劉 娜,佘維維,2,秦樹高,2,喬艷桂,劉 靚,張宇清,2
毛烏素沙地風(fēng)沙土粒徑和礦物組成對(duì)固定態(tài)銨含量的影響
劉 娜1,佘維維1,2,秦樹高1,2,喬艷桂1,劉 靚1,張宇清1,2※
(1. 北京林業(yè)大學(xué)水土保持學(xué)院,寧夏鹽池毛烏素沙地生態(tài)系統(tǒng)國(guó)家定位觀測(cè)研究站,北京 100083;2. 北京林業(yè)大學(xué)水土保持國(guó)家林業(yè)與草原局重點(diǎn)實(shí)驗(yàn)室,北京 100083)
固定態(tài)銨是土壤氮素的一種重要形態(tài),對(duì)植物生長(zhǎng)具有十分重要的作用;然而,風(fēng)沙土中固定態(tài)銨的含量及其影響因素目前并不清楚,限制著對(duì)沙地土壤肥力來源及其維持機(jī)制的認(rèn)識(shí)。該研究測(cè)定了毛烏素沙地裸沙地、沙柳()和油蒿()林地風(fēng)沙土固定態(tài)銨的含量,并分析了土壤粒徑及礦物組成對(duì)其的影響。結(jié)果顯示,1)研究區(qū)土壤固定態(tài)銨平均含量為18.63 mg/kg,占土壤氮庫的8.77%,不同植被下土壤中固定態(tài)銨含量存在明顯差別,油蒿林地土壤固定態(tài)銨含量(23.03±1.88 mg/kg)顯著高于裸沙地(16.63±0.61 mg/kg)和沙柳林地(16.82± 1.25 mg/kg);2)風(fēng)沙土粒徑組成與固定態(tài)銨含量顯著相關(guān),粒徑越細(xì),固定態(tài)銨含量越高,粒徑越粗,含量越低;3)風(fēng)沙土礦物組成與固定態(tài)銨含量間無顯著關(guān)系。研究表明,毛烏素沙地風(fēng)沙土中固定態(tài)銨含量取決于土壤物理構(gòu)成而非礦物化學(xué)組成,植被主要通過影響粒徑組成而影響其含量。固定態(tài)銨是荒漠土壤肥力的重要組成部分,通過合理的植被建設(shè)增加土壤細(xì)粒物質(zhì),有利于提高固定態(tài)銨含量,對(duì)土地荒漠化治理和生物生產(chǎn)力的提高具有十分重要的意義。
植被;粒徑;風(fēng)沙土;固定態(tài)銨;礦物組成;毛烏素沙地
氮作為植物生長(zhǎng)的必要元素[1-3],其輸入和可利用性直接影響著植物生長(zhǎng)和陸地生態(tài)系統(tǒng)凈初級(jí)生產(chǎn)力[4-8]。自然界絕大部分氮以氮?dú)獾男问酱嬖谟诖髿庵?,生物固氮是氮素向生態(tài)系統(tǒng)輸入的主要途徑之一[9],在陸地生態(tài)系統(tǒng)氮循環(huán)中起著重要作用[10-12]。除了生物固氮外,供植物生長(zhǎng)的部分氮素還來自于大氣沉降和巖石風(fēng)化[13]。當(dāng)土壤中的氮素未被植物全部吸收時(shí),多余的氮大部分被土壤膠體吸附固定,還有一部分被固定在黏土礦物的晶格中形成固定態(tài)銨[14]。固定態(tài)銨是指存在于2:1型黏土礦物層間、不能被中性鹽所替換出來的銨離子,是土壤氮素的一種重要形態(tài),是植物可以利用氮的給源[15-16],是提高氮素利用率、降低氮素?fù)p失的一個(gè)重要氮庫[17]。土壤對(duì)銨的礦物固定與釋放是影響土壤氮素供應(yīng)的重要轉(zhuǎn)化過程之一[18],在一定程度上能夠反映土壤“穩(wěn)肥性”的高低[19]。對(duì)于養(yǎng)分貧瘠的荒漠生態(tài)系統(tǒng)而言,固定態(tài)銨作為一種重要潛在氮源,了解其含量和影響因素,對(duì)于認(rèn)識(shí)沙地土壤肥力的形成機(jī)制和荒漠生態(tài)系統(tǒng)氮循環(huán)具有十分重要的意義。
固定態(tài)銨含量因地區(qū)和土壤類型的不同而存在差異[20],從而對(duì)氮庫的貢獻(xiàn)也有所不同。紅壤區(qū)固定態(tài)銨含量為203.8 mg/kg,占土壤氮庫的20.7%;灰漠土區(qū)固定態(tài)銨含量為182.5 mg/kg,占土壤氮庫的39.5%[20]。固定態(tài)銨含量受土壤粒徑、礦物組成、植被類型等諸多因素影響[21]。因細(xì)粒徑土壤有更強(qiáng)的吸附性,能吸附更多的銨離子,因此土壤粒徑越細(xì),固定態(tài)銨含量越高,粒徑越粗,含量越低[22]。就礦物組成而言,2:1型黏土礦物(如蛭石、伊利石等)比1:1型黏土礦物(如高嶺石等)以及石英、長(zhǎng)石等有更強(qiáng)的固銨能力[23],這主要是由于2:1型黏土礦物顆粒細(xì)小,比表面積大,顆粒上帶有負(fù)電荷,具有更強(qiáng)的物理吸附性、表面化學(xué)活性以及與銨離子交換的能力[24]。植被一般主要通過影響土壤微生物組成及粒徑和礦物組成等,間接影響固定態(tài)銨含量[25]。盡管自固定態(tài)銨被發(fā)現(xiàn)以來,對(duì)其含量及影響因素已有大量研究,但主要集中在稻田土、婁土、黃土等土壤類型[17,20],風(fēng)沙土中固定態(tài)銨含量及其影響因素目前并不明晰。
