• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dearomatized Isoprenylated Acylphloroglucinol Derivatives with Potential Antitumor Activities from Hypericum henryi

    2020-03-02 04:46:24YanSongYeManWuNaNaJiangYuanZhiLaoWenWeiFuXiaLiuXingWeiYangJuanZhang
    Natural Products and Bioprospecting 2020年1期

    Yan-Song Ye ·Man Wu ·Na-Na Jiang ·Yuan-Zhi Lao ·Wen-Wei Fu ·Xia Liu ·Xing-Wei Yang ·Juan Zhang ·

    Hong-Xi Xu 2·Gang Xu 1

    Abstract

    KeywordsHypericum henryi ·Dearomatized isoprenylated acylphloroglucinols (DIAPs)·Apoptosis·Cell cycle arrest

    1 Introduction

    Natural phloroglucinol derivatives are widely distributed in Myrtaceae,Guttiferae,Euphorbiaceae,Aspidiaceae families as well as appeared in marine and microbial sources [1].In which prenylated acylphloroglucinols are a special kind of hybrid natural products originated from a polyketide combined isoprenylation biosynthetic pathways,and were mainly reported from the plants of genusHypericumandGarciniain the family Guttiferae [2-4].With their wide range of biological profiles and diverse molecular architectures exemplified by hyperforin [5],hypersubone B [6],hyperuralone A [7] and chinesins I/II [8],prenylated acylphloroglucinol derivatives have attracted great interest of chemists and pharmaceutists.

    As a traditional folk medicine in China,Hypericum henryihas been used to treat hepatitis [9].Previous investigations on this plant have reported structurally diverse polycyclic polyprenylated acylphloroglucinols (PPAPs) such as hyphenrones A-X [10-12].As a part of systematic search on bioactive acylphloroglucinol derivatives,five new dearomatized isoprenylated acylphloroglucinols (DIAPs) derivatives,hyperhenols A-E (1-5) together with seven known analogues (6-12) were isolated fromH.henryi(Fig.1).In the bioactive study,compounds 1 and 6-8 were found to exhibit promising cytotoxic activities against three human cancer cell lines in vitro.And the further studies indicated compounds 6 and 7 could trigger autophagy,PINK1/Parkinmediated mitophagy in cancer cell lines,and also suppress lung cancer A549 cells metastasis targeting Akt and cofilin signaling pathways.In addition,6 and 7 also displayed significant anti-proliferation activities by inducing apoptosis and cell cycle arrest.Herein,the isolation,structure elucidation,and bioactivities evaluation of these compounds were reported.

    2 Results andDiscussion

    The MeOH extract was subjected to repeated column chromatography to yield five new DIAPs derivatives (1-5) together with seven known analogues hyphenrone J (6) [13],hyphenrone K (7) [13],hyperhenone E (8) [12],hyperhenone A (9) [12],hyperhenone B (10) [12],hyperhenone C (11) [12],and hyperhenone D (12) [12].

    Hyperhenol A (1) was isolated as yellow oil and assigned molecular formula of C27H40O5with 8 degrees of unsaturation by HRESIMS (m/z443.2803 [M-H]-,calcd.C27H39O5,443.2803).The IR spectrum displayed bands for hydroxy (3417 cm-1) and carbonyl groups (1636 cm-1).The13C NMR data along with DEPT experiments showed 27 carbon signals including seven methyls,six methylenes,four methines,and ten quaternary carbons (three oxygenated tertiary carbons and two carbonyls).Detailed analysis of the13C NMR spectroscopic data (Table 1) indicated the presence of an isoprenyl (δC40.3,C-14;120.5,C-15;135.3,C-16;26.2,C-17;18.2,C-18),a DIAPs core including an enolized 1,3-diketone group (δC199.0,C-6;107.4,C-1;191.0,C-2),an enolic double bonds (δC111.1,C-3;179.4,C-4),a carbonyl (δC207.9,C-7),and a quaternary carbon atδC54.7 (C-5) [12,13].The location of the mentioned isoprenyl and the methyl (δC24.6,C-19) at C-5 was evidenced by the HMBC correlations from H 2-14 (δH2.62,2.56) and Me-19 (δH1.32) to C-4 (δC179.4),C-5 (δC54.7) and C-6 (δC199.0) (Fig.2).Besides the aforementioned DIAP moiety,the remaining 14 carbon signals can be attributed to asecbutyl group (δC43.4,C-8;δC17.1,C-9;δC27.7,C-10;δC12.4,C-11) and another C10unit.

    Comparison of1H and13C NMR data indicated that the C10unit of 1 shared a similar structure with the monoterpenoid moiety of callistrilone B [14],which was confirmed by the1H-1H COSY correlations of H-3′/H-4′/H-5′/H-6′/H-1′,accompanied by HMBC correlations from Me-7′ (δH1.18) to C-1′ (δC42.7),C-2′ (δC73.3),and C-3′ (δC41.0);from Me-10′ (δH1.58) to C-8′ (δC151.0),C-5′ (δC47.1),and C-9′ (δC109.2);and from H2-9′ (δH4.71,4.67) to C-8′ (δC151.0),C-10′ (δC21.1),and C-5′ (δC47.1).The linkage of DIAP core and monoterpenoid moiety between C-1′ and C-3 was evidenced by HMBC correlations from H-1′ (δH3.24) toC-2 (δC191.0),C-3 (δC111.1),and C-4 (δC179.4) (Fig.2).Finally,thesec-butyl group only can be attached at C-1.

