李夢月,胡田田,崔曉路,羅利華,陸軍勝
不同釋放期控釋肥和水氮用量對冬小麥產(chǎn)量的綜合影響
李夢月,胡田田※,崔曉路,羅利華,陸軍勝
(西北農(nóng)林科技大學(xué)水利與建筑工程學(xué)院,楊凌 712100)
為揭示不同釋放期控釋肥及其水肥用量對冬小麥產(chǎn)量的影響,優(yōu)化冬小麥水氮管理措施,采用裂區(qū)設(shè)計進行田間試驗,以灌水量為主處理,施氮量和控釋肥類型分別為副處理和次副處理,其中,灌水量設(shè)30、60和90 mm;施氮量設(shè)0、75、150和225 kg/hm2的施肥梯度;控釋肥類型包括釋放期分別為60、120 d的聚氨酯包膜尿素(PCU60,PCU120),以普通尿素作為對照(U)。結(jié)果表明:灌水量、施氮量、控釋肥類型單一因素均對冬小麥有效穗數(shù)、千粒質(zhì)量、干物質(zhì)質(zhì)量、籽粒產(chǎn)量有顯著影響。各因素兩兩之間的交互作用對籽粒產(chǎn)量有顯著影響。相較于U處理,增加灌水使PCU60產(chǎn)量平均提高308 kg/hm2,PCU120產(chǎn)量平均下降270 kg/hm2;增施氮肥剛好相反,使PCU60產(chǎn)量平均下降289 kg/hm2,PCU120產(chǎn)量平均提高118 kg/hm2。根據(jù)所構(gòu)建3種肥料的水氮生產(chǎn)函數(shù)可知,在U處理取得最高理論產(chǎn)量6 823 kg/hm2時的水氮用量下,2種釋放期的控釋肥PCU120和PCU60可分別獲得14.31%和12.08%的增產(chǎn)效果。利用水氮生產(chǎn)函數(shù)和頻率分析法得到不同控釋肥類型獲得較高產(chǎn)量的水氮用量區(qū)間,以PCU120產(chǎn)量最高、所需灌水量最低,分別為7 744~7 906 kg/hm2、47.72~52.28 mm;PCU60所需施氮量最低,為145.42~187.91 kg/hm2。綜合考慮增產(chǎn)節(jié)肥節(jié)水效果,推薦PCU120為冬小麥季適宜的控釋肥類型,其適宜水氮用量區(qū)間分別為47.72~52.28 mm、159.23~199.47 kg/hm2。
水;氮;控釋肥;釋放期;產(chǎn)量;回歸分析;頻率分析
作物養(yǎng)分需求具有前期少、后期多的特點。傳統(tǒng)施肥往往將至少一半的氮肥作為基肥施入農(nóng)田,且常用傳統(tǒng)尿素等速效性氮肥,導(dǎo)致作物生育后期養(yǎng)分得不到滿足,前期投入的養(yǎng)分不能充分利用,造成浪費[1]。因此,尋求養(yǎng)分釋放規(guī)律與作物整個生育期養(yǎng)分需求相吻合的肥料類型成為亟待解決的問題[2]。緩/控釋肥能夠調(diào)節(jié)養(yǎng)分釋放速率,使養(yǎng)分釋放與作物養(yǎng)分需求規(guī)律相吻合[3],是一類高效且環(huán)境友好型肥料[4-5]。已有研究表明,大田作物施用緩/控釋肥具有顯著的增產(chǎn)效果[6]。與普通尿素相比,一次性施入控釋肥(釋放期60~90 d)能實現(xiàn)作物的穩(wěn)產(chǎn)高產(chǎn)[7],如施用釋放期90 d的控釋肥可提高棉花產(chǎn)量15.0%~20.1%[8]。包膜型控釋肥養(yǎng)分釋放速率總體呈S型曲線,但不同類型的包膜肥料養(yǎng)分釋放速率不同,導(dǎo)致其釋放期存在差異[9],進而對其養(yǎng)分供應(yīng)特征產(chǎn)生影響。因此,有必要就不同類型控釋肥對作物生長的影響進行研究。
水氮是農(nóng)業(yè)生產(chǎn)中的兩大主導(dǎo)因素,二者合理的投入能夠?qū)崿F(xiàn)作物高產(chǎn),減少水肥資源浪費,同時獲得較高的經(jīng)濟效益[10]。研究表明,過量灌溉顯著降低水分利用效率[11-12];過量施氮會抑制作物根系發(fā)育和植株生長,使得作物對水分和養(yǎng)分的吸收能力下降[13]。適當減少灌水和施氮量能夠在保證作物產(chǎn)量不下降或者略有增加的前提下顯著提高水氮利用效率[14]。研究表明,水分供應(yīng)還對包膜型緩/控釋肥養(yǎng)分釋放有顯著影響[15]。同時,控釋肥不同用量也會導(dǎo)致作物的養(yǎng)分供應(yīng)發(fā)生變化[7]。
目前緩/控釋肥大多應(yīng)用在生育期較短的作物[16],但在生育期較長的冬小麥上應(yīng)用很少,且關(guān)于控釋肥多為同種釋放期減量施用的研究[5],對于不同釋放期控釋肥與水氮用量綜合效應(yīng)的研究鮮見報道。因而,本研究以傳統(tǒng)尿素為對照,采用釋放期60和120 d兩種控釋肥,定量研究施用控釋肥條件下水氮用量對冬小麥產(chǎn)量的影響,并提出各種肥料適宜的水肥用量區(qū)間,以期為控釋肥的推廣應(yīng)用提供指導(dǎo)。
試驗于2018年10月—2019年6月在陜西省咸陽市武功鎮(zhèn)現(xiàn)代農(nóng)業(yè)示范園進行。武功鎮(zhèn)位于陜西省中部的關(guān)中平原(34°23′N,108°11′E),屬溫帶半濕潤性氣候區(qū),夏季高溫多雨,冬春寒冷少雪,四季分明。年平均氣溫12.9 ℃,多年平均降雨量為559.8 mm。供試土壤為中壤土,土壤有機質(zhì)14.5 g/kg,全氮0.71 g/kg,速效磷32.3 mg/kg,速效鉀174.5 mg/kg,pH值為8。全年無霜期210 d,全年≥10 ℃的活動積溫為4 184 ℃,年降雨量充足,且降雨的季節(jié)性強,多集中在7-9月,占年降水量的50%以上。
