程為=?51.424+3.733×含水率?19.806×TP+23.262×纖維素+6.513×木質(zhì)素。由表4可知含水率的回歸系數(shù)值為3.733(=1.193,=0.254>0.05)、木質(zhì)素的回歸系數(shù)值為6.513(=1.099,=0.292>0.05),說(shuō)明含水率、木質(zhì)素對(duì)農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)氣潛力無(wú)影響;總磷(TP)的回歸系數(shù)值為?19.806(=?2.779,=0.016<0.05),說(shuō)明總磷(TP)會(huì)對(duì)產(chǎn)氣潛力產(chǎn)生顯著的負(fù)向影響關(guān)系;纖維素的回歸系數(shù)值為23.262(=3.472,=0.004<0.01),說(shuō)明纖維素對(duì)產(chǎn)氣潛力產(chǎn)生顯著的正向影響關(guān)系。因此,利用該回歸方程可根據(jù)農(nóng)村有機(jī)生活垃圾的含水率、纖維素和木質(zhì)素的含量預(yù)測(cè)其厭氧發(fā)酵產(chǎn)沼氣潛力。
表4 多元線性回歸分析
本研究以農(nóng)村有機(jī)生活垃圾為研究對(duì)象,對(duì)十二個(gè)月份的有機(jī)生活垃圾進(jìn)行中溫厭氧發(fā)酵,對(duì)發(fā)酵結(jié)果運(yùn)用SPASS軟件進(jìn)行相關(guān)性分析和多元線性回歸分析得出如下結(jié)論。
1)農(nóng)村有機(jī)生活垃圾具有良好的厭氧發(fā)酵產(chǎn)沼氣潛力,由于各個(gè)月份試驗(yàn)組農(nóng)村有機(jī)生活垃圾的組分不同,各月份和季節(jié)的產(chǎn)氣潛力不同。夏季試驗(yàn)組的產(chǎn)氣潛力最大,約為冬季的1.5倍,其中第6個(gè)月份試驗(yàn)組的揮發(fā)性固體(VS)產(chǎn)氣率達(dá)到了633.2 mL/g。
2)通過(guò)相關(guān)性分析得出總磷(TP)、C/N、半纖維素與產(chǎn)氣潛力具有相關(guān)性。半纖維素對(duì)產(chǎn)氣潛力產(chǎn)生顯著的正向影響關(guān)系;總磷(TP)對(duì)產(chǎn)氣潛力產(chǎn)生顯著的負(fù)向影響關(guān)系;C/N對(duì)產(chǎn)氣潛力具有顯著的正相關(guān)關(guān)系。說(shuō)明總磷(TP)、C/N和半纖維素是影響農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)氣潛力的主要因素。
3)通過(guò)多元線性回歸分析,得到最優(yōu)方程可通過(guò)輸入農(nóng)村有機(jī)生活垃圾的含水率、纖維素和木質(zhì)素的含量,有效預(yù)測(cè)農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵產(chǎn)沼氣的揮發(fā)性固體(VS)產(chǎn)氣率,為相關(guān)研究提供科學(xué)依據(jù)。
[1]金鵬康,陸佳寧,李志鵬. 不同基質(zhì)配比對(duì)農(nóng)村生活垃圾厭氧發(fā)酵效率及穩(wěn)定性的影響[J]. 安全與環(huán)境學(xué)報(bào),2019,19(1):300-307.
Jin Pengkang, Lu Jianing, Li Zhipeng. Influence of different distributive ratios of typical rural wastes on efficiency and stability of co-digestion system[J]. Journal of Safety and the Environment, 2019, 19(1): 300-307. (in Chinese with English abstract)
[2]韓智勇,費(fèi)勇強(qiáng),劉丹,等. 中國(guó)農(nóng)村生活垃圾的產(chǎn)生量與物理特性分析及處理建議[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(15):1-14.