    Table 1 The 13C (150 MHz) NMR data of compounds 1-5 (δin ppm)

    The relative configuration of monoterpenoid moiety was determined by detailed interpretation of the ROESY spectrum.The NOE correlations of H-5′/H-1′ and H-1′/Me-7′ indicated that H-5′,H-1′ and Me-7′ were on the same side.However,due to the rotation of carbon-carbon single bond (C-3/C-1′) between DIAP core and monoterpenoid,determination of the configuration of C-5 is still challenging.For instance,an analogue of 1 (hyperhenone E,8),has also been reported with the configuration of C-5 undefined [12].In this study,hyperhenone E,as well as its crystals,was fortunately obtained,which unambiguously determined absolute configurations of 8 as 5S,1′R,2′R,5′S(Fig.3).Furthermore,the absolute configurations of C-5,C-1′,C-2′ and C-5′ in 1 were also determined to be the same with those of 8 via their well-matched ECD curves (Fig.4).

    Hyperhenol B (2) was obtained as yellow oil.A molecular formula of C33H42O5,was deduced by its13C NMR and HRESIMS (m/z519.3106 [M+H]+,calcd.C33H43O5519.3105).The1H and13C NMR spectra of 2 and hyperhenone F are closely similar to each other [12].Comparative analyses of their NMR data revealed that the isopropyl in hyperhenone F was replaced by a phenyl,which was supported by the HMBC correlations from H-9/H-13 (δH7.43) to C-7 (δC195.5) and C-8 (δC139.2) in 2 (Fig.2).Because of the rigidity of the bicyclic skeleton,cyclohexane moiety tended to form boat conformation.Hence,the ROESY correlations of H-1′/H-3′ (δH1.96),H-4′/H-6′ (δH2.10),and H-6′/H-1′ showed the same orientations of H-1′ and Me-7′ (Fig.5).

    Hyperhenol C (3) exhibited a molecular formula of C26H38O5,as assigned by HRESIMS (m/z429.2653 [M-H]-,calcd.C26H37O5,429.2646).The NMR spectra of 3 showed a close resemblance to those of hyperhenone F except that the signals for the isoprenyl at C-5 in hyperhenone F was replaced by a methyl in 3 [12],which can be further confirmed by the HMBC correlations from Me-19 (δH1.35) to C-5 (δC54.6),C-4 (δC177.4),C-6 (δC198.4) and C-14 (δC38.8).The similar NOE correlations of H-1′/H-3′ (δH1.70),H-3′/H-4′ (δH2.09),H-4′/H-6′ (δH1.61) and H-6′/H-1′ showed that relative configurations were the same as those of 2 (Fig.5).In the absence of sufficient evidence,configuration of C-5 could not be determined.

    Hyperhenol D (4) was obtained as yellow oil.The molecular formula was established as C27H38O4based on its HRESIMS data (m/z427.2855 [M+H]+,calcd.C27H39O4427.2843),implying 9 indices of hydrogen deficiency.The characteristic information for a DIAPs core was clearly observed in the13C NMR spectra (δC106.5,C-1;δC189.2,C-2;δC103.3,C-3;δC170.6 C-4;δC52.4 C-5;δC196.4 C-6).A comparison of the 1D NMR data of 4 with those of chinesin I suggested that they shared closely similar plane structures [8].The molecular formulas (C27H40O4for chinesin I;C27H38O4for 4) revealed that 4 possessed one more degree of unsaturation [8],which could derived by the loss of H2O between hydroxyls of monoterpenoid and DIAPs core of chinesin I to afford 4.The ether linkage of C-4 and C-3′ was evidenced by indices of hydrogen deficiency,the downfield chemical shift of C-3′ (δC86.8) and the ROESY correlation of Me-7′/Me-17.The relative configurations of C-2′,C-3′,and C-6′ were elucidated by key ROESY correlations of Me-7′/H-2′,Me-7′/H-6′,and H-2′/H-6′.Unfortunately,the configuration of C-5 also could not be determined since the absence of sufficient evidence.

    Hyperhenol E (5) was obtained as yellow oil,and its HRESIMS spectrum (m/z501.3008 [M+H]+,calcd.C33H41O4501.2999) showed a molecular formula of C33H40O4.The1H NMR data of 5 (Table 2) exhibited a monosubstituted benzene (δHH 7.30,3H;7.38,2H),two isoprenyl (δH4.75,t,J= 7.2 Hz;δH4.81,t,J= 7.2 Hz).The NMR spectra of 5 showed a close resemblance to those of 4 except for the replacements of thesec-butyl group at C-7 and the methyl at C-5 in 4 by a phenyl and an isoprenyl in 5,respectively.This conclusion was verified via the 1 H-1H COSY cross peak of H2-19/H-20 combined with the HMBC correlations of H2-19 (δH2.57 and 2.38) with C-4 (δC171.2)/C-5 (δC57.0)/C-6 and H-9 (δH7.30)/H-13 (δH7.30) with C-7 (δC195.2)/C-8 (δC108.2).In the ROESY spectrum,the obvious NOE correlation between Me-7′ and H-2′ can also be found as that in 4,but the diagnostic signals of H-2′/H-6′ and Me-7′/H-6′ in 4 were replaced by the H-2′/Me-9′and H-2′/H-10 (δH4.62),which indicated that the orientation of H-6′ was different with that of Me-7′/H-2′.

    In the searching for their anticancer properties,compounds 1 and 6-8 were found to effectively inhibit cell growth in HeLa,A549,and MDAMB-231 cell lines (Table 3).Of which 6 and 7 could significant inhibit cancer cells growth with the IC50up to 0.07 and 0.09μM,respectively.Both the two compounds could also obviously increase mitochondrial fission and further activated the caspase-3,caspase-9,and increased PARP cleavage in HeLa cells (Fig.6 a,c).Treatment with 6 and 7 also increased the percentage of cells in G0/G1 phase and decreased in G2/M phase (Fig.6 b).Moreover,western blot results indicated that these two compounds efficiently suppressed the expression of cyclin D1 and Cdk 6 in HeLa cells,suggesting 6 and 7 induced cell cycle arrest.(Fig.6 c).Taken together,these results demonstrated that these compounds inhibited cell growth through inducing apoptosis and cell cycle arrest.