供試小麥品種選用西農(nóng)979。試驗采用裂區(qū)設(shè)計,主區(qū)為灌水量處理,副區(qū)為施氮量,副-副區(qū)為控釋肥類型。主處理設(shè)低水30 mm(W1)、中水60 mm(W2)和高水90 mm(W3)3個水平,在越冬期進行一次性灌溉;副處理設(shè)不施氮(N0)、低氮75 kg/hm2(N1)、中氮150 kg/hm2(N2)和高氮225 kg/hm2(N3)4個水平;副-副處理為控釋肥類型:包括釋放期分別為60 d(PCU60)、120 d(PCU120)的聚氨酯包膜尿素,以普通尿素作為對照(U)。
PCU60、PCU120均采用安徽茂施新型肥料有限公司的聚氨酯包膜尿素,含氮質(zhì)量分數(shù)為45%,均作為基肥一次性施入。普通尿素,含氮質(zhì)量分數(shù)為46%,其中60%基施,20%冬灌時施入,20%拔節(jié)期隨降水施入。磷肥采用過磷酸鈣,P2O5用量為105 kg/hm2。鉀肥采用氯化鉀,K2O用量為45 kg/hm2。磷、鉀肥均一次性基施,且所有處理用量相同。小區(qū)面積為42.9 m2(5.5 m×7.8 m)。試驗設(shè)計具體見表1。
表1 試驗設(shè)計
注:N0為不施氮肥;N1為施氮肥 75 (kg·hm-2);N2為施氮肥150 (kg·hm-2);N3為施氮肥225 (kg·hm-2);W1為灌水30 mm;W2為灌水60 mm;W3為灌水90 mm;PCU60為釋放期60 d的控釋肥;PCU120為釋放期120 d的控釋肥;U為普通尿素,下同。
Note: N0is without nitrogen fertilizer; N1is nitrogen fertilizer 75 (kg·hm-2); N2is nitrogen fertilizer 150 (kg·hm-2); N3is nitrogen fertilizer 225 (kg·hm-2); W1is irrigation 30 mm; W2is irrigation 60 mm; W3is irrigation 90 mm; PCU60is a controlled-release fertilizer with a release periods of 60 days; PCU120is a controlled-release fertilizer with a release periods of 120 days; U is ordinary urea, the same below.
1.3.1 產(chǎn)量與干物質(zhì)量
冬小麥成熟期,每個小區(qū)隨機選取6個長勢均勻的樣方(1 m2),收獲、曬干稱其質(zhì)量,記錄干物質(zhì)質(zhì)量,人工脫粒后獲取籽粒產(chǎn)量,折算為公頃產(chǎn)量。
1.3.2 交互效應(yīng)值的計算
不同因素相互作用產(chǎn)生的新效應(yīng)稱為這些因素的交互效應(yīng)。本研究中交互效應(yīng)值指的是控釋肥類型與灌水量/施氮量之間相互作用帶來的綜合效應(yīng)與各自單獨效應(yīng)的產(chǎn)量差值。計算公式參考文獻[17]。
1.3.3 基于頻率分析的最佳水肥用量的確定
為了確定不同控釋肥類型適宜的水、氮用量范圍,按照頻率分析法,根據(jù)95%置信區(qū)間確定最佳灌水、施肥區(qū)間為
式中各變量計算公式如下[18-20]:
水、氮用量加權(quán)平均值為
式中n是不同灌水或施肥水平下高于平均產(chǎn)量發(fā)生的次數(shù);u是灌水或施氮水平;n是總處理數(shù);是產(chǎn)量高于95%置信區(qū)間的數(shù)量。
用量標準差為
均數(shù)標準差為
用DPS7.05軟件進行方程擬合分析、SPSS軟件進行數(shù)據(jù)方差分析及多重比較,用Duncan新復(fù)極差法進行平均數(shù)顯著性檢驗。用Excel及SigmaPlot12.2軟件作圖。
對不同釋放期控釋肥和水氮用量對小麥產(chǎn)量的影響進行數(shù)據(jù)方差分析及多重比較(表2)。由表2可知,灌水量、施氮量和控釋肥類型均對冬小麥有效穗數(shù)、千粒質(zhì)量、籽粒產(chǎn)量、干物質(zhì)質(zhì)量有顯著影響(<0.05)。3個因素兩兩之間的交互作用均對籽粒產(chǎn)量有顯著影響(<0.05),其中控釋肥類型和灌水量、施氮量的交互作用達到極顯著水平(<0.01),3個因素間的二級交互作用不顯著。
表2 不同處理對冬小麥產(chǎn)量及其構(gòu)成因素的影響
注:不同小寫字母代表不同處理組差異性顯著(<0.05)。 *代表差異顯著(<0.05);**代表差異極顯著(<0.01)。
Note: Different little letters represent significant difference between different treatments (<0.05). * represents significance (< 0.05), and ** represents extremely significance (<0.01).