Han Zhiyong, Fei Yongqiang, Liu Dan, et al. Yield and physical characteristics analysis of domestic waste in rural areas of China and its disposal proposal[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 1-14. (in Chinese with English abstract)
[3]趙晶薇,趙蕊,何艷芬,等. 基于“3R”原則的農(nóng)村生活垃圾處理模式探討[J]. 中國(guó)人口·資源與環(huán)境,2014,24(增刊2):263-266.
Zhao Jingwei, Zhao Rui, He Yanfen, et al. Rural domestic garbage processing attern based on the principle of 3R[J]. China Population Resources and Environment, 2014, 24(Supp.2): 263-266. (in Chinese with English abstract)
[4]郝曉地,周鵬,曹達(dá)啓. 餐廚垃圾處置方式及其碳排放分析[J]. 環(huán)境工程學(xué)報(bào),2017,11(2):673-682.
Hao Xiaodi, Zhou Peng, Cao Daqi. Analyses of disposal methods and carbon emissions of food wastes[J]. Chinese Journal of Environmental Engineering, 2017, 11(2): 673-682. (in Chinese with English abstract)
[5]杜靜,常志州,錢玉婷,等. 農(nóng)村生活垃圾處理模式及技術(shù)發(fā)展趨勢(shì)[J]. 江蘇農(nóng)業(yè)科學(xué),2019,47(6):11-14.
Du Jing, Chang Zhizhou, Qian Yuting, et al. Rural household waste disposal mode and technology development trend[J]. Jiangsu Agricultural Science, 2019, 47(6): 11-14. (in Chinese with English abstract)
[6]王翎均,梁成華,王軍,等. 遼寧省農(nóng)村生活垃圾現(xiàn)狀及處置對(duì)策研究[J]. 浙江農(nóng)業(yè)科學(xué),2014(7):1072-1075.
Wang Lingjun, Liang Chenghua, Wang Jun, et al. The status quo of rural garbage in Liaoning province and the countermeasure of disposal[J]. Journal of Zhejiang Agriculture Science, 2014(7): 1072-1075. (in Chinese with English abstract)
[7]馬香娟,陳郁. 農(nóng)村生活垃圾問(wèn)題及其解決對(duì)策[J]. 能源工程,2002(3):25-27.
Ma Xiangjuan, Chen Yu. The problem of garbage in rural areas and its countermeasures[J]. Eenrgy Engineering, 2002(3): 25-27. (in Chinese with English abstract)
[8]王倫,伍松林. 中國(guó)農(nóng)村生活垃圾處理的現(xiàn)狀與對(duì)策[J].中國(guó)環(huán)境管理叢書(shū),2008(2):3-5.
Wang Lun, Wu Songlin. The present situation and countermeasure of the disposal of garbage in rural areas of China[J]. China Environment Management, 2008(2): 3-5. (in Chinese with English abstract)
[9]谷慶紅,張璐. 生活垃圾填埋場(chǎng)污染全過(guò)程控制治理技術(shù)綜述[N]. 世界金屬導(dǎo)報(bào),2020-07-21.
[10]郭浩. 城市生活垃圾處理技術(shù)現(xiàn)狀及未來(lái)發(fā)展趨勢(shì)[J]. 云南化工,2020,47(9):21-22,25.
Guo Hao. The current situation and development trend of municipal living garbage treatment technology[J]. Yunnan Chemical Technology, 2020, 47(9): 21-22, 25. (in Chinese with English abstract)
[11]李平. 果蔬垃圾厭氧發(fā)酵資源化工程實(shí)例[J]. 中國(guó)資源綜合利用,2020,38(9):96-99.
Li Ping. A resource engineering case of anaerobic fermentation of fruit and vegetable waste[J]. China’s Comprehensive Utilization of Resources, 2020, 38(9): 96-99. (in Chinese with English abstract)
[12]江志堅(jiān). 果蔬與餐廚垃圾混合兩相厭氧消化性能的試驗(yàn)研究[D]. 北京:北京化工大學(xué),2013.