    Table 2 The 1H (600 MHz) NMR data of compounds 1-5 (δ in ppm and J in Hz)

    Table 3 Cytotoxicity of the isolates on three cancer cell lines with IC 50 values (μ M)

    Autophagy is widely implicated in human diseases,offering a potential target for drug discovery [15].Then,the effects of 6 and 7 on autophagy were assessed.GFP-LC3 puncta were significantly increased upon these compounds treatment (Fig.7 a).Western blot analysis showed that 6 and 7 inhibited autophagy,as assessed by the increased expression of LC3 II and P62 (Fig.7 b).Similar to CCCP (mitophagy inducer) treatment,6 and 7 also increased the YFP-Parkin puncta formation (Fig.7 c).These data suggested that the compounds could induce PINK1/Parkinmediated mitophagy.In addition,the antimetastasis effects of these compounds were also studied.As shown in Fig.8,wound healing and migration assay suggested 6 and 7 could efficiently suppress cell metastasis consistent with sorafenib (SFB) treated,which also decreased the expression of vimentin,p-AKT and cofilin (Fig.8).Together,these results indicated that these isolates could suppress lung cancer A549 cells metastasis in vitro and may affect tumor metastasis targeted by Akt and cofilin signaling pathways.

    In summary,five new and seven known DIAPs derivatives were isolated fromH.henryi.Structurally,these compounds were characterized by a dearomatized isoprenylated acylphloroglucinol core combined a functionalized cyclohexane or cyclopentane skeleton.It is worthy to note that several isolates exhibited significant cytotoxic activities in vitro.In addition,they also possess inducing autophagy,mitophagy,and anti-metastasis activities,which provided sufficient information on the potential application of these compounds on future drug development.Therefore,the finding of these DIAPs derivatives with potential antitumor properties may provide a new clue for the discovery of antitumor lead compounds,which should attract great interest from pharmacological and total synthetic communities.

    3 Experimental

    3.1 General Experimental Procedures

    Optical rotations were measured on a Jasco P-1020 polarimeter.UV spectra were detected on a Shmadzu UV-2401PC spectrometer.IR spectra were determined on a Bruker FT-IR Tensor-27 infrared spectrophotometer with KBr disks.All 1D and 2D NMR spectra were recorded on Bruker DRX-600 spectrometers using TMS as an internal standard.Unless otherwise specified,chemical shifts (δ) were expressed in ppm with reference to the solvent signals.ESIMS and HRESIMS analysis were carried out on Waters Xevo TQS and Aglient G6230 TOF mass spectrometers,respectively.Semi-preparative HPLC was performed on an Aglient 1100 HPLC with a ZORBAX SB-C18 (9.4 × 250 mm) column and a Waters 2695 HPLC with a CHIRALCEL OJ-RH column [4.6 × 150 mm cellulose tris-(4-methylbenzoate) coated on 5μM silica-gel].Silica gel (100-200,200-300 mesh,Qingdao Marine Chemical Co.,Ltd.,People’s Republic of China),and MCI gel (75-150μM,Mitsubishi Chemical Corporation,Tokyo,Japan) were used for column chromatography.Fractions were monitored by TLC (GF 254,Qingdao Marine Chemical Co.,Ltd.),and spots were visualized by heating silica gel plates sprayed with 10% H2SO4in EtOH.

    3.2 PlantMaterial

    The plants ofHypericum henryiwere collected in Dongchuan prefecture (Yunnan Province,People’s Republic of China) in September 2018.The plant was identified by ZHANG Yong-Zeng.A voucher specimen (No.2018H01) was deposited in Kunming Institute of Botany.

    3.3 Extractionand Isolation

    The sample (20.0 kg) was extracted with MeOH at room temperature and filtered,and the solvent was evaporated in vacuo.The crude extract was subjected to silica gel column chromatography eluted with CHCl3to afford a fraction (695.2 g).This fraction was separated over a MCI-gel column (MeOH-H2O from 7:3 to 10:0) to produce five fractions (Fr.A-E).Fr.A (262.3 g) was chromatographed on a silica gel column,eluted with petroleum ether-acetone (100:1 to 0:1),to yield five fractions (Fr.A1-A5).Fr.A2 (37.7 g) was separated over a RP-18 silica column (MeOH-H2O from 85:15 to 100:0) and obtained eleven fractions (Fr.A2-1-A2-11).Fr.A2-5 was purified by preparative TLC and semipreparative HPLC to afford 9 (12.3 mg),10 (11.5 mg) and 2 (10.8 mg).Fr.B (100 g) was chromatographed on a silica gel column,eluted with petroleum ether-ethyl acetate (50:1 to 0:1) to yield ten fractions (Fr.B1-B10).Fr.B3 (11.0 g) was purified by chromatograph on a silica gel column and preparative HPLC (MeOH-H2O,95:5) to afford 11 (25.9 mg) and 12 (4.7 mg).Fr.B4 (755.9 mg) and B6 (1.2 g) were further purified by prearative HPLC (MeOH-H2O,90:10) to afford 1 (15.1 mg),3 (13.3 mg),6 (26.5 mg) and 7 (12.0 mg).Fr.B2 (18.0 g) was separated over a RP-18 silica column (MeOH-H2O from 85:15 to 100:0),and obtained ten fractions (Fr.B2-1-B2-10) Compounds 4 (7.8 mg),5 (1.3 mg) and 8 (3.2 mg) were obtained from Fr.B2-2 by preparative HPLC and semipreparative HPLC.