供試3個施氮量下冬小麥產(chǎn)量及其構(gòu)成要素均顯著高于不施氮,其中以施氮150 kg/hm2效果最佳。冬小麥產(chǎn)量及其構(gòu)成要素隨灌水量的增加都呈現(xiàn)出先增加后減少的規(guī)律,在灌水60 mm時效果最佳。與U處理相比,PCU60和PCU120均能顯著提高籽粒產(chǎn)量和干物質(zhì)質(zhì)量,PCU120增幅略大于PCU60,但二者差異不顯著。PCU120使冬小麥有效穗數(shù)、穗粒數(shù)以及千粒質(zhì)量顯著提高,PCU60增幅不顯著。綜上,施用控釋肥能夠提高冬小麥產(chǎn)量及其構(gòu)成要素,其中釋放期長的效果更好。
以相同水氮水平下的普通尿素處理為對照,計算不同釋放期控釋肥的增產(chǎn)效果。由圖1可知,不同釋放期控釋肥均在灌水和施氮量為中水平時達到最高產(chǎn)量,PCU60、PCU120、U處理分別為7 733、7 959、7 174 kg/hm2。相較于U處理,W1水平下PCU120和PCU60增產(chǎn)幅度分別為20.57%、3.47%(圖1a),其中,PCU60的增產(chǎn)率隨著施氮量的增加而降低,在N1水平下達到最高值18.65%,而PCU120的增產(chǎn)率隨著施氮量的增加呈現(xiàn)先增加后降低的趨勢,在N2水平下增產(chǎn)率最大,為27.96%。W2水平下,2種釋放期的控釋肥較U的增產(chǎn)率隨著施氮量的增加均先減少后又有所增加,在N1水平下增產(chǎn)率最高,分別為14.44%(PCU120)、14.69%(PCU60),該灌水水平下2種釋放期的控釋肥相較于傳統(tǒng)施肥平均增產(chǎn)幅度相當,分別為12.46%(PCU120)、11.55%(PCU60)(圖1b)。W3水平下,PCU60增產(chǎn)率隨著施氮量的增加逐漸降低,在N1水平下達到最高值,為20.27%;PCU120增產(chǎn)率隨著施氮量的增加呈現(xiàn)出先增加后降低的規(guī)律,在N2水平下達到最高值,為13.72%(圖1c)。施氮量為N1、N3水平時,PCU60增產(chǎn)幅度均高于PCU120,N2水平下則相反。該灌水水平下平均增產(chǎn)幅度PCU60>PCU120,分別為12.72%、6.22%。
表3表示灌水量/施氮量與不同釋放期控釋肥的交互效應(yīng)值。可以看出,3個施氮水平下,PCU60與灌水量均表現(xiàn)為正交互作用,而PCU120則相反。表明與W1相比,增加灌水量使PCU60較U的增產(chǎn)效果增強,平均提高308 kg/hm2;使PCU120增產(chǎn)效果下降,平均降低270 kg/hm2。在3個灌水水平下,PCU60與施氮量均表現(xiàn)為負交互作用,表明增加施氮量使PCU60較U的增產(chǎn)效果下降,和N1相比,平均增產(chǎn)效果下降289 kg/hm2。PCU120表現(xiàn)為:W1時,增加施氮量至N2水平,PCU120與施氮量表現(xiàn)為正交互作用,繼續(xù)增加施氮量至N3水平,交互效應(yīng)值變?yōu)樨摚砻髟摴嗨肯略黾邮┑恐罭2水平使PCU120較U的增產(chǎn)效果增強,繼續(xù)增加施氮量,反而削弱了其增產(chǎn)效果;W2時,PCU120與施氮量的交互效應(yīng)值均為負,平均值為?40 kg/hm2,表明此灌水量下增施氮肥使PCU120較U增產(chǎn)效果略微下降;W3時,PCU120與施氮量表現(xiàn)為正交互作用,表明此時增施氮肥使PCU120較U增產(chǎn)效果增強??傮w來看,和N1相比,增加施氮量使PCU120較U平均增產(chǎn)效果提高118 kg/hm2。
注:不同小寫字母表示同一灌水量下處理間有顯著性差異(P<0.05)。
表3 不同控釋肥與灌水量/施氮量的交互效應(yīng)值
注:灌水量與控釋肥的交互效應(yīng)以W1為基準,施氮量與控釋肥的交互效應(yīng)以N1為基準。
Note: W1was used as the basis for the interaction effect between irrigation amount and controlled-release fertilizer, and N1was used as the basis for the interaction effect between nitrogen application and controlled-release fertilizer.
2.4.1 水氮生產(chǎn)函數(shù)的建立
采用回歸分析法分別對不同肥料類型下冬小麥產(chǎn)量與施氮量和灌水量擬合二元二次水肥效應(yīng)函數(shù),并在=0.05水平下進行檢驗(表4)。由表4可知,不同肥料類型下擬合方程均達到顯著水平,且符合報酬遞減規(guī)律,說明擬合的函數(shù)是典型的水肥函數(shù),能較好的表述水肥用量與冬小麥產(chǎn)量之間的關(guān)系。
表4 不同控釋肥類型二元二次水氮效應(yīng)模型
注:為產(chǎn)量,(kg·hm-2);W為灌水量,mm;N為施氮量,(kg·hm-2)。
Note:indicates Yield, (kg·hm-2);Windicates irrigation amount, mm;Nindicates nitrogen application amount, (kg·hm-2).