風(fēng)沙土廣泛分布于中國(guó)北方半干旱、干旱和極端干旱地區(qū),了解這種特殊土壤類型中固定態(tài)銨含量及其影響因素,對(duì)于認(rèn)識(shí)風(fēng)沙土的肥力形成與維持過程、干旱地區(qū)氮素循環(huán)過程等均具有十分重要的意義。本研究以毛烏素沙地風(fēng)沙土為研究對(duì)象,通過Silva-Bremner法、燃燒法以及X射線衍射法等手段,研究不同植被類型下土壤中固定態(tài)銨含量,并分析其與粒徑和礦物組成的關(guān)系以及占全氮含量的比重,嘗試為沙地土壤肥力形成機(jī)制和荒漠生態(tài)系統(tǒng)氮循環(huán)提供新的認(rèn)識(shí)視角。
研究在位于毛烏素沙地西南部的寧夏鹽池(37°04′N~38°10′N、106°30′E~107°41′E,海拔1 530 m)開展。研究區(qū)屬于典型半干旱大陸性季風(fēng)氣候,夏季濕熱,冬季干冷。年平均氣溫8.1 ℃,年均降水量284.8 mm(1955-2013年),降水主要集中在生長(zhǎng)季(5-9月),占全年降水量的80%以上,潛在蒸發(fā)量為降水量的5-7倍。土壤類型以風(fēng)沙土為主,結(jié)構(gòu)松散,肥力低下,pH值(8.60±0.06),容重為(1.54±0.02)g/cm3,孔隙度為(42±3)%,有機(jī)碳含量(1 125.4±126)mg/kg[26]。區(qū)內(nèi)植被以沙生、旱生植物為主,主要優(yōu)勢(shì)種有油蒿()、沙柳()、楊柴()、檸條()等灌木及賴草()、甘草()、軟毛蟲實(shí)()等草本植物。
2019年6月,在研究區(qū)內(nèi)選取3個(gè)有代表性的樣地(圖1),分別為裸沙地、沙柳()林地和油蒿()林地,樣地基本信息詳如表1所示。在每個(gè)樣地隨機(jī)選取10個(gè)5 m × 5 m的樣方(3個(gè)樣地共30個(gè)樣方);灌木林地內(nèi),每個(gè)樣方內(nèi)灌叢下和灌叢間共隨機(jī)選取10個(gè)土壤取樣點(diǎn)(其中灌叢下5個(gè),灌叢間5個(gè));裸沙地不分灌叢下和灌叢間,隨機(jī)選取10個(gè)取樣點(diǎn)(3個(gè)樣地共計(jì)300個(gè)取樣點(diǎn))。為了防止地形變化對(duì)試驗(yàn)結(jié)果的影響,每個(gè)樣方盡量集中在同一平坦的地形范圍內(nèi)。取樣時(shí),去除土壤表面枯落物后,用土鉆(直徑3.8 cm)獲取0~20 cm土層的土壤,每個(gè)樣方內(nèi)采集的土樣均勻混合為1個(gè)樣品,每個(gè)樣地共獲得混合土樣10個(gè),3個(gè)樣地共30個(gè)。將采集的土壤樣品裝入做好標(biāo)記的自封袋中,帶回實(shí)驗(yàn)室于陰涼處風(fēng)干,同時(shí)剔除石子、植物根系等。
將風(fēng)干后的土樣按照美國(guó)制(1951)的標(biāo)準(zhǔn)[27],分別過2、0.25和0.1 mm土壤篩,分成3個(gè)粒徑等級(jí)(>0.25、0.1~0.25、<0.1 mm),稱取每種粒徑等級(jí)土壤質(zhì)量以獲得各粒徑占比,分別測(cè)定土壤固定態(tài)銨和全氮含量。固定態(tài)銨含量采用Silva-Bremner法進(jìn)行測(cè)定[28],即稱取1.00 g過0.15 mm篩的土樣,將其置于200 mL高型燒杯中,加入20 mL堿性次溴酸鉀(KOBr)溶液,并用玻璃蓋子蓋住,搖勻后靜置2 h。加蒸餾水60 mL,在電熱板上暴沸5 min,冷卻,靜置6 h。傾去上層清液,以0.5 mol/L KCl溶液將土樣洗入100 mL離心管中,土液體積共80 mL,振蕩至土液混合均勻(約5 000~6 000次),離心(速度為1 000 r/min)共10 min。然后傾去上層清液,如此重復(fù)3次,將洗凈的土樣加入20 mL 5 mol/L HF-HCl溶液,振蕩24 h(以釋放礦物固定的NH4+),然后放入凱氏定氮蒸餾裝置中蒸餾(加入15 mL10 mol/L KOH),用2%硼酸溶液吸收,以0.01 mol/L的H2SO4滴定。土壤全氮含量用元素分析儀(vario EL III,Elementar,德國(guó))測(cè)定,每種粒徑土壤的礦物組成和相對(duì)含量用X射線衍射法(D8 Advance,Bruker Biospin,德國(guó))測(cè)定。
圖1 樣地位置示意圖
表1 樣地的基本信息
注:粒徑組成數(shù)據(jù)用平均值±標(biāo)準(zhǔn)誤表示。
Note: Particle size composition data are shown as mean ± standard error.