Jiang Zhijian. Prefprmance of Two-Phase Anaerobic Co-Digestion of Fruit and Vegetable Waste and Kitchen Waste[D]. Beijing: Beijing University of Chemical Technology, 2013. (in Chinese with English abstract)
[13]管志云,饒玲華,李平. 果蔬垃圾厭氧消化產(chǎn)氣分析[J].農(nóng)業(yè)與技術(shù),2019,39(20):44-45.
Guan Zhiyun, Rao Linghua, Li Ping. Analysis of anaerobic digestion and gas production of fruit and vegetable waste[J]. Agriculture and Technology, 2019, 39(20): 44-45. (in Chinese with English abstract)
[14]羅臣乾. 農(nóng)村有機(jī)生活垃圾厭氧發(fā)酵工藝的研究[D]. 北京:中國(guó)農(nóng)業(yè)科學(xué)院,2018.
Luo Chenqian. Research of Rural Organic Waste Ananrobic Digestion[D]. Beijing: China Academy of Agriculyural Sciences, 2018. (in Chinese with English abstract)
[15]劉明,黃榮,李富民. 農(nóng)村生活垃圾處理技術(shù)標(biāo)準(zhǔn)現(xiàn)狀[J].中國(guó)標(biāo)準(zhǔn)化,2018(20):182-184.
Liu Ming, Huang Rong, Li Fumin. The status quo of the technical standards for the disposal of household waste in rural areas[J]. China Standardization Press, 2018(20): 182-184. (in Chinese with English abstract)
[16]李龍濤,李萬(wàn)明,孫繼民,等. 城鄉(xiāng)有機(jī)廢棄物資源化利用現(xiàn)狀及展望[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報(bào),2019,36(3):264-271.
Li Longtao, Li Wanming, Sun Jimin, et al. Research status and prospects of the resource utilization of organic waste in urban and rural areas[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 264-271. (in Chinese with English abstract)
[17]Deepanraj B, Sivasubramanian V, Jayaraj S, et al. Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26522-26528.
[18]De Gioannis G, Muntoni A, Polettini A, et al. Energy recovery from one- and two-stage anaerobic digestion of food waste[J]. Waste Management, 2017, 168: 595-602.
[19]胡斌,楊旋,王建恩,等. 農(nóng)村生活垃圾分類模式探討[J].環(huán)境科學(xué)與技術(shù),2019,42(增刊1):85-88.
Hu Bin, Yang Xuan, Wang Jianen, et al. Discussion on the classification model of rural domestic waste[J]. Environmental Science and Technology, 2019, 42(Supp.1): 85-88. (in Chinese with English abstract)
[20]王壯麗,周穎. 生活垃圾組成、理化特性對(duì)焚燒發(fā)電的意義[J]. 清洗世界,2020,36(8):51-53.
Wang Zhuangli, Zhou Ying. The composition and physical and chemical characteristics of household waste are of great significance to incineration and power generation[J]. Cleaning World, 2020, 36(8): 51-53. (in Chinese with English abstract)
[21]程偉. 北京城區(qū)和農(nóng)村地區(qū)生活垃圾組成特性的對(duì)比分析[J]. 再生資源與循環(huán)經(jīng)濟(jì),2020,13(1):17-22.
Cheng Wei. A comparative analysis of the composition characteristics of household waste in urban and rural areas of Beijing[J]. Recyclable Resources and Cyclular Economy, 2020, 13(1): 17-22. (in Chinese with English abstract)
[22]王延宏,王若飛,田智輝. 農(nóng)村生活有機(jī)垃圾無(wú)害化處理設(shè)備研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào),2019,40(8):159-164.