2.4.2 不同控釋肥類型下冬小麥的水氮耦合效應(yīng)
圖2a、2b、2c分別表示PCU60、PCU120、U處理下產(chǎn)量隨灌水、施氮量的變化,可以看出,3種肥料類型下,不論灌水量如何變化,增加施氮量均可以顯著增加冬小麥產(chǎn)量,但當施氮量增加到一定程度時,小麥增產(chǎn)緩慢并開始有減產(chǎn)的趨勢,即小麥產(chǎn)量先增加后平穩(wěn)再降低。對于同一種肥料,施氮量對冬小麥產(chǎn)量的影響與灌水量相關(guān),不同灌水量下控釋肥達到最高產(chǎn)量所需的施氮量不同,表現(xiàn)為:U和PCU60隨灌水量的增大而增加,PCU120則隨灌水量的增加有減小趨勢(表5)。
同樣,不論施氮量如何變化,3種肥料類型下冬小麥產(chǎn)量隨灌水量的變化也表現(xiàn)出先增加后平穩(wěn)再降低的規(guī)律(圖2)。所不同的是,不同施氮量下控釋肥達到最高產(chǎn)量所需的灌水量不同,表現(xiàn)為:U和PCU60隨施氮量的增大而增加,PCU120則隨施氮量的增加有減小趨勢(表5)??傮w來看,PCU120能達到的最高產(chǎn)量高于PCU60,二者都顯著高于U。
圖2 施氮量和灌水量對冬小麥產(chǎn)量的影響
表5 基于一元二次效應(yīng)模型的最高產(chǎn)量及其水氮用量
2.4.3 控釋肥較尿素的理論最大增產(chǎn)節(jié)肥節(jié)水效果
將表4中水氮效應(yīng)函數(shù)求偏導(dǎo),得到不同釋放期控釋肥獲得最高產(chǎn)量時的灌水和施氮量(表5)。將U處理獲得最高產(chǎn)量時所需的灌水量68.5 mm和施氮量177 kg/hm2分別代入PCU60和PCU120的水氮效應(yīng)方程,得到PCU60和PCU120處理的理論產(chǎn)量分別為7 647和7 799 kg/hm2。PCU60較U增產(chǎn)12.08%;PCU120較U增產(chǎn)14.31%。
將U處理最高產(chǎn)量6 823 kg/hm2及相應(yīng)的灌水量68.5 mm代入水氮效應(yīng)方程(表4),得到PCU60和PCU120處理的理論施氮量分別為80.6和91.5 kg/hm2。相較于U處理所需施氮量177 kg/hm2,PCU60和PCU120處理分別可節(jié)肥54.5%、48.3%。
將U處理最高產(chǎn)量6 823 kg/hm2及相應(yīng)的施氮量177 kg/hm2代入水氮效應(yīng)方程(表4),得到PCU60和PCU120處理的理論灌水量分別為45.2和33.9 mm。相較于U處理所需的灌水量68.5 mm,PCU60和PCU120處理分別可節(jié)水28.93%、50.51%。
基于二元二次水肥效應(yīng)方程,利用SigmaPlot軟件得到不同水氮用量下相應(yīng)的冬小麥產(chǎn)量。計算試驗設(shè)計水平范圍內(nèi)各水氮水平下產(chǎn)量高于平均值的頻率,按照95%置信區(qū)間計算最佳灌水、施肥區(qū)間,從而確定可獲得的較高產(chǎn)量區(qū)間(表6)。
表6 不同控釋肥的合理水氮用量及其理論增產(chǎn)節(jié)肥節(jié)水效果
注:SD表示標準差;CI表示置信區(qū)間。
Note: SD represents the standard deviation; CI represents the confidence interval.
從表6可以看出,PCU60獲得較高產(chǎn)量的施氮用量區(qū)間值最低,PCU120獲得較高產(chǎn)量的灌水用量區(qū)間值最低。在給定的水氮用量區(qū)間內(nèi),可以得到各自的最佳產(chǎn)量區(qū)間(表6)。分別計算2種釋放期控釋肥較U的增產(chǎn)節(jié)肥節(jié)水效果。由計算結(jié)果可得,PCU60節(jié)肥效果最佳,可達9.42%~13.21%;PCU120節(jié)水、增產(chǎn)效果最佳,分別可達34.50%~38.43%、13.50%~17.42%。就增產(chǎn)和節(jié)水效果來看,PCU120優(yōu)于PCU60;就節(jié)肥效果來看,PCU60優(yōu)于PCU120。綜合來看,與PCU60相比,PCU120在節(jié)水節(jié)肥的同時,還能取得更好的增產(chǎn)效果。
前人研究表明,水氮耦合能夠提高作物產(chǎn)量,但是在作物生長發(fā)育中,二者的耦合效應(yīng)存在閾值,低于該值時,增加水氮用量增產(chǎn)效果明顯,高于該值繼續(xù)增加水氮用量產(chǎn)量反而有所下降[21]。本研究表明,傳統(tǒng)氮肥及控釋肥條件下,水分和氮素供應(yīng)在對冬小麥產(chǎn)量的影響方面均存在明顯的交互作用。一方面,水分作為植物生長的關(guān)鍵因素,對植株體吸收氮素的特性有顯著影響[22]。其影響機理主要可以歸結(jié)為以下幾個方面:水分供應(yīng)影響土壤養(yǎng)分的化學(xué)有效性和動力學(xué)有效性、水分影響植物對有效養(yǎng)分的吸收和運輸[23]。祁有玲等[24]研究表明,水分虧缺影響冬小麥植株對氮素的吸收,使營養(yǎng)器官中的氮素含量下降,對植株正常的生理功能產(chǎn)生負面影響,使得產(chǎn)量下降。另外,氮素的存在形態(tài)也受到土壤水分的影響,若土壤水分過多,就會使耕層土壤硝態(tài)氮含量降低,進而使有效氮素比例下降,影響作物產(chǎn)量[25-26]。另一方面,氮肥供應(yīng)也會對土壤水分的有效性產(chǎn)生直接影響[27]。施用適量的氮肥,作物總耗水量相差不大,但產(chǎn)量卻明顯提高。但若氮素投入過多,土壤水分虧缺會使作物生長初期耗水量增加,導(dǎo)致生育后期水分脅迫情況更加嚴重,這就使得產(chǎn)量有所降低。同時,氮肥供應(yīng)還可通過影響作物根系生長從而影響根系對水分的覓取[23]??梢姡侠淼乃?yīng)會通過影響水分及氮素吸收利用對植株生長進行調(diào)控[28]。