采用Kolmogorov-Smirnov檢驗(yàn)對(duì)全部數(shù)據(jù)進(jìn)行正態(tài)分布檢驗(yàn),對(duì)不符合檢驗(yàn)的數(shù)據(jù)進(jìn)行對(duì)數(shù)和三角函數(shù)轉(zhuǎn)換,提高其正態(tài)性。采用單因素方差分析和Duncan’s多重范圍檢驗(yàn)分析,比較不同樣地固定態(tài)銨和全氮含量的差異;運(yùn)用相同方法比較不同樣地、不同粒徑土壤固定態(tài)銨含量及其占全氮含量比值之間的差異。采用冗余分析(Redundancy Analysis, RDA)計(jì)算不同粒徑、不同礦物對(duì)固定態(tài)銨含量的相對(duì)影響。采用非度量多維尺度(Nonmetric Multidimensional Scaling, NMDS)分析明確不同樣地中粒徑和礦物組成之間的差異是否顯著。采用Mantel 檢驗(yàn)分析粒徑組成、礦物組成與固定態(tài)銨含量之間的相關(guān)性。以=0.05作為檢驗(yàn)是否具有顯著差異的閾值。所有統(tǒng)計(jì)分析利用R軟件3.6.3(R Core Team 2019)完成。
樣地間差異分析結(jié)果表明,油蒿林地土壤固定態(tài)銨含量(23.03±1.88 mg/kg)顯著高于裸沙地(16.63± 0.61 mg/kg)和沙柳林地(16.82±1.25 mg/kg)(< 0.05),裸沙地和沙柳林地間固定態(tài)銨含量差異不顯著(圖2a;> 0.05);油蒿林地土壤全氮含量(274.71±8.38 mg/kg)顯著高于裸沙地(145.99±9.45 mg/kg)和沙柳林地(197.15± 6.74 mg/kg),且沙柳林地土壤全氮含量顯著高于裸沙地(圖2b;< 0.001)。
注:不同小寫字母表示在0.05水平下差異顯著。下同。
總體來看,3種不同粒徑土壤固定態(tài)銨占其全氮含量的比例有顯著差異(表2;< 0.001)。在裸沙地和油蒿林地,粒徑組成對(duì)固定態(tài)銨占全氮含量的比例有顯著影響(< 0.05),而沙柳林地不同土壤粒徑對(duì)其影響不顯著(> 0.05)。裸沙地和油蒿林地中,細(xì)粒徑(< 0.1 mm)和中粒徑(0.1~0.25 mm)土壤固定態(tài)銨占全氮含量比例均顯著高于粗粒徑(> 0.25 mm)土壤。
表2 不同粒徑土壤固定態(tài)銨占全氮含量的比例
注:在0.05水平下差異顯著。
Note:is significant difference at 0.05 level.
NMDS和Adonis分析結(jié)果顯示,3個(gè)樣地間土壤粒徑組成存在顯著差異(圖3a;<0.05)。細(xì)粒徑土壤與固定態(tài)銨含量呈顯著正相關(guān)(圖3b)。3個(gè)樣地中,不同粒徑組成對(duì)固定態(tài)銨含量影響均顯著(<0.001)。裸沙地中,細(xì)粒徑土壤固定態(tài)銨含量(21.46±0.84 mg/kg)顯著高于中粒徑(17.43±0.73 mg/kg)和粗粒徑土壤(12.27±0.76 mg/kg),中粒徑土壤固定態(tài)銨含量顯著高于粗粒徑土壤(圖3c)。沙柳林地中,細(xì)粒徑土壤固定態(tài)銨含量(23.92±1.40 mg/kg)顯著高于中粒徑(17.02± 1.46 mg/kg)和粗粒徑土壤(12.83±0.84 mg/kg),但中粒徑和粗粒徑土壤間固定態(tài)銨含量無顯著差異(圖3d)。油蒿林地中,固定態(tài)銨含量在不同粒徑中顯示的特點(diǎn)與裸沙地相同,細(xì)粒徑、中粒徑和粗粒徑土壤固定態(tài)銨含量分別為(28.98±1.89)mg/kg,(22.74±2.49)mg/kg和(11.90± 0.76)mg/kg(圖3e)。
注:NMDS為非度量多維尺度;RDA為冗余分析。下同。 Note: NMDS is nonmetric multidimensional scaling; RDA is redundancy analysis. The same below.