Wang Yanhong, Wang Ruofei, Tian Zhihui. Study on harmless treatment equipment of rural domestic organic waste[J]. Journal Chinese Agricultural Mechanization, 2019, 40(8): 159-164. (in Chinese with English abstract)
[23]鄭曉偉,李兵,郭棟,等. 餐廚垃圾厭氧發(fā)酵啟動(dòng)特性與產(chǎn)甲烷效率[J]. 環(huán)境工程,2018,36(9):128-132.
Zheng Xiaowei, Li Bing, Guo Dong, et al. The anaerobic fermentation start-up characteristics and methane production efficiency of kitchen waste[J]. Environmental Engineering, 2018, 36(9): 128-132. (in Chinese with English abstract)
[24]文國(guó)來(lái),王德漢,李俊飛,等. 處理農(nóng)村生活垃圾裝置的研制及工藝[J]. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(6):283-287.
Wen Guolai, Wang Dehan, Li Junfei, et al. The development and process of disposal of rural household waste devices[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(6): 283-287. (in Chinese with English abstract)
[25]蔣滔,韋秀麗,肖璐,等. 玉米秸稈固態(tài)和液態(tài)厭氧發(fā)酵產(chǎn)氣性能與微生物種類比較研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(3):227-235.
Jiang Tao, Wei Xiuli, Xiao Lu, et al. Comparison of biogas production and microbial species of corn straw in Solid-State Anaerobic Digestion (SS-AD) and Liquid Anaerobic Digestion (L-AD)[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 227-235. (in Chinese with English abstract)
[26]Camilla M Braguglia, Agata Gallipoli, Andrea Gianico, et al. Anaerobic bioconversion of food waste into energy: A critical review[J]. Bioresource Technology, 2018, 248: 37-56.
[27]Nayak A, Brij Bhushan. An overview of the recent trends on the waste valorization techniques for food wastes[J]. Journal of Environmental Management, 2019, 233: 352-370.
[28]Agata Gallipoli, Camilla M Braguglia, Andrea Gianico, et al. Kitchen waste valorization through a mildtemperature pretreatment to enhance biogas production and fermentability: Kinetics study in mesophilic and thermophilic regimen[J]. Journal of Environmental Sciences, 2020, 89(3): 167-179.
[29]徐一雯,蔣建國(guó),劉諾,等. 預(yù)處理對(duì)廚余垃圾等有機(jī)廢棄物聯(lián)合厭氧發(fā)酵的影響[J]. 清華大學(xué)學(xué)報(bào):自然科學(xué)版,2019,59(7):558-566.
Xu Yiwen, Jiang Jianguo, Liu Nuo, et al. The effect of pre-treatment on the combined anaerobic fermentation of organic waste such as kitchen waste[J]. Journal of Tsinghua University: Science and Technology Edition, 2019, 59(7): 558-566. (in Chinese with English abstract)
[30]王洋濤,常華,李海紅. 餐廚垃圾與活性污泥混合厭氧發(fā)酵研究[J]. 環(huán)境污染與防治,2019,41(3):323-328.
Wang Yangtao, Chang Hua, Li Haihong. Study on anaerobic fermentation of kitchen waste mixed with activated sludge[J]. Environmental Pollution and Control, 2019, 41(3): 323-328. (in Chinese with English abstract)
[31]鮑士旦. 土壤農(nóng)化分析[M]. 第3版. 北京:中國(guó)農(nóng)業(yè)出版社,2007.
[32]胡克勤,李連華,孫永明,等. 基于原料組分的能源草厭氧發(fā)酵產(chǎn)氣預(yù)測(cè)模型[J]. 新能源進(jìn)展,2016,4(2):100-104.