本研究中,施用控釋肥相較于傳統(tǒng)氮肥能夠顯著提高冬小麥產(chǎn)量,其中,PCU60增產(chǎn)達12.08%,PCU120增產(chǎn)達14.31%,而且獲得相同產(chǎn)量時施用控釋肥較傳統(tǒng)氮肥具有一定的節(jié)肥效果。前人研究也發(fā)現(xiàn),與傳統(tǒng)肥料相比,小麥季控釋肥一次性施入可以顯著提高產(chǎn)量,控釋肥施用量減少30%小麥產(chǎn)量沒有出現(xiàn)顯著下降的情況,起到了顯著的節(jié)肥效果[29]。這與控釋肥養(yǎng)分釋放周期長,更吻合作物養(yǎng)分需求有關(guān)[30]。速效氮肥養(yǎng)分釋放速率快,其養(yǎng)分供應(yīng)無法滿足小麥整個生育期的養(yǎng)分需求,而控釋肥可以通過改變外界環(huán)境與其內(nèi)核粒子的擴散通量來控制養(yǎng)分釋放速率,使養(yǎng)分釋放與作物生育期養(yǎng)分需求相匹配,從而減少氮素損失,起到節(jié)約肥料、提高產(chǎn)量的目的[31-32]。本研究還表明,釋放期120 d較60 d控釋肥對冬小麥的增產(chǎn)效果更大,這可能與其不同的釋放周期有關(guān)[33]。有研究表明PCU60養(yǎng)分釋放在40 d后達到高峰[9],本研究預(yù)試驗結(jié)果表明PCU120養(yǎng)分釋放高峰期出現(xiàn)在冬小麥拔節(jié)期。吳國梁等[34]研究發(fā)現(xiàn),小麥氮素吸收規(guī)律呈現(xiàn)“M”型,分蘗期和拔節(jié)期是冬小麥養(yǎng)分吸收的2個高峰期,其中拔節(jié)至孕穗期是冬小麥養(yǎng)分需求最高峰期,也是施氮效率最高的時期,此時期吸收氮素的量達到了整個生育期的35%左右[35]。因此PCU120養(yǎng)分釋放更為符合小麥養(yǎng)分需求規(guī)律,故其增產(chǎn)效果更佳。
灌水量與控釋肥之間存在一定的交互作用,其與PCU60交互作用為正值,與PCU120的交互作用則為負值。這可能與2種控釋肥下養(yǎng)分與水分供應(yīng)的相對關(guān)系不同有關(guān),PCU60養(yǎng)分釋放在40 d后達到高峰[9],而PCU120養(yǎng)分釋放高峰期出現(xiàn)拔節(jié)期(預(yù)試驗結(jié)果)。小麥分蘗期水分養(yǎng)分供應(yīng)充足可促進幼穗分化,有利于分蘗成穗,有效穗數(shù)的多少直接影響產(chǎn)量的高低[35]。冬小麥越冬至返青期(正值小麥分蘗期),自然降水一般很少[36]。此時增加灌水量可與PCU60養(yǎng)分在該階段大量釋放相協(xié)調(diào),促使有效分蘗增加,而PCU120在前期養(yǎng)分釋放較少,增加灌水量會使其釋放的有限養(yǎng)分發(fā)生淋洗,使作物不能很好的吸收利用,導(dǎo)致分蘗減少,進而影響產(chǎn)量。
施氮量和控釋肥之間也存在一定的交互作用,其與PCU60交互作用為負值,與PCU120的交互作用則為正值。這可能是由于冬小麥養(yǎng)分需求與不同釋放期控釋肥養(yǎng)分供應(yīng)吻合程度不同所導(dǎo)致。PCU60養(yǎng)分釋放高峰期在40 d左右[9],正值小麥分蘗期,此時期增加施氮量、氮素供應(yīng)過多,會使植物長勢過旺,分蘗數(shù)過多,導(dǎo)致幼穗不能正常發(fā)育,有效穗數(shù)減少,因而產(chǎn)量會有所下降[37-38]。而PCU120在作物生育前期養(yǎng)分釋放較少,增加施氮量會使其前期養(yǎng)分供應(yīng)增加促使有效分蘗增多,從而增加產(chǎn)量。施氮量與控釋肥之間的交互作用效果有待進一步深入研究。
1)灌水量、施氮量以及控釋肥類型單因素均對小麥產(chǎn)量、干物質(zhì)量、千粒質(zhì)量、有效穗數(shù)有顯著影響。不同類型肥料產(chǎn)量均隨著灌水、施氮量的增加呈現(xiàn)先增加后降低的趨勢,在灌水量和施氮量都為中水平時達到最高產(chǎn)量。和普通尿素處理(U)相比,控釋肥處理具有顯著的增產(chǎn)效果,其中釋放期長的效果更好。
2)三因素兩兩之間也存在明顯的交互作用。與U處理相比,釋放期為60 d的控釋肥處理平均增產(chǎn)效果提高308 kg/hm2,釋放期為120 d的控釋肥處理(PCU120)平均增產(chǎn)效果下降270 kg/hm2;增加施氮量則使(PCU60)平均增產(chǎn)效果下降289 kg/hm2,使(PCU120)提高118 kg/hm2。
3)由水氮生產(chǎn)函數(shù)和頻率分析法可知,不同控釋肥獲得較高產(chǎn)量的水氮用量區(qū)間不同,PCU60獲得較高產(chǎn)量時所需施氮量最低,為145.42~187.91 kg/hm2;PCU120獲得較高產(chǎn)量時所需灌水量最低,為47.72~52.28 mm。在各自相應(yīng)的適宜水氮用量區(qū)間內(nèi),PCU120所獲得的產(chǎn)量最高,為7 744~7 906 kg/hm2。
4)綜合考慮增產(chǎn)節(jié)肥節(jié)水效果,推薦PCU120為冬小麥季適宜的控釋肥類型。
[1]Liu Xuejun, Ju Xiaotang, Zhang Fusuo, et al. Nitrogen dynamics and budgets in a winter wheat-maize cropping system in the North China Plain[J]. Field Crops Research, 2003, 83(2): 111-124.
[2]謝方平,劉敏章,楊米米,等. 袋裝緩控釋肥有序排肥裝置設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2019,35(16):40-49.
Xie Fangping, Liu Minzhang, Yang Mimi, et al. Design of an orderly discharge device for bagged slow and controlled release fertilizer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(16): 40-49. (in Chinese with English abstract)
[3]王文巖,董文旭,陳素英,等. 連續(xù)施用控釋肥對小麥/玉米農(nóng)田氮素平衡與利用率的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(增刊2):135-141.
Wang Wenyan, Dong Wenxu, Chen Suying, et al. Effect of continuous application of controlled release fertilizer on nitrogen balance and utilization efficiency in wheat/maize farmland[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp.2): 135-141. (in Chinese with English abstract)
[4]Grant C A, Wu R, Selles F, et al. Crop yield and nitrogen concentration with controlled release urea and split applications of nitrogen as compared to non-coated urea applied at seeding[J]. Field Crops Research, 2012, 127: 170-180.