3個(gè)樣地土壤礦物成分主要為石英(SiO2)、斜長(zhǎng)石(Na[AlSi3O8]-Ca[Al2Si2O8])、正長(zhǎng)石(K[AlSi3O8])、方解石(CaCO3)、鈣長(zhǎng)石(CaO.Al2O3.2SiO2)、硅酸鋁鈣(Ca2Al2(SiO3)5)和鈉長(zhǎng)石(Na2O·Al2O3·6SiO2)7種礦物。NMDS和Adonis分析結(jié)果顯示,3個(gè)樣地間礦物組成差異顯著(圖4a;<0.001),裸沙地中斜長(zhǎng)石含量最高,沙柳林地中石英含量最高,油蒿林地中方解石和正長(zhǎng)石含量最高(表3)。
此外,3個(gè)樣地不同粒徑土壤間礦物組成也存在明顯差異。裸沙地和油蒿林地中,細(xì)粒徑-中粒徑間、粗粒徑-中粒徑間礦物組成差異顯著(<0.05),但細(xì)粒徑和粗粒徑土壤之間礦物組成差異不顯著(圖4c和圖4e;>0.05)。沙柳林地中,細(xì)粒徑和中粒徑土壤礦物組成差異顯著,而細(xì)粒徑-粗粒徑間、中粒徑-粗粒徑間礦物組成無顯著差異(圖4d;>0.05)。Mantel Test分析結(jié)果顯示,3個(gè)樣地固定態(tài)銨含量與礦物組成之間無顯著相關(guān)性(圖4b和表4)。
圖4 3個(gè)樣地總體和各樣地不同土壤粒徑下礦物組成差異以及固定態(tài)銨含量與礦物組成的相關(guān)性
表3 3個(gè)樣地土壤礦物組成
表4 3個(gè)樣地土壤礦物組成與固定態(tài)銨含量的相關(guān)性
注:在0.05水平下差異顯著。
Note:is significant difference at 0.05 level.
研究區(qū)風(fēng)沙土固定態(tài)銨含量平均為18.63 mg/kg,占土壤全氮含量的8.77%(圖2a和表2)。以往研究顯示,黃棕壤固定態(tài)銨含量為257 mg/kg,占全氮含量的27.5%;棕漠土固定態(tài)銨含量為159.8 mg/kg,占全氮含量的52.3%;栗鈣土、灰鈣土、棕鈣土固定態(tài)銨含量為90 mg/kg,占全氮含量的14.2%[20]。固定態(tài)銨占全氮的份額在各類型土壤間差異很大[20]。與其他土壤類型相比,風(fēng)沙土固定態(tài)銨含量明顯較低,這可能與風(fēng)沙土的母質(zhì)來源和成土過程密切相關(guān)[20,29]。毛烏素沙地基質(zhì)是以中生代侏羅紀(jì)與白堊紀(jì)的巖石為骨架,經(jīng)過第三紀(jì)與第四紀(jì)水成作用為主的洪積與沖積過程形成的臺(tái)地[30],巖石風(fēng)化程度低,礦物類型以石英為主,其次是正長(zhǎng)石和斜長(zhǎng)石等,2:1型黏土礦物(蛭石、蒙脫石等)含量很少,這可能是造成風(fēng)沙土中固定態(tài)銨含量較其他類型土壤低的原因。此外,固定態(tài)銨與土壤中的交換性銨以及其他形態(tài)的氮素保持著動(dòng)態(tài)平衡[31-32],且其含量隨土壤中交換性銨含量變化而改變。比如,在人工氮輸入的情形下,土壤中銨離子濃度升高,部分銨離子會(huì)以固定態(tài)銨的形式儲(chǔ)存在土壤晶格中,使土壤固定態(tài)銨含量增加[33-34]。然而,研究區(qū)土壤不進(jìn)行施肥、耕作等人為活動(dòng),額外的氮素補(bǔ)充較其他土壤類型少,土壤中銨離子濃度也相對(duì)較低,能被固定在晶格中的銨離子非常有限,這可能也是風(fēng)沙土固定態(tài)銨含量較低的原因。
風(fēng)沙土固定態(tài)銨含量受粒徑組成影響顯著,粒徑越細(xì)固定態(tài)銨含量越高,粒徑越粗含量越低(圖3)。Feigin等[29]、Paramasivam和Breitenbeck[36]發(fā)現(xiàn),固定態(tài)銨含量與粘粒含量呈顯著正相關(guān)。本研究結(jié)果與張崇玉[35]一致,這可能是由于細(xì)粒物質(zhì)孔隙結(jié)構(gòu)更小,吸附和交換銨離子的能力更強(qiáng)。另外,有研究顯示,細(xì)粒土壤中細(xì)菌多樣性要高于粗粒徑土壤,因此有更高的養(yǎng)分周轉(zhuǎn)效率[37],能提供更多的氮素,為銨的固定提供了更有利的條件。
以往的研究表明,固定態(tài)銨含量還與礦物組成之間存在一定的聯(lián)系[38]。然而,對(duì)研究區(qū)風(fēng)沙土的分析卻發(fā)現(xiàn),礦物組成與固定態(tài)銨含量之間沒有顯著關(guān)系(表4)。Allison等[39]和Said[40]發(fā)現(xiàn)蛭石、伊利石和蒙脫石在銨的固定中起著十分重要的作用,但是毛烏素沙地風(fēng)沙土中礦物類型以石英為主,蛭石等2:1型黏土礦物很少,導(dǎo)致對(duì)固定態(tài)銨含量沒有顯著影響。
植被類型也是影響土壤固定態(tài)銨含量的重要因素。研究結(jié)果顯示,油蒿林地固定態(tài)銨含量顯著高于裸沙地和沙柳林地,這可能主要與不同植被條件下土壤中細(xì)粒徑組分含量有關(guān)。在風(fēng)沙區(qū),植被一方面可以影響地表風(fēng)沙過程,捕獲風(fēng)沙流中大量細(xì)粒物質(zhì),使得表層土壤中細(xì)粒物質(zhì)增多[41];另一方面,植被通過根系活動(dòng)、凋落物輸入等過程,也有利于細(xì)粒物質(zhì)的累積[42]。因此,油蒿和沙柳林地相比于裸沙地,土壤中細(xì)粒物質(zhì)含量更高,固定態(tài)銨含量相應(yīng)也較高。此外,植被還通過改變生物土壤結(jié)皮覆蓋度間接影響土壤粒徑組成,進(jìn)而影響固定態(tài)銨含量。大量研究證實(shí),生物土壤結(jié)皮具有固氮功能,能夠增加表層土壤細(xì)粒物質(zhì)含量[43-47]。研究區(qū)油蒿林地的生物土壤結(jié)皮覆蓋度遠(yuǎn)高于沙柳林地[48],這可能是油蒿林地固定態(tài)銨含量較沙柳林地高的重要原因。除生物土壤結(jié)皮外,以往研究還發(fā)現(xiàn),油蒿林地土壤微生物多樣性、酶活性也較沙柳林地高[49],說明油蒿林地的養(yǎng)分循環(huán)和周轉(zhuǎn)速率更高,這都為銨的固定提供了更好的條件[50-51]。盡管本文研究發(fā)現(xiàn)不同植被條件下礦物組成差異顯著,但固定態(tài)銨含量與礦物組成無關(guān),表明植被可能并不是通過改變土壤礦物組成來影響固定態(tài)銨含量。綜合來看,研究區(qū)沙地植被主要通過改變土壤粒徑組成而非礦物組成對(duì)固定態(tài)銨含量產(chǎn)生影響。