    3.3.1 Hyperhenol(1)

    Yellow oil;[α]+250.8 (c0.35,MeOH);UV (MeOH)λmax(logε) 202 (4.14),225 (4.10),346 (4.02) nm;IR (KBr)νmax3417,2968,2932,1636,1520,1460,1337,1304,1233 cm-1;1H and13C NMR data,see Table s 1 and 2;ESIMSm/z443 [M-H]-;HRESIMSm/z443.2803 [M-H]-(calcd for C27H39O5,433.2803).

    3.3.2 Hyperhenol(2)

    Yellow oil;[α]+53.8 (c0.24,MeOH);UV (MeOH)λmax(logε) 203 (4.40),227 (4.20),343 (3.90) nm;IR (KBr)νmax3427,2969,2927,1623,1505,1448,1257,1202 cm-1;1H and13C NMR data,see Table s 1 and 2;ESIMSm/z519 [M+H]+;HRESIMSm/z[M+H]+;519.3106 (calcd for C33H43O5,519.3105).

    3.3.3 Hyperhenol(3)

    Yellow oil;[α]+199.0 (c0.31,MeOH);UV (MeOH)λmax(logε) 202 (4.08),228 (3.98),239 (3.97),281 (3.83),326 (3.91) nm;IR (KBr)νmax3431,2970,2932,2878,1651,1522,1470,1437 cm-1;1H and13C NMR data,see Table s 1 and 2;ESIMSm/z429 [M-H]-;HRESIMSm/z429.2653 [M-H]-;(calcd for C26H37O5,429.2646).

    3.3.4 Hyperhenol(4)

    Yellow oil;[α]+5.3 (c0.26,MeOH);UV (MeOH)λmax(logε) 320 (2.14),275 (2.30),241 (2.42),197 (2.50),310 (2.17),269 (2.30),215 (2.34) nm;IR (KBr)νmax3422,2970,2935,2876,1657,1618,1530,1462,1379 cm-1;1H and13C NMR data,see Table s 1 and 2;ESIMSm/z427 [M+H]+;HRESIMSm/z427.2855 [M+H]+(calcd for C27H38O4,426.2843).

    3.3.5 Hyperhenol(5)

    Yellow oil;[α]-45.0 (c0.12,MeOH);UV (MeOH)λmax(logε) 354(2.40),287(2.17),231(2.53),197(2.94),300(2.15),276(2.16),228(2.53),193(2.81) nm;IR (KBr)νmax3429,2967,2926,2854,1727,1659,1622,1587,1512,1448 cm-1;1H and13C NMR data,see Table s 1 and 2;ESIMSm/z501 [M+H]+;HRESIMSm/z501.3008 [M+H]+(calcd for C33H40O4,501.2999).

    3.3.6 X-ray Crystallographic Analysis of Hyperhenone E(8)

    C26H38O5,M= 430.56,a= 22.6496(4) ?,b= 9.4550(2) ?,c= 23.8898(4) ?,α= 90 °,β = 94.6410(10)°,γ = 90 °,V= 5099.27(16) ?3,T= 100(2) K,space groupP21,Z= 8,μ(CuKα) = 0.609 mm-1,56,500 reflections measured,17,671 independent reflections (Rint= 0.0269).The finalR 1values were 0.0363 (I> 2σ(I)).The finalwR(F2) values were 0.0966 (I> 2σ(I)).The finalR1values were 0.0366 (all data).The finalwR(F2) values were 0.0971 (all data).The goodness of fit onF2was 1.056.Flack parameter = 0.02(2).Crystallographic data for the structure of 8 have been deposited in the Cambridge Crystallographic Data Centre (deposition number: CDCC 1,941,889).

    3.3.7 CellCulture

    HeLa cells,GFP-LC3 HeLa cells,YFP-Parkin HeLa cells and A549 cells were maintained in DMEM (Gibco,D11527) supplemented with 10% fetal bovine serum,FBS (HyClone,SV30160.03) and 100 U/mL penicillin-streptomycin (Gibco/Invitrogen,15,140-122) in a humidified atmosphere containing 5% CO2at 37 °C.

    3.3.7.1 MTT Assay and Determination of IC50The cells were seeded in a 96-well tissue culture plate at a predetermined density in 100μL of complete medium,attached overnight,and then treated with a series of concentrations of compound for 72 h.At the end of the incubation period,10μL MTT solution was added into each well of a 96-well plate for 4 h at 37℃.After the medium was removed,100μL DMSO was added to dissolve the purple crystals.After shaking for 5 min,the optical densities at 490 nm were measured using a Microplate Reader.

    3.3.7.2 MitoTracker Red StainingHeLa cells were seeded on coverslips and treated with compounds 6 and 7 for 48 h.We then removed the media from the dish and added staining solution containing MitoTracker red (100 nM) incubation 30 min at 37 °C.The cells were fixed with 4% PFA in PBS for 15 min and observed using a fluorescence microscope.

    3.3.7.3 Flow Cytometry AnalysisHeLa cells were treated with various concentrations of 7 and 8 for 48 h.Subsequently,the cells were harvested,washed with PBS and fixed with 70% alcohol at 4 °C overnight.Then cells were washed with PBS and stained with 20μg/mL PI/RNase staining buffer for 30 min and analyzed using FACSCalibur flow cytometer (Becton Dickinson,USA).

    3.3.8 Immunofluorescence Microscopy

    The GFP-LC3 or YFP-Parkin HeLa cells were treated with compounds for the indicated time point,and then the cells were fixed with 4% PFA in PBS for 15 min at room temperature.The cells were observed under a fluorescence microscope (Olympus,IX83).