[5]Zheng Wenkui, Zhang Min, Liu Zhiguang, et al. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system[J]. Field Crops Research. 2016, 197: 52-62.
[6]周翔,陳上,何川,等. 覆膜和控/緩釋肥互作對春玉米生長及氮素利用的影響[J]. 農(nóng)業(yè)機械學(xué)報,2019,50(8):322-330.
Zhou Xiang, Chen Shang, He Chuan, et al. Effects of film mulching and controlled/slow release fertilizer interaction on spring corn growth and nitrogen utilization[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 322-330. (in Chinese with English abstract)
[7]黃巧義,唐栓虎,張發(fā)寶,等. 減氮配施控釋尿素對水稻產(chǎn)量和氮肥利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2017,25(6):829-838.
Huang Qiaoyi, Tang Shuanhu, Zhang Fabao, et al. Effects of nitrogen reduction and controlled release urea on rice yield and nitrogen utilization[J]. Journal of Plant Nutrition and Fertilizer, 2017, 25(6): 829-838. (in Chinese with English abstract)
[8]于小晶,田曉飛,張民,等. 控釋氮肥和控釋鉀肥對棉花產(chǎn)量、品質(zhì)及土壤肥力的影響[J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報,2019,36(3):313-321.
Yu Xiaojing, Tian Xiaofei, Zhang Min, et al. Effects of controlled release nitrogen fertilizer and controlled release potassium fertilizer on cotton yield, quality and soil fertility[J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 313-321. (in Chinese with English abstract)
[9]劉軼. 控釋肥氮釋放對小麥玉米產(chǎn)量及氮素利用率的影響[D]. 泰安:山東農(nóng)業(yè)大學(xué),2016.
Liu Yi. The Effect of Controlled-Release Fertilizer Nitrogen Release on Wheat and Corn Yield and Nitrogen Use Efficiency[D]. Tai’an: Shandong Agricultural University, 2016. (in Chinese with English abstract)
[10]趙連佳,薛麗華,孫乾坤. 不同水氮處理對滴管冬小麥田間耗水特性及水氮利用效率的影響[J]. 麥類作物學(xué)報,2016,36(8):1050-1059.
Zhao Lianjia, Xue Lihua, Sun Qiankun. Effects of different water and nitrogen treatments on field water consumption characteristics and water and nitrogen use efficiency of dropper winter wheat[J]. Triticeae Sinica, 2016, 36(8): 1050-1059. (in Chinese with English abstract)
[11]寧東峰,李志杰,孫文彥,等. 限水灌溉下施氮量對冬小麥產(chǎn)量、氮素利用及氮平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報,2010,16(4):852-858.
Ning Dongfeng, Li Zhijie, Sun Wenyan, et al. Effects of nitrogen application rate on winter wheat yield, nitrogen utilization and nitrogen balance under limited water irrigation[J]. Journal of Plant Nutrition and Fertilizer, 2010, 16(4): 852-858. (in Chinese with English abstract)
[12]Sun Hongyong, Liu Changming, Zhang Xiying, et al. Effects of irrigation on water balance, yield and WUE of winter wheat in North China Plain[J]. Agricultural Water Management, 2006, 85: 211-218.
[13]Zhu Z L, Chen D L. Nitrogen fertilizer use in China- Contributions to food production impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2/3): 117-127.
[14]趙連佳,薛麗華,孫乾坤,等. 不同水氮處理對滴灌冬小麥田耗水特性及水氮利用效率的影響[J]. 麥類作物學(xué)報,2016,36(8):1050-1059.
Zhao Lianjia, Xue Lihua, Sun Qiankun, et al. Effects of different water and nitrogen treatments on water consumption characteristics and water and nitrogen use efficiency of drip irrigation winter wheat fields[J]. Journal of Triticeae Crops, 2016, 36(8): 1050-1059. (in Chinese with English abstract)
[15]陳迪. 包膜緩/控釋肥中試研究及緩/控釋肥規(guī)律測定[D]. 鄭州:鄭州大學(xué),2016:14-50.
Chen Di. Pilot Study of Coated Slow/Controlled Release Fertilizer and Determination of the Law of Slow/Controlled Release Fertilizer[D]. Zhengzhou: Zhengzhou University, 2016: 14-50. (in Chinese with English abstract)
[16]安文博,孫焱鑫,李占臺,等. 不同緩控釋肥對鮮食玉米產(chǎn)量、品質(zhì)及氨揮發(fā)的影響[J]. 應(yīng)用生態(tài)學(xué)報,2020,31(7):2422-2430.
An Wenbo, Sun Yanxin, Li Zhantai, et al. Effects of different slow and controlled release fertilizers on the yield, quality and ammonia volatilization of fresh corn[J]. Journal of Applied Ecology, 2020, 31(7): 2422-2430. (in Chinese with English abstract)
[17]毛達如. 植物營養(yǎng)研究方法(第二版)[M]. 北京:中國農(nóng)業(yè)大學(xué)出版社,2005:7.
[18]朱顯海. 概率論與數(shù)理統(tǒng)計[M]. 長春:東北師范大學(xué)出版社,1990:2-9.
[19]方萍. 實用農(nóng)業(yè)試驗設(shè)計與統(tǒng)計分析指南[M]. 北京:中國農(nóng)業(yè)出版社,2000.
[20]崔秀珍,黃中文,薛香. 試驗統(tǒng)計分析[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2013.
[21]崔政軍,劉棟,吳兵,等. 水氮耦合對旱地胡麻產(chǎn)量形成與花后氮素積累轉(zhuǎn)運的影響[J]. 應(yīng)用生態(tài)學(xué)報,2020,31(3):909-918.
Cui Zhengjun, Liu Dong, Wu Bing, et al. Effect of water and nitrogen coupling on yield formation and nitrogen accumulation and translocation of dryland flax[J]. Journal of Applied Ecology, 2020, 31(3): 909-918. (in Chinese with English abstract)
[22]路永強,劉玉秀,周發(fā)寶,等. 不同水分供應(yīng)對小麥氮素積累、分配和產(chǎn)量的影響[J]. 西北農(nóng)業(yè)學(xué)報,2019,28(11):1760-1768.