毛烏素沙地土壤固定態(tài)銨含量與細(xì)粒徑土壤含量顯著正相關(guān),在今后固沙植物的選擇上,應(yīng)選擇能有效增加土壤細(xì)粒物質(zhì)含量的植物種。本文為認(rèn)識(shí)荒漠化地區(qū)土壤肥力來源和氮素循環(huán)提供了一個(gè)新的視角,同時(shí)為評(píng)估固沙植被改良土壤的機(jī)理提供了新的解釋。然而,沙地土壤固定態(tài)銨的形成機(jī)制、對(duì)土壤肥力的影響、不同類型植被對(duì)土壤固定態(tài)銨的影響機(jī)制等問題非常復(fù)雜,仍需要進(jìn)一步地深入探討。
毛烏素沙地風(fēng)沙土固定態(tài)銨平均含量為18.63 mg/kg,占土壤總氮庫的8.77%。土壤粒徑組成對(duì)固定態(tài)銨含量影響顯著,粒徑越細(xì)固定態(tài)銨含量越高,粒徑越粗含量越低;礦物組成與固定態(tài)銨含量之間無顯著相關(guān)性;植被類型對(duì)固定態(tài)銨含量有顯著影響,油蒿林地固定態(tài)銨含量(23.03 mg/kg)顯著高于裸沙地(16.63 mg/kg)和沙柳林地(16.82 mg/kg)。毛烏素沙地風(fēng)沙土固定態(tài)銨含量主要由土壤物理結(jié)構(gòu)而非礦物化學(xué)組成決定,提高土壤細(xì)粒物質(zhì)含量有利于土壤肥力的提升,對(duì)土地荒漠化治理具有十分重要的意義。
[1] Fowler D, Coyle M, Skiba U, et al. The global nitrogen cycle in the twenty-first century[J]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368(1621): 1-27.
[2] Bai Y F, Wu J G, Naeem S, et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from Inner Mongolia Grasslands[J]. Global Change Biology, 2010, 16(1): 358-372.
[3] 吉艷芝,徐明杰,巨曉棠,等. 華北平原不同種植制度對(duì)糧食作物氮素利用和土壤氮庫的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(19):86-96.
Ji Yanzhi, Xu Mingjie, Ju Xiaotang, et al. Effects of different cropping systems on food crop nitrogen utilization and soil nitrogen pool in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(19): 86-96. (in Chinese with English abstract)
[4] Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7176): 293-296.
[5] 王玉冰,孫毅寒,丁威,等.長(zhǎng)期氮添加對(duì)典型草原植物多樣性與初級(jí)生產(chǎn)力的影響及途徑[J]. 植物生態(tài)學(xué)報(bào),2020,44(1):22-32.
Wang Yubing, Sun Yihan, Ding Wei, et al. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe[J]. Chinese Journal Plant Ecology, 2020, 44(1): 22-32. (in Chinese with English abstract)
[6] Lebauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371-379.
[7] Luo Y Q, Jackson R B. Does nitrogen constrain carbon cycling, or does carbon input stimulate nitrogen cycling[J]. Ecology, 2006, 87(1): 3-4.
[8] Reich P B, Hobbie S E, Lee T, et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2[J]. Nature, 2006, 440(7086): 922-925.
[9] Menyailo O V, Lehmann J, Cravo M D, et al. Soil microbial activities in tree-based cropping systems and natural forests of the Central Amazon, Brazil[J]. Biology and Fertility of Soils, 2003, 38(1): 1-9.
[10] Zheng M, Zhou Z, Zhao P, et al. Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation[J]. Global Change Biology, 2020, 26(11): 6203-6217.