    3.3.9 Wound Healing Assay

    Wound healing was used to evaluate cell motility as our previous study [16].Briefly,A549 cells were seeded into a 24-well culture plate.When the cells grew to 90% confluence,then a scratch was gently created through the cell monolayer by sterile 10μL pipette tips and loose cells were washed away.The cell migration was observed and imaged under an IX83 microscope for each condition and timepoint (0,48 h).(Olympus,Tokyo,Japan).

    3.3.10 Cell Migration Assay

    Cell migration assay were performed as described previously [17].In brief,cell migration was estimated using transwell chambers (Millicell,Germany) with a pore size of 8μM.For the migration assay,4.5 × 104 A549 cells resuspended in 100μL serum-free medium were seeded in the upper chamber with serum-containing medium in the lower chamber of 24-well transwell plates (BD Biosciences,San Jose,CA).After 24 h,the experiment was terminated by wiping the cells from the wells with a cotton swab and fixed and stained with 0.05% crystal violet for 20 min,scored under a light microscope in five random fields.

    3.3.11 Western Blotting Analysis

    Cells were harvested and lysed in a lysis buffer (62.5 mM Tris at pH 6.8,20% glycerol,2% SDS,phosphatase inhibitor),proteins were separated on SDS polyacrylamide gels and transferred to PVDF membranes (Millipore,Billerica,MA,USA).The membranes were blocked with 5% nonfat milk,and immunoblotted with primary antibodies at 4 °C overnight.After washed three times with TBST,membranes were incubated for 1 h with appropriate secondary antibodies at room temperature.The follow antibodies were used in our experiments: Caspase-3 (CST,9662),Cleaved-caspase-3 (CST,9661),Caspase-9 (CST,9502),PARP (CST,9542),LC3 (Sigma,L7543),P62 (BML,PM045),PINK1 (CST,6946),Tim23 (BD,611222),Tom20 (sc-17764),E-cadherin (CST,3195),Vimentin (CST,5741),pAKT (Ser473,CST,9171),AKT (CST,9272),Cofilin (CST,5175) and GAPDH (CST,5174).GAPDH was used as the loading control.Membranes were visualized with Image Quant LAS 4000 (General Electric Company).

    AcknowledgementsThe work was financially supported by the NSFC-Joint Foundation of Yunnan Province (U1902213),Chongqing Municipal Natural Science Foundation (cstc2018jcyjAX0388),the Second Tibetan Plateau Scientific Expedition and Research (STEP) program (2019QZKK0502),Southeast Asia Biodiversity Research Institute,CAS (2017CASSEABRIQG003),State Key Laboratory of Phytochemistry and Plant Resources in West China (P2017-KF02 and P2019-ZZ05),and the Natural Sciences Foundation of Yunnan Province (2019FA003).

    Compliance with Ethical Standards

    ConflictofinterestAll authors declare no conflict of interest.

    OpenAccessThis article is licensed under a Creative Commons Attribution 4.0 International License,which permits use,sharing,adaptation,distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source,provide a link to the Creative Commons licence,and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence,unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,you will need to obtain permission directly from the copyright holder.To view a copy of this licence,visit http://creat iveco mmons.org/licen ses/by/4.0/.