Lu Yongqiang, Liu Yuxiu, Zhou Fabao, et al. Effects of different water supply on nitrogen accumulation, distribution and yield of wheat[J]. Northwest Agricultural Journal, 2019, 28(11): 1760-1768. (in Chinese with English abstract)
[23]胡田田. 玉米水氮吸收利用對根區(qū)局部供應(yīng)方式的響應(yīng)及其作用機理[D]. 楊凌:西北農(nóng)林科技大學(xué),2005:21-26.
Hu Tiantian. The Response of Water and Nitrogen Absorption and Utilization of Maize to the Local Supply of Root Zone and Its Mechanism[D]. Yangling: Northwest A&F University, 2005: 21-26. (in Chinese with English abstract)
[24]祁有玲,張富倉,李開峰. 水分虧缺和施氮對冬小麥生長及氮素吸收的影響[J]. 應(yīng)用生態(tài)學(xué)報,2009,20(10):2399-2405.
Qi Youling, Zhang Fucang, Li Kaifeng. Effects of water deficit and nitrogen application on winter wheat growth and nitrogen absorption[J]. Journal of Applied Ecology, 2009, 20(10): 2399-2405. (in Chinese with English abstract)
[25]石玉,于振文,何建寧,等. 不同測墑補灌水平對小麥水氮利用及土壤硝態(tài)氮淋溶的影響[J]. 應(yīng)用生態(tài)學(xué)報,2016,27(2):445-452.
Shi Yu, Yu Zhenwen, He Jianning, et al. Effects of supplementary irrigation levels with different measuring moisture levels on wheat water and nitrogen utilization and soil nitrate nitrogen leaching[J]. Journal of Applied Ecology, 2016, 27(2): 445-452. (in Chinese with English abstract)
[26]歐陽威,郭波波,張璇,等. 北方典型灌區(qū)不同灌期農(nóng)田系統(tǒng)中氮素遷移特征分析[J]. 中國環(huán)境科學(xué),2013,33(1):123-131.
Ouyang Wei, Guo Bobo, Zhang Xuan, et al. Analysis on the characteristics of nitrogen migration in farmland systems of different irrigation periods in typical northern irrigation areas[J]. China Environmental Science, 2013, 33(1): 123-131. (in Chinese with English abstract)
[27]María E F, Clara I P, Carlos B P, et al. Water and nitrogen supply effects on four desert shrubs with potential use for rehabilitation activities[J]. Plant Ecology, 2018, 219(7): 789-802.
[28]Cabello M J, Castellanos M T, Romojaro F, et al. Yield and quality of melon grown under different irrigation and nitrogen rates[J]. Agricautural Water Management, 2009, 96(5): 866-874.
[29]孫云保,張民,鄭文魁,等. 控釋氮肥對小麥-玉米輪作產(chǎn)量和土壤養(yǎng)分狀況的影響[J]. 水土保持學(xué)報,2014,28(4):115-121.
Sun Yunbao, Zhang Min, Zheng Wenkui, et al. Effects of controlled release nitrogen fertilizer on wheat-corn rotation yield and soil nutrient status[J]. Journal of Soil and Water Conservation, 2014, 28(4): 115-121. (in Chinese with English abstract)
[30]郭金金,張富倉,王海東,等. 不同施氮量下緩釋氮肥與尿素摻混對玉米生長與氮素吸收利用的影響[J]. 中國農(nóng)業(yè)科學(xué),2017,50(20):3930-3943.
Guo Jinjin, Zhang Fucang, Wang Haidong, et al. Effects of slow-release nitrogen fertilizer and urea blending on corn growth and nitrogen absorption and utilization under different nitrogen application rates[J]. Chinese Agricultural Sciences, 2017, 50(20): 3930-3943. (in Chinese with English abstract)
[31]Trinh T H, Kushaari K, Shuib A S, et al. Modeling the release of nitrogen from controlled release fertilizer: Constant and decay release[J]. Biosystems Engineering, 2015, 130: 34-42.
[32]盧艷麗,白由路,王磊,等. 華北小麥-玉米輪作區(qū)緩控釋肥應(yīng)用效果分析[J]. 植物營養(yǎng)與肥料學(xué)報,2011,17(1):209-215.
Lu Yanli, Bai Youlu, Wang Lei, et al. Analysis of the application effect of slow and controlled release fertilizer in wheat-corn rotation area in North China[J]. Journal of Plant Nutrition and Fertilizer, 2011, 17(1): 209-215. (in Chinese with English abstract)
[33]胡春花,羅革彬,曾建華,等. 不同類型緩釋氮肥對水稻產(chǎn)量和氮肥利用率的影響[J]. 中國農(nóng)學(xué)通報,2011,27(15):174-177.
Hu Chunhua, Luo Gebin, Zeng Jianhua, et al. Effects of different types of slow-release nitrogen fertilizers on rice yield and nitrogen use efficiency[J]. Chinese Agricultural Science Bulletin, 2011, 27(15): 174-177. (in Chinese with English abstract)
[34]吳國梁,崔秀珍. 高產(chǎn)小麥氮磷鉀營養(yǎng)機理和需肥規(guī)律研究[J]. 中國農(nóng)學(xué)通報,2000,16(2):8-11.
Wu Guoliang, Cui Xiuzhen. Study on the nutrient mechanism and fertilizer requirement of high-yield wheat[J]. Chinese Agricultural Science Bulletin, 2000, 16(2): 8-11. (in Chinese with English abstract)
[35]Masaka J. The effect of nitrogen fertilizer placement and timing on the uptake of nitrogen, phosphorus and potassium by spring wheat (L.) at different phenological stages on leached Chernozem[J]. Journal of Agronomy, 2005, 4(3): 840-842.
[36]馬武光. 關(guān)中地區(qū)不同降水年型下冬小麥生長及根區(qū)土壤水分利用特征[D]. 楊凌:西北農(nóng)林科技大學(xué),2019:8-16.