[11] Dynarski K A, Houlton B Z. Nutrient limitation of terrestrial free-living nitrogen fixation[J]. New Phytologist, 2018, 217: 1050-1061.
[12] Fan K, Delgado-Baquerizo M, Guo X, et al. Suppressed N fixation and diazotrophs after four decades of fertilization[J]. Microbiome, 2019, 7(1): 143.
[13] Houlton B Z, Morford S L, Dahlgren R A. Convergent evidence for widespread rock nitrogen sources in earth’s surface environment[J]. Science, 2018, 360(6384): 58-62.
[14] Yan T, Wang X Z, Zhao H T, et al. Effect of potassium and C/N ratios on conversion of NH+in soils[J]. Pedosphere, 2008, 18(4): 539-544.
[15] Gouveia G A, Eudoxie G D. Distribution of fertiliser N among fixed ammonium fractions as affected by moisture and fertiliser source and rate[J]. Biology and Fertility of Soils, 2007, 44(1): 9-18.
[16] Lu C, Zhang X, Chen X, et al. Fixation of labeled (15NH4)2SO4and its subsequent release in black soil of northeast China over consecutive crop cultivation[J]. Soil and Tillage Research, 2010, 106(2): 329-334.
[17] Mamo M, Taylor R W, Shuford J W. Ammonium fixation by soil and pure clay minerals[J]. Communications in Soil Science and Plant Analysis, 1993, 24(11/12): 1115-1126.
[18] 李成芳,曹湊貴,潘圣剛,等. 稻鴨共作生態(tài)系統(tǒng)稻田土壤固定態(tài)銨含量及有效性[J]. 生態(tài)學(xué)報(bào),2008,28(6):2729-2737.
Li Chengfang, Cao Zougui, Pan Shenggang, et al. The dynamics and availability of soil fixed ammonium in rice-duck complex ecosystems[J]. Acta Ecology Sinica, 2008, 28(6): 2729-2737. (in Chinese with English abstract)
[19] 程勵(lì)勵(lì),文啟孝. 成都平原幾種水稻土的固定態(tài)銨及其有效性[J]. 土壤,1999,31(3):132-135.
[20] 文啟孝,程勵(lì)勵(lì),陳碧云. 我國(guó)土壤中的固定態(tài)銨[J]. 土壤學(xué)報(bào),2000,37(2):145-156.
Wen Qixiao, Cheng Lili, Chen Biyun. Fixed ammonium in soil of China[J]. Acta Pedologica Sinica, 2000, 37(2): 145-156. (in Chinese with English abstract)
[21] 廖繼佩,林先貴,曹志洪,等. 土壤固定態(tài)銨的影響因素[J]. 土壤,2003,35(1):36-40.
Liao Jipei, Lin Xiangui, Cao Zhihong, et al. Factors affecting soil-fixed ammonium[J]. Soil, 2003, 35(1): 36-40. (in Chinese with English abstract)
[22] 李生秀,張興昌. 土壤中非代換銨的行為: Ⅰ兩種測(cè)定土壤非代換銨方法優(yōu)劣的判別[J]. 西北農(nóng)業(yè)大學(xué)學(xué)報(bào),1991,19(1):7-12.
Li Shengxiu, Zhang Xingchang. The behaviour of non-exchangeable ammonium in soils: Ⅰ. Evaluation of two methods determining non-exchange ammonium in soils[J]. Acta Univ. Agric. Boreali-occidentalis, 1991, 19(1): 7-12. (in Chinese with English abstract)
[23] Nieder R, Benbi D K, Scherer H W. Fixation and defixation of ammonium in soils: A review[J]. Biology and Fertility of Soils, 2011, 47(1): 1-14.
[24] Nommik H. Ammonium fixation and other reactions involving a notic immobilization of mineral nitrogen in soil[J]. Agronomy, 1965, 10(2): 198-258.
[25] 焦立新,王圣瑞,金相燦,等. 長(zhǎng)江中下游淺水湖泊沉積物固定態(tài)銨特征及影響因素[J]. 環(huán)境科學(xué)研究,2007,20(4):57-63.
Jiao Lixin, Wang Shengrui, Jin Xiangcan, et al. Characteristic of fixation smmonium and effecting factors on the sediments from shallow lakes in the middle and lower reaches of the Yangtze River[J]. Research of Environment Sciences, 2007, 20(4): 57-63. (in Chinese with English abstract)
[26] Liu J, Fa K, Zhang Y, et al. Abiotic CO2uptake from the atmosphere by semiarid desert soil and its partitioning into soil phases[J]. Geophysical Research Letters, 2015, 42(14): 5779-5785.
[27] 朱鶴健,何宜庚.土壤地理學(xué)[M]. 北京:高等教育出版社,1992.
[28] Silva J A, Bremner J M. Determination and isotope-ratio analysis of different forms of nitrogen in soils: 5. Fixed ammonium[J]. Soil Science Society of America Journal, 1966, 30(5): 587-594.
[29] Feigin A, Yaalon D H. Non‐exchangeable ammonium in soils of Israel and its relation to clay and parent materials[J]. European Journal of Soil Science, 1974, 25(3): 384-397.
[30] 張新時(shí). 毛烏素沙地的生態(tài)背景及其草地建設(shè)的原則與優(yōu)化模式[J]. 植物生態(tài)學(xué)報(bào),1994,18(1):1-16.