    在线精品无人区一区二区三| 美女xxoo啪啪120秒动态图| 最近手机中文字幕大全| 一级黄片播放器| 国产高清三级在线| kizo精华| 赤兔流量卡办理| 少妇被粗大的猛进出69影院 | 51国产日韩欧美| 大片免费播放器 马上看| 黄色怎么调成土黄色| 日本av手机在线免费观看| 成人影院久久| 久久ye,这里只有精品| 亚洲欧洲精品一区二区精品久久久 | 五月玫瑰六月丁香| 亚洲综合精品二区| 91成人精品电影| 亚洲精品美女久久久久99蜜臀 | 韩国精品一区二区三区 | 国产精品久久久久成人av| 韩国精品一区二区三区 | 中文乱码字字幕精品一区二区三区| 97在线人人人人妻| 大香蕉久久网| 人人妻人人澡人人看| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 色5月婷婷丁香| 日韩av不卡免费在线播放| 黑人高潮一二区| 99九九在线精品视频| 中文字幕亚洲精品专区| 成人亚洲精品一区在线观看| 欧美日韩精品成人综合77777| 国产极品天堂在线| 久久精品久久久久久久性| 少妇猛男粗大的猛烈进出视频| 精品卡一卡二卡四卡免费| 一级黄片播放器| 国产精品久久久久久精品古装| 九九爱精品视频在线观看| 午夜精品国产一区二区电影| 韩国高清视频一区二区三区| 国产亚洲一区二区精品| 飞空精品影院首页| 精品亚洲成a人片在线观看| 99re6热这里在线精品视频| av在线观看视频网站免费| 国产片内射在线| av女优亚洲男人天堂| 免费少妇av软件| 天堂中文最新版在线下载| 色吧在线观看| 国产精品久久久久成人av| tube8黄色片| 免费观看av网站的网址| 亚洲内射少妇av| 亚洲精品日本国产第一区| 在线观看一区二区三区激情| 一级毛片黄色毛片免费观看视频| 一级片'在线观看视频| 99久国产av精品国产电影| 国产色爽女视频免费观看| 一级毛片黄色毛片免费观看视频| 夫妻午夜视频| 国产无遮挡羞羞视频在线观看| 另类亚洲欧美激情| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 国产成人欧美| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到 | 亚洲激情五月婷婷啪啪| 最近中文字幕高清免费大全6| 蜜桃国产av成人99| 免费高清在线观看日韩| 国产一区亚洲一区在线观看| 日韩一区二区三区影片| av有码第一页| 中文精品一卡2卡3卡4更新| 成年人午夜在线观看视频| 男人添女人高潮全过程视频| 免费高清在线观看视频在线观看| 美女福利国产在线| 亚洲欧美色中文字幕在线| 亚洲欧美精品自产自拍| 少妇的逼好多水| 亚洲人与动物交配视频| 国产在线视频一区二区| 人人妻人人澡人人看| 9191精品国产免费久久| 久久精品熟女亚洲av麻豆精品| 永久免费av网站大全| 国产精品三级大全| 晚上一个人看的免费电影| 精品少妇黑人巨大在线播放| av免费在线看不卡| 国产精品一区www在线观看| 一区二区日韩欧美中文字幕 | 中文字幕精品免费在线观看视频 | 两个人看的免费小视频| 伊人久久国产一区二区| 成年美女黄网站色视频大全免费| 日本wwww免费看| av电影中文网址| 国产深夜福利视频在线观看| 中国美白少妇内射xxxbb| 18在线观看网站| 国产一区二区在线观看av| 国产视频首页在线观看| 2021少妇久久久久久久久久久| 精品国产一区二区三区四区第35| 1024视频免费在线观看| 日日摸夜夜添夜夜爱| 国产一级毛片在线| 免费女性裸体啪啪无遮挡网站| 亚洲综合色惰| 丰满迷人的少妇在线观看| 色哟哟·www| 日本黄色日本黄色录像| av有码第一页| 免费女性裸体啪啪无遮挡网站| 只有这里有精品99| 中国三级夫妇交换| 青春草亚洲视频在线观看| 亚洲av免费高清在线观看| 另类精品久久| 日韩电影二区| 精品人妻熟女毛片av久久网站| 在线看a的网站| 国产 一区精品| 国产亚洲午夜精品一区二区久久| 好男人视频免费观看在线| 在线免费观看不下载黄p国产| 丝袜喷水一区| 久久久久久久久久久免费av| 国产一区二区在线观看日韩| 国产亚洲最大av| 一区二区三区乱码不卡18| 成人综合一区亚洲| av免费观看日本| 成人无遮挡网站| 亚洲国产毛片av蜜桃av| 两性夫妻黄色片 | av在线老鸭窝| 黄片无遮挡物在线观看| 亚洲四区av| 国产午夜精品一二区理论片| 亚洲国产av影院在线观看| 2021少妇久久久久久久久久久| 少妇的逼水好多| av免费观看日本| 日韩免费高清中文字幕av| 精品一品国产午夜福利视频| 精品国产乱码久久久久久小说| 人妻人人澡人人爽人人| 两个人免费观看高清视频| 亚洲熟女精品中文字幕| 女性被躁到高潮视频| 亚洲精华国产精华液的使用体验| 国产成人免费观看mmmm| 亚洲欧美一区二区三区国产| www.av在线官网国产| 成人国产av品久久久| 免费av中文字幕在线| www.熟女人妻精品国产 | 国产一区二区在线观看日韩| 亚洲美女视频黄频| 亚洲,一卡二卡三卡| 9热在线视频观看99| 久久久a久久爽久久v久久| 伦精品一区二区三区| 亚洲国产精品一区二区三区在线| 又大又黄又爽视频免费| 永久免费av网站大全| 乱码一卡2卡4卡精品| 久热久热在线精品观看| av在线app专区| 国产av一区二区精品久久| 女性生殖器流出的白浆| 日本av免费视频播放| 狂野欧美激情性xxxx在线观看| 亚洲四区av| 老女人水多毛片| 波野结衣二区三区在线| 大香蕉久久成人网| 少妇的逼好多水| 中文字幕精品免费在线观看视频 | 久久久久久久久久久久大奶| 爱豆传媒免费全集在线观看| 亚洲婷婷狠狠爱综合网| 国产乱人偷精品视频| 色5月婷婷丁香| 精品久久久久久电影网| 建设人人有责人人尽责人人享有的| 国产免费现黄频在线看| 久久ye,这里只有精品| av线在线观看网站| 国产精品一国产av| 水蜜桃什么品种好| 你懂的网址亚洲精品在线观看| 青春草亚洲视频在线观看| av黄色大香蕉| 少妇被粗大猛烈的视频| 国产精品一区www在线观看| 国产成人精品福利久久| 黑人猛操日本美女一级片| 18禁动态无遮挡网站| 