Hu Keqin, Li Lianhua, Sun Yongming, et al. Predictive model of energy grass anaerobic fermentation gas production based on raw material parts[J]. Advances in New and Renewable Energy, 2016, 4(2): 100-104. (in Chinese with English abstract)
Potential of biogas produced from anaerobic fermentation of rural household wastes
Xi Yonglan1,2,3, Liu Yang3, Gao Di1, Cao Fenglei4, Du Jing1,2,3, Kong Xiangping1,2, Ye Xiaomei1,3※
(1210014,; 2,,210014,; 3.,,212013,; 4.,,,,221600,)
In recent years, the improvement of the living standards of farmers has led to a sharp increase in the discharge of household waste in villages and towns. The focus on the work of ecological livability is the highlights of the treatment of household waste in villages and towns. Therefore, solving the problem of rural household waste has become the top priority of the rural revitalization strategy. The main components of rural organic household waste are leftover food and melon peel, which are rich in organic matter, high water content, and sufficient nutrients. Hence, rural organic household waste may be suitable for the raw material to use in anaerobic fermentation. The method of anaerobic fermentation can degrade organic household waste, produce biogas, and digested. The product of the fermentation can also be used as a slow-release fertilizer to improve the soil condition and fully realize the “reduction, recycling and harmlessness” of organic household waste in villages and towns. Peixian County in Xuzhou City is a national demonstration county for rural garbage classification and resource utilization, and Datun Subdistrict in Peixian County is a pilot town for rural household waste classification in Jiangsu Province. This paper aims to study the potential of biogas production by anaerobic fermentation of organic domestic waste in this rural areas. The site of collect samples was in Domestic Waste Classification and Disposal Center of Wangzhuang Village, Datun Street, Peixian county, Xuzhou city, Jiangsu Province. The frequency of collecting samples was once a month, and the cumulative one-year anniversary were 12 months. After classification, the moisture content of organic household garbage in Datun Street of Pei County is mostly between 75%-80%; organic matter accounts for about 40%; the nitrogen content is rich, between 20-25 g/kg; C/N is 15-35; Lignin content is about 8%. The results show that organic household waste in Datun Street of Peixian County is suitable as an anaerobic fermentation material. The experiment was carried out for batch anaerobic digestion with anaerobic sludge under 37℃ to evaluate the potential of biogas production. As the result, the accumulation of the experimental group in the biogas production rate was in the range of 447-1 398 mL, accumulated methane production rate was in the range of 215-865 mL. Using SPSS data analysis found that the moisture content of the rural living garbage, TP, TK, TN, organic matter, C/N, hemicellulose, cellulose and lignin content had the positive effect on methane production potential. Especially, the cellulose content to produce biogas potential is a significant positive influence on relationship, and TP could have a significant negative influence on gas potential relationship. And the optimal equation of multivariate linear stepwise regression between the physical and chemical properties of each experimental group and its gas production potential was abtained. Finally, this study had established the multivariate linear stepwise regression, the optimal equation, according to the moisture content of organic solid waste in rural areas, predicting the anaerobic digestion of cellulose and lignin content methane production potential.
rural; wastes; anaerobic digestion; physical and chemical characteristics; biogas potential
奚永蘭,劉洋,高娣,等. 農(nóng)村生活垃圾厭氧發(fā)酵產(chǎn)沼氣潛力研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):222-228.doi:10.11975/j.issn.1002-6819.2020.23.026 http://www.tcsae.org
Xi Yonglan, Liu Yang, Gao Di, et al. Potential of biogas produced from anaerobic fermentation of rural household wastes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 222-228. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.026 http://www.tcsae.org
2020-08-26
2020-10-15
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD1100600);江蘇省自然科學(xué)基金項(xiàng)目(BK20201242)
奚永蘭,博士,研究方向?yàn)閺U棄物資源化利用。Email:yonglanxi@jaas.ac.cn
葉小梅,博士,研究員,研究方向?yàn)檗r(nóng)業(yè)廢棄物資源化和循環(huán)利用。Email:yexiaomei610@126.com
10.11975/j.issn.1002-6819.2020.23.026
X799.3
A
1002-6819(2020)-23-0222-07
農(nóng)業(yè)工程學(xué)報(bào)2020年23期