Zhang Xinshi. Principles and optimal models for development of Mu Us Sandy Grassland[J]. Acta Phytoecologica Sinica, 1994, 18(1): 1-16. (in Chinese with English abstract)
[31] 朱兆良,文啟孝. 中國(guó)土壤氮素[M]. 南京:江蘇科學(xué)技術(shù)出版社,1992.
[32] 李生秀,田霄鴻,王喜慶,等. 土壤中非代換銨的行為Ⅱ.非代換銨含量與其它形態(tài)氮素的關(guān)系[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào):自然科學(xué)版,1991,19(4):18-24.
Li Shengxiu, Tian Xiaohong, Wang Xiqing, et al. The behaviour of non-exchangeable ammonium in soils Ⅱ. The relationship between non-exchangeable ammonium and other N forms[J]. Journal of Northwest A&F University: Natural Science Edition, 1991, 19(4): 18-24. (in Chinese with English abstract)
[33] Juang T C, Wang M K, Chen H J, et al. Ammonium fixation by surface soils and clays[J]. Soil Science, 2001, 166(5): 345-352.
[34] Liang B C, Mackenzie A F. Fertilization rates and clay fixed ammonium in two Quebec soils[J]. Plant and Soil, 1994, 163(1): 103-109.
[35] 張崇玉,李生秀. 土壤顆粒組成與固定態(tài)銨之間的關(guān)系[J].土壤學(xué)報(bào),2004,41(4):649-654.
Zhang Chongyu, Li Shengxiu. Relationship between particle composition and fixed ammonium in soil[J]. Acta Pedologica Sinica, 2004, 41(4): 649-654. (in Chinese with English abstract)
[36] Paramasivam S, Breitenbeck G A. Distribution of nitrogen in soils of the southern Mississippi River Alluvial Plain[J]. Communications in Soil Science and Plant Analysis, 1994, 25(3): 247-267.
[37] Sessitsch A, Weilharter A, Gerzabek M H, et al. Microbial population structures in soil particle size fractions of a long-term fertilizer field experiment[J]. Applied and Environmental Microbiology, 2001, 67(9): 4215-4224.
[38] Sippola J, Ervi? R, Eleveld R. The effects of simultaneous addition of ammonium and potassium on their fixation in some Finnish soils[J]. Physiologia Plantarum, 1973, 70(2): 259-266.
[39] Allison F E, Doetsch J H, Roller E M. Availability of fixed ammonium in soils containing different clay minerals[J]. Soil Science, 1953, 75(5): 361-382.
[40] Said M B. Ammonium fixation in the Sudan Gezira soils[J]. Plant and Soil, 1973, 38(1): 9-16.
[41] 高廣磊,丁國(guó)棟,趙媛媛,等. 生物結(jié)皮發(fā)育對(duì)毛烏素沙地土壤粒度特征的影響[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(1):115-120.
Gao Guanglei, Ding Guodong, Zhao Yuanyuan, et al. Effects of biological soil crusts on soil particle size characteristics in Mu Us Sandland[J]. Transaction of the Chinese Society for Agricultural Machinery, 2014, 45(1): 115-120. (in Chinese with English abstract)
[42] Gao Y, Dang P, Zhao Q X et al. Effects of vegetation rehabilitation on soil organic and inorganic carbon stocks in the Mu Us Desert, Northwest China[J]. Land Degradation and Development, 2018, 29(4): 1031-1040.
[43] Belnap J. The world at your feet: Desert biological soil crusts[J]. Frontiers in Ecology and the Environment, 2003, 1(4): 181-189.
[44] 閆德仁,薛英英,趙春光. 沙漠地區(qū)生物土壤結(jié)皮層腐殖質(zhì)特征[J]. 生態(tài)學(xué)雜志,2007,26(12):2017-2020.
Yan Deren, Xue Yingying, Zhao Chunguang. Humus feature in soil bio-crust area[J]. Chinese Journal of Ecology, 2007, 26(12): 2017-2020. (in Chinese with English abstract)
[45] 張?jiān)?,陳晉,王雪芹,等. 古爾班通古特沙漠生物結(jié)皮的分布特征[J]. 地理學(xué)報(bào),2005,60(1):53-60.
Zhang Yuanming, Chen Jin, Wang Xueqin, et al. The distribution patterns of biological soil crust in Gurbantunggut Desert[J]. Acta Geographica Sinaca, 2005, 60(1): 53-60. (in Chinese with English abstract)
[46] 趙哈林,郭秩瑞,周瑞蓮,等. 植被覆蓋對(duì)科爾沁沙地土壤生物結(jié)皮及其下層土壤理化性質(zhì)特性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2009,20(7):1657-1663.
Zhao Halin, Guo Yirui, Zhou Ruilian, et al. Effects of vegetation cover on physical and chemical properties of bio-crust and under-layer soil in Horqin Sand Land[J]. Chinese Journal of Applied Ecology, 2009, 20(7): 1657-1663. (in Chinese with English abstract)
[47] Belnap J, Lange O L. Biological Soil Crusts: Structure, Function, and Management[M]. New York: Springer-verlag, 2001.
[48] 劉利霞. 寧夏鹽池沙地土壤結(jié)皮的理化性質(zhì)及其局部環(huán)境影響[D]. 北京:北京林業(yè)大學(xué),2008.