纵有疾风起免费观看全集完整版| 久久精品国产综合久久久 | 中文字幕av电影在线播放| 亚洲欧美色中文字幕在线| 中文欧美无线码| 国产亚洲精品久久久com| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日撸夜夜添| 欧美日韩亚洲高清精品| 蜜臀久久99精品久久宅男| 欧美日韩国产mv在线观看视频| 欧美变态另类bdsm刘玥| 国产男人的电影天堂91| 亚洲少妇的诱惑av| 26uuu在线亚洲综合色| a级毛片黄视频| 伦理电影大哥的女人| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 人成视频在线观看免费观看| 精品久久久精品久久久| 免费大片黄手机在线观看| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品古装| 久久99一区二区三区| 欧美 日韩 精品 国产| 看免费成人av毛片| 欧美另类一区| 97在线人人人人妻| 成人国产麻豆网| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线| 日本爱情动作片www.在线观看| 免费少妇av软件| 欧美bdsm另类| 成人二区视频| 欧美日韩成人在线一区二区| 人妻少妇偷人精品九色| 中文字幕人妻丝袜制服| 黄色毛片三级朝国网站| 亚洲国产看品久久| 国产精品 国内视频| 男女边摸边吃奶| 亚洲三级黄色毛片| 国产一区二区三区综合在线观看 | 黄色怎么调成土黄色| 国产精品蜜桃在线观看| 亚洲国产日韩一区二区| 又大又黄又爽视频免费| 久久 成人 亚洲| 国产乱人偷精品视频| 国产av码专区亚洲av| 午夜激情久久久久久久| 日本欧美国产在线视频| 精品一品国产午夜福利视频| 永久免费av网站大全| 男女国产视频网站| 97精品久久久久久久久久精品| 宅男免费午夜| 国产亚洲欧美精品永久| 国产精品麻豆人妻色哟哟久久| 日本午夜av视频| 51国产日韩欧美| av.在线天堂| 久久国产亚洲av麻豆专区| 蜜桃在线观看..| 午夜激情久久久久久久| 日本欧美视频一区| 黑人高潮一二区| 成年av动漫网址| 欧美日韩成人在线一区二区| 最近的中文字幕免费完整| 一级毛片黄色毛片免费观看视频| 国产免费视频播放在线视频| 国产欧美亚洲国产| av在线播放精品| 亚洲欧美成人精品一区二区| 黑人猛操日本美女一级片| 天天影视国产精品| 国产一区亚洲一区在线观看| 久久久久久久亚洲中文字幕| 我的女老师完整版在线观看| 亚洲图色成人| 免费播放大片免费观看视频在线观看| 亚洲精品456在线播放app| 午夜日本视频在线| 国产成人aa在线观看| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 日本免费在线观看一区| 国产在视频线精品| 中文字幕另类日韩欧美亚洲嫩草| 最后的刺客免费高清国语| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 捣出白浆h1v1| 亚洲,一卡二卡三卡| 人妻一区二区av| 精品一区在线观看国产| 免费看不卡的av| 国产成人精品婷婷| 国产日韩欧美在线精品| 中文精品一卡2卡3卡4更新| 涩涩av久久男人的天堂| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品456在线播放app| 蜜臀久久99精品久久宅男| 欧美精品亚洲一区二区| 一级,二级,三级黄色视频| 成年人午夜在线观看视频| 日本免费在线观看一区| 亚洲四区av| 国产有黄有色有爽视频| 一本久久精品| 在线天堂最新版资源| 一二三四中文在线观看免费高清| 色5月婷婷丁香| 搡老乐熟女国产| 午夜视频国产福利| 亚洲欧洲精品一区二区精品久久久 | 日本色播在线视频| 高清黄色对白视频在线免费看| 久久久久精品久久久久真实原创| 精品国产国语对白av| 赤兔流量卡办理| 国产一区二区三区av在线| 久久午夜综合久久蜜桃| 欧美成人午夜免费资源| 九九在线视频观看精品| 色婷婷av一区二区三区视频| 最后的刺客免费高清国语| 国产av一区二区精品久久| 欧美日韩精品成人综合77777| 又黄又粗又硬又大视频| 免费看不卡的av| 色吧在线观看| 丰满饥渴人妻一区二区三| 最近中文字幕2019免费版| 人人澡人人妻人| 亚洲av福利一区| 一区在线观看完整版| 亚洲精品第二区| 老司机影院毛片| 天堂8中文在线网| 国产色婷婷99| 国产熟女午夜一区二区三区| av不卡在线播放| 国产成人一区二区在线| 大码成人一级视频| 纯流量卡能插随身wifi吗| 精品人妻偷拍中文字幕| 夜夜骑夜夜射夜夜干| 国产精品人妻久久久久久| 一本—道久久a久久精品蜜桃钙片| 国产精品蜜桃在线观看| 亚洲精品自拍成人| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放| 一级a做视频免费观看| 亚洲国产精品国产精品| 男的添女的下面高潮视频| 9色porny在线观看| 女人被躁到高潮嗷嗷叫费观| 性高湖久久久久久久久免费观看| 日本猛色少妇xxxxx猛交久久| 下体分泌物呈黄色| 亚洲国产日韩一区二区| 日本wwww免费看| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 日本av手机在线免费观看| 国产淫语在线视频| 美女主播在线视频| 9热在线视频观看99| 国产成人精品在线电影| 青春草亚洲视频在线观看| 欧美精品高潮呻吟av久久| 中文字幕人妻熟女乱码| 欧美xxxx性猛交bbbb| 亚洲成人av在线免费| 欧美日韩视频高清一区二区三区二| 日韩视频在线欧美| 人人妻人人澡人人看| 秋霞在线观看毛片| 全区人妻精品视频| 国产av国产精品国产| 黑人高潮一二区| 久久久精品区二区三区| 一级毛片黄色毛片免费观看视频| 女性被躁到高潮视频| 亚洲av欧美aⅴ国产| 久久久久国产精品人妻一区二区| av在线观看视频网站免费| 免费看av在线观看网站| 日本色播在线视频| 精品亚洲乱码少妇综合久久| 中文精品一卡2卡3卡4更新| 成年女人在线观看亚洲视频| 