Ma Wuguang. Winter Wheat Growth and Root Zone Soil Water Use Characteristics Under Different Precipitation Years in Guanzhong Area[D]. Yangling: Northwest A&F University, 2019: 8-16. (in Chinese with English abstract)
[37]羅曉琦. 生物炭施用下中國農(nóng)田土壤N2O排放的Meta分析[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2017,25(9):1254-1265.
Luo Xiaoqi. Meta analysis of N2O emissions from farmland soils in China under biochar application[J]. Chinese Journal of Eco-Agriculture, 2017, 25(9): 1254-1265. (in Chinese with English abstract)
[38]Wang Xin, Shi Yu, Guo Zengqiang, et al. Water use and soil nitrate nitrogen changes under supplemental irrigation with nitrogen application rate in wheat field[J]. Field Crops Research, 2015, 183: 117-125.
Comprehensive effects of irrigation water and nitrogen levels for controlled release fertilizer with different release periods on winter wheat yield
Li Mengyue, Hu Tiantian※, Cui Xiaolu, Luo Lihua, Lu Junsheng
(,,712100,)
The application of traditional urea usually causes low efficiency of nutrient utilization, and environmental pollution, due to the excessive use of fertilizers, and mismatching between the nutrient release stage of fertilizers and the growth stage of crops. The controlled-release fertilizer, serving as a promising new fertilizer, can be used to improve nutrient use efficiency and crop yields via adjusting the stage of nutrient release. The objective of this study was therefore to explore the effects of controlled-release fertilizers in different release periods, and the nitrogen levels in irrigation water on winter wheat yield. A field experiment was conducted in the Modern Agriculture Demonstration Park, Wugong Town, Xianyang City, Shaanxi Province, China. The optimum combinations of water and fertilizer inputs were determined for both single-objective and multi-objective optimizations through the frequency and multiple regression analysis method. The main, sub, and sub-sub plots were designed in the field experiments. In the main zone plots, three irrigation levels were set as W1(30 mm), W2(60 mm), and W3(90 mm). The sub plots comprised of four nitrogen fertilization levels, including N0(0 kg/hm2), N1(75 kg/hm2), N2(150 kg/hm2), and N3(225 kg/hm2). The sub-sub plots included three different nitrogen fertilizer types, namely PCU60(a controlled-release fertilizer with a release periods of 60 days), PCU120(a controlled-release fertilizer with a release periods of 120 days), and U (traditional urea). A controlled release fertilizer was applied at one time during planting, where the application mode of traditional nitrogen fertilizer (U) as a control. The effect of water and nitrogen dosage on winter wheat yield was clarified under the condition of controlled-release fertilizer, thereby to propose the optimal range of water and fertilizer dosage in various fertilizers. The results showed that the amount of irrigation water, nitrogen application rates, and different types of controlled-release fertilizer had significant effects on the spike number, grain number per spike, 1000-kernal mass, amount of dry matte, and grain yield of winter wheat. The interaction between two factors also had a significant impact on the grain yield. In the same irrigation levels, the winter wheat yield increased first, and then decreased with increasing nitrogen fertilizer application levels, where the maximum was obtained when the application rate of nitrogen fertilizer was 150 kg/hm2. In the same nitrogen fertilizer levels, the winter wheat yield increased first, and then decreased with increasing the irrigation levels, where the maximum was achieved, when the irrigation level was 60 mm. The interaction effect between the type of controlled release fertilizer and the amount of irrigation/nitrogen application showed that: compared with the U treatment, with the increase of irrigation levels, the average yield of PCU60increased by 308 kg/hm2, and PCU120decreased by 270 kg/hm2; on the contrary, with the increase of nitrogen application rates, the average yield of PCU60decreased by 289 kg/hm2, and PCU120increased by 118 kg/hm2. According to the water and nitrogen production functions of three fertilizers, the yield-increasing effects of two controlled-release fertilizers were 14.31% (PCU120) and 12.08% (PCU60), respectively, under the water and nitrogen application when the U achieved the highest theoretical yield of 6 823 kg/hm2. In a frequency analysis, the most appropriate ranges of water and nitrogen for different fertilizer types were: 67.20-70.22 mm and 145.42-187.91 kg/hm2under the PCU60fertilizer treatment; 47.72-52.28 mm and 159.23-199.47 kg/hm2under the PCU120fertilizer treatment; 77.51-79.99 mm and 167.55-207.45 kg/hm2under the U treatment. The yield-increasing ranges were 7 647-7 719 kg/hm2(PCU60), 7 744-7 906 kg/hm2(PCU120), and 6 733-6 823 kg/hm2(U) under the most appropriate ranges of water and nitrogen application for different fertilizer types, respectively. Therefore, it can be recommended that an optimal irrigation level (47.72-52.28 mm) and fertilizer application (PCU120, 159.23-199.47 kg/hm2) ranges can be considered as the best water and fertilizer management strategy for maximizing water-fertilizer productivity of winter wheat.
water; nitrogen; controlled release fertilizer; release period; yield; regression analysis; frequency analysis
李夢月,胡田田,崔曉路,等. 不同釋放期控釋肥和水氮用量對冬小麥產(chǎn)量的綜合影響[J]. 農(nóng)業(yè)工程學(xué)報,2020,36(23):153-161.doi:10.11975/j.issn.1002-6819.2020.23.018 http://www.tcsae.org
Li Mengyue, Hu Tiantain, Cui Xiaolu, et al. Comprehensive effects of irrigation water and nitrogen levels for controlled release fertilizer with different release periods on winter wheat yield[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 153-161. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.018 http://www.tcsae.org
2020-07-20
2020-09-28
2015公益性行業(yè)(農(nóng)業(yè))科研專項經(jīng)費(201503124)
李夢月,主要從事農(nóng)業(yè)水土資源高效利用研究。Email:limengyue@nwafu.edu.cn
胡田田,教授,主要從事農(nóng)業(yè)水土資源高效利用研究。Email:hutiant@nwsuaf.edu.cn
10.11975/j.issn.1002-6819.2020.23.018
S143.1+5
A
1002-6819(2020)-23-0153-09