Liu Lixia. Physicochemical Characteristics of Soil Crust and Its Influences on Local Environments in Sandy Desert of Yanchi, Ningxia[D]. Beijing: Beijing Forestry University, 2008.
[49] Sun Y, Zhang Y, Feng W, et al. Effects of xeric shrubs on soil microbial communities in a desert in Northern China[J]. Plant and Soil, 2017, 414(1/2): 281-294.
[50] Xia Q, Rufty T, Shi W. Soil microbial diversity and composition: Links to soil texture and associated properties[J]. Soil Biology and Biochemistry, 2020, 149: 1-13.
[51] 段鵬鵬,張玉玲,叢耀輝,等. 氮肥與有機(jī)肥配施協(xié)調(diào)土壤固定態(tài)銨與可溶性氮的研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2016,22(6):1578-1585.
Duan Pengpeng, Zhang Yuling, Cong Yaohui, et al. Regulation of soil fixed ammonium and soluble N through combined application of N fertilizer and manure[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(6): 1578-1585. (in Chinese with English abstract)
Effects of particle size and mineral composition on fixed ammonium of aeolian sandy soil in the Mu Us Sandy Land
Liu Na1, She Weiwei1,2, Qin Shugao1,2, Qiao Yangui1, Liu Liang1, Zhang Yuqing1,2※
(1.,,,100083,; 2.,,100083,)
Fixed ammonium is commonly defined as the ammonium ion not replaced by neutral salts, particularly between the layers of 2:1 clay mineral. It is also an important component of soil nitrogen pool, and plays a significant role in plant growth. However, the content of fixed ammonium in aeolian sandy soil and its influencing factors are largely unexplored, which limit understanding of the formation of soil fertility and nitrogen cycle in sandy lands. In this study, soil fixed ammonium was determined in three sampling plots (bare sandy land,land, andland) in the Mu Us Sandy Land, and further to examine the effects of soil particle size and mineral composition on fixed ammonium. In June 2019, ten 5 m × 5 m subplots were randomly selected in each sampling plot. In each subplot, ten soil cores at 0~20 cm depths were randomly collected, and mixed to create one composite sample. All soil samples were air-dried and divided into three fractions (> 0.25 mm, 0.1-0.25 mm, < 0.1 mm). The contents of fixed ammonium in all soil fractions were measured by the Silva-Bremner method. Soil total nitrogen was analyzed using a vario EL III elemental analyzer (Elementar, Germany).The soil mineral composition was determined by the X-ray diffraction (D8 Advance, Bruker Biospin, Germany).The results showed that the average content of soil fixed ammonium in the research site was 18.63 mg/kg, accounting for 8.77% of the soil nitrogen pool, where the soil fixed ammonium and total nitrogen content were most distributed in theland (23.03 ± 1.88 mg/kg and 274.71 ± 8.38 mg/kg, respectively), followed by theland (16.82 ± 1.25 mg/kg and 197.15 ± 6.74 mg/kg, respectively), and the least in the bare sandy land (16.63 ± 0.61 mg/kg and 145.99 ± 9.45 mg/kg, respectively). The composition of soil particle significantly differed among three different plots, with more fine-textured soils inland than that inland and bare sandy land. In addition, the content of fine-textured soils inwas higher than that in bare sandy land. Soil particle composition was significantly correlated to fixed ammonium, indicating the finer the soil particle size, the higher the fixed ammonium content. Seven dominant minerals were found in the three sampling plots soil, including quartz, calcite, plagioclase, orthoclase, albite, anorthitic, and calcium aluminum silicate. Three sampling plots were characterized by different soil mineral composition. Specifically,land had the greatest content of calcite, and orthoclase;land had the greatest quartz content; and the bare sandy land showed the highest plagioclase content. The relationship between soil mineral composition and fixed ammonium was not significant. It infers that that soil fixed ammonium in the Mu Us Sandy Land largely depended on the soil physical composition rather than the mineral composition. The vegetation primarily affected soil fixed ammonium by changing soil particle composition, suggesting that the increase of soil fine-grained matter via vegetation rehabilitation can contribute to the content of fixed ammonium. The findings can offer a significant theoretical support to land desertification control, and further to increase the biological productivity.
vegetation; particle size; aeolian sandy soil; fixed ammonium; mineral composition; Mu Us Sandy Land
劉娜,佘維維,秦樹高,等. 毛烏素沙地風(fēng)沙土粒徑和礦物組成對(duì)固定態(tài)銨含量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(23):131-138.doi:10.11975/j.issn.1002-6819.2020.23.016 http://www.tcsae.org
Liu Na, She Weiwei, Qin Shugao, et al. Effects of particle size and mineral composition on fixed ammonium of aeolian sandy soil in the Mu Us Sandy Land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(23): 131-138. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.23.016 http://www.tcsae.org
2020-08-13
2020-12-03
國(guó)家重點(diǎn)研發(fā)計(jì)劃課題(2016YFC0500905);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)(2015ZCQ-SB-02)
劉娜,主要從事荒漠化防治研究。Email:crown_liuna@163.com
張宇清,教授,博士生導(dǎo)師,主要從事荒漠化防治和荒漠生態(tài)學(xué)研究。Email:zhangyq@bjfu.edu.cn
10.11975/j.issn.1002-6819.2020.23.016
S151.9+3
A
1002-6819(2020)-23-0131-08
農(nóng)業(yè)工程學(xué)報(bào)2020年23期