中国国产av一级| 欧美+日韩+精品| 日日爽夜夜爽网站| 国产有黄有色有爽视频| 亚洲精品av麻豆狂野| 国产精品不卡视频一区二区| 夫妻性生交免费视频一级片| 精品酒店卫生间| 中文精品一卡2卡3卡4更新| 妹子高潮喷水视频| 99精国产麻豆久久婷婷| 观看美女的网站| 国产午夜精品一二区理论片| 精品久久蜜臀av无| 99久久人妻综合| 一区在线观看完整版| 在线免费观看不下载黄p国产| 制服丝袜香蕉在线| 好男人视频免费观看在线| 久久久久久久久久成人| 九色成人免费人妻av| 高清在线视频一区二区三区| 国产精品一国产av| 秋霞在线观看毛片| 精品福利永久在线观看| 美国免费a级毛片| 国产探花极品一区二区| 国产亚洲午夜精品一区二区久久| 国产成人一区二区在线| 亚洲婷婷狠狠爱综合网| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 日韩精品有码人妻一区| 免费少妇av软件| 国产片内射在线| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 大香蕉97超碰在线| 在现免费观看毛片| h视频一区二区三区| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区| 色网站视频免费| 黄色怎么调成土黄色| 热99久久久久精品小说推荐| 啦啦啦在线观看免费高清www| 亚洲少妇的诱惑av| 日韩不卡一区二区三区视频在线| 欧美成人精品欧美一级黄| 久久99精品国语久久久| 在线天堂中文资源库| 国产国拍精品亚洲av在线观看| 久久人人97超碰香蕉20202| 超色免费av| 熟女人妻精品中文字幕| 色网站视频免费| 亚洲精品av麻豆狂野| 久久久精品免费免费高清| 五月玫瑰六月丁香| 国产日韩欧美亚洲二区| 少妇人妻久久综合中文| 久久精品aⅴ一区二区三区四区 | 欧美性感艳星| 欧美最新免费一区二区三区| 国产精品一区www在线观看| 欧美精品一区二区免费开放| 97在线人人人人妻| 丰满乱子伦码专区| 看免费成人av毛片| 国产精品嫩草影院av在线观看| 日产精品乱码卡一卡2卡三| 中文字幕免费在线视频6| 18禁裸乳无遮挡动漫免费视频| 日韩一区二区视频免费看| 精品少妇久久久久久888优播| 色网站视频免费| 午夜激情av网站| 黄片无遮挡物在线观看| 精品亚洲成国产av| 久久ye,这里只有精品| 日韩熟女老妇一区二区性免费视频| 丰满少妇做爰视频| 亚洲av中文av极速乱| 中文字幕免费在线视频6| xxx大片免费视频| 亚洲性久久影院| 久久精品国产综合久久久 | 久久久久久久大尺度免费视频| 亚洲综合色惰| 国产不卡av网站在线观看| 久久韩国三级中文字幕| av网站免费在线观看视频| 丝袜在线中文字幕| 大码成人一级视频| 99re6热这里在线精品视频| av电影中文网址| 这个男人来自地球电影免费观看 | 国产精品一二三区在线看| 日韩制服骚丝袜av| 少妇被粗大的猛进出69影院 | 午夜福利,免费看| 精品国产国语对白av| 久久久亚洲精品成人影院| 晚上一个人看的免费电影| 国产精品人妻久久久影院| 久久av网站| videossex国产| 亚洲精品自拍成人| 久久精品国产鲁丝片午夜精品| 免费av中文字幕在线| 女人久久www免费人成看片| 在现免费观看毛片| av免费观看日本| 国产免费又黄又爽又色| 最近中文字幕高清免费大全6| 永久网站在线| 黄色 视频免费看| 精品午夜福利在线看| 人妻一区二区av| 日韩免费高清中文字幕av| 国产精品偷伦视频观看了| 国产亚洲av片在线观看秒播厂| 制服人妻中文乱码| 香蕉丝袜av| 人妻系列 视频| 亚洲av.av天堂| 久久亚洲国产成人精品v| 精品国产国语对白av| 这个男人来自地球电影免费观看 | 亚洲国产欧美日韩在线播放| 欧美精品国产亚洲| 国产成人精品福利久久| 国产成人aa在线观看| 草草在线视频免费看| 欧美变态另类bdsm刘玥| 丰满少妇做爰视频| av播播在线观看一区| 欧美精品高潮呻吟av久久| 黄色怎么调成土黄色| 国产福利在线免费观看视频| 在线亚洲精品国产二区图片欧美| 国产精品三级大全| 亚洲av电影在线进入| 久久人人爽人人片av| 女人精品久久久久毛片| 高清视频免费观看一区二区| 国产精品熟女久久久久浪| 99香蕉大伊视频| 日韩一区二区视频免费看| 精品少妇内射三级| freevideosex欧美| 九九爱精品视频在线观看| 亚洲精品国产色婷婷电影| 99视频精品全部免费 在线| 激情视频va一区二区三区| 国产精品人妻久久久影院| 在线天堂中文资源库| 国产精品一区www在线观看| 亚洲美女视频黄频| 欧美老熟妇乱子伦牲交| 国产在视频线精品| 69精品国产乱码久久久| 免费人成在线观看视频色| 亚洲精品av麻豆狂野| 一级,二级,三级黄色视频| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| 亚洲国产精品一区二区三区在线| 久久久久久久国产电影| 男女高潮啪啪啪动态图| 大陆偷拍与自拍| 另类精品久久| 亚洲内射少妇av| 欧美最新免费一区二区三区| 久久精品久久久久久久性| 又粗又硬又长又爽又黄的视频| 性高湖久久久久久久久免费观看| 99热6这里只有精品| 中国三级夫妇交换| 看免费成人av毛片| 亚洲精品第二区| 色婷婷av一区二区三区视频| 高清视频免费观看一区二区| 曰老女人黄片| 香蕉国产在线看| 亚洲图色成人| 一边亲一边摸免费视频| 看十八女毛片水多多多| 亚洲精品成人av观看孕妇| 国产极品粉嫩免费观看在线| 少妇的逼水好多| 啦啦啦视频在线资源免费观看| 亚洲av中文av极速乱| 在线观看一区二区三区激情| 美女福利国产在线| 91国产中文字幕| 久久婷婷青草| 一区二区三区乱码不卡18| 69精品国产乱码久久久| 国产精品国产av在线观看| 亚洲av免费高清在线观看| 成人国产麻豆网| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久精品电影小说| 少妇人妻久久综合中文| 不卡视频在线观看欧美| 少妇人妻精品综合一区二区| av又黄又爽大尺度在线免费看|