溫久福 藍(lán)軍南,2 曹 明 周 慧 區(qū)又君 李加兒
鹽度對(duì)花鱸幼魚鰓、脾及肌肉組織結(jié)構(gòu)的影響*
溫久福1藍(lán)軍南1,2曹 明3周 慧1區(qū)又君1①李加兒1
(1. 中國(guó)水產(chǎn)科學(xué)研究院南海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部南海漁業(yè)資源開發(fā)利用重點(diǎn)實(shí)驗(yàn)室 廣州 510300;2. 上海海洋大學(xué) 水產(chǎn)種質(zhì)資源發(fā)掘與利用教育部重點(diǎn)實(shí)驗(yàn)室 水產(chǎn)科學(xué)國(guó)家級(jí)實(shí)驗(yàn)教學(xué)示范中心 海洋動(dòng)物系統(tǒng)分類與進(jìn)化上海高校重點(diǎn)實(shí)驗(yàn)室 上海 201306;3. 廣東省漁業(yè)種質(zhì)保護(hù)中心 廣州 511453)
為了探究不同鹽度對(duì)花鱸()幼魚組織結(jié)構(gòu)的影響,用組織學(xué)方法對(duì)不同鹽度條件下(0、10、15、20、30)花鱸幼魚的鰓、脾及肌肉組織結(jié)構(gòu)進(jìn)行研究。結(jié)果顯示,鹽度為0時(shí),花鱸幼魚鰓絲排列緊密,頂端膨大呈棒狀,鰓小片細(xì)胞飽滿,有少量泌氯細(xì)胞?;|幼魚鰓絲寬度隨鹽度的升高而縮小,鰓小片間距則逐漸增大,差異顯著(<0.05);鹽度為20時(shí),部分鰓小片變形脫落,鰓絲上的泌氯細(xì)胞明顯增多增大;鹽度為30時(shí),鰓絲寬度較大,出現(xiàn)斷裂脫落,鰓絲上細(xì)胞排列疏松,泌氯細(xì)胞明顯膨大,有溶解現(xiàn)象。脾臟在淡水條件下(鹽度為0),淋巴細(xì)胞數(shù)目較少,血細(xì)胞較多;在低鹽環(huán)境中(鹽度為10、15),淋巴細(xì)胞增大,數(shù)量增多,黑色素巨噬細(xì)胞中心數(shù)量增加;在高鹽度下(鹽度為30),脾細(xì)胞和部分淋巴細(xì)胞出現(xiàn)腫大、空泡化現(xiàn)象,細(xì)胞排列疏松。鹽度為0時(shí),花鱸幼魚肌纖維排列較為疏松,多角形或長(zhǎng)橢圓形,長(zhǎng)徑和短徑較大、密度較小;鹽度為15時(shí),肌纖維短徑變小、密度增大,與0、10鹽度組均差異顯著,鹽度為30時(shí),肌纖維長(zhǎng)徑增大、密度減??;隨著鹽度的增加,肌纖維長(zhǎng)徑和短徑均有先減小后增加的趨勢(shì),單位面積肌纖維數(shù)量則先增加后減小,差異顯著(<0.05)。結(jié)果表明,花鱸幼魚鰓、脾及肌肉組織結(jié)構(gòu)變化特征與其所處的環(huán)境鹽度有關(guān)。
鹽度;花鱸;鰓;脾臟;肌肉;組織結(jié)構(gòu)
實(shí)驗(yàn)用魚采自中國(guó)水產(chǎn)科學(xué)研究院南海水產(chǎn)研究所珠?;?,為淡水培育幼苗,暫養(yǎng)于藍(lán)色養(yǎng)殖箱中(55 cm×30 cm×42 cm),養(yǎng)殖用水為曝氣處理的自來(lái)水,鹽度為0,水溫為27℃~29℃,連續(xù)24 h充氣,每日定時(shí)投喂2次配合飼料,日換水量為總水量的1/3,暫養(yǎng)時(shí)間為7 d。暫養(yǎng)結(jié)束后,挑選體格健壯,規(guī)格相近[平均體長(zhǎng)為(4.01±0.27) cm]的個(gè)體進(jìn)行實(shí)驗(yàn)。
實(shí)驗(yàn)設(shè)5個(gè)實(shí)驗(yàn)組S0、S10、S15、S20和S30,對(duì)應(yīng)鹽度分別為0、10、15、20和30,其中,S0為對(duì)照組,每組設(shè)3個(gè)平行,每個(gè)實(shí)驗(yàn)組放幼魚50尾。實(shí)驗(yàn)用水為曝氣自來(lái)水與凈化處理的自然海水調(diào)配而成。實(shí)驗(yàn)開始前,鹽度每隔24 h提高5,用鹽度計(jì)進(jìn)行校準(zhǔn),誤差不超過(guò)0.5,達(dá)到相應(yīng)鹽度后開始實(shí)驗(yàn)。實(shí)驗(yàn)期間,充氣、水溫控制、換水量及投喂管理與暫養(yǎng)時(shí)相同。實(shí)驗(yàn)時(shí)間為30 d。
實(shí)驗(yàn)結(jié)束后,在各實(shí)驗(yàn)組隨機(jī)取樣,取幼魚右側(cè)鰓絲、脾臟及軀干部右側(cè)肌肉組織樣品,于4%多聚甲醛溶液中固定24 h。將固定好的組織樣品制成石蠟切片,常規(guī)HE染色,中性樹脂封片,Zeiss顯微鏡下觀察并拍照。
采用Image-ProPlus 5.1軟件測(cè)量鰓絲寬度、鰓小片長(zhǎng)度、鰓小片寬度、鰓小片間距;參考秦桂香等(2010)的方法測(cè)量肌纖維的長(zhǎng)徑和短徑,以實(shí)驗(yàn)用顯微鏡(200×)拍攝的圖片(視野的一個(gè)內(nèi)切矩形)為單位面積計(jì)算肌纖維密度。測(cè)量所得數(shù)據(jù)均用SPSS 22.0軟件和Excel 2010軟件進(jìn)行統(tǒng)計(jì)學(xué)分析。
不同鹽度條件下花鱸幼魚養(yǎng)殖死亡率見表1,除鹽度為30條件下有3尾魚死亡外,其他組均無(wú)死亡。
表1 不同鹽度下花鱸幼魚的死亡率
Tab.1 Mortality of L. maculatus juveniles under different salinities
鹽度為0時(shí),花鱸幼魚鰓絲排列緊密,形狀較長(zhǎng),頂端膨大呈棒狀,內(nèi)有大量的血細(xì)胞;鰓絲兩側(cè)有較長(zhǎng)的扁平囊狀鰓小片平行排列;鰓小片由扁平細(xì)胞、柱細(xì)胞、血細(xì)胞及泌氯細(xì)胞組成,細(xì)胞飽滿,排列緊密;有少許泌氯細(xì)胞分布于鰓小片基部,近乎橢圓形,體積較小細(xì)胞核呈藍(lán)紫色,細(xì)胞質(zhì)著色較淺;鰓小片上有較多的血細(xì)胞,扁平細(xì)胞較厚,排列緊密(圖1.1)。鹽度為10時(shí),泌氯細(xì)胞增大,數(shù)量增多,血細(xì)胞減少(圖1.2);鰓絲寬度顯著小于S0組,鰓小片變寬,扁平細(xì)胞增厚,其他結(jié)構(gòu)無(wú)明顯變化(表2)。鹽度為15時(shí),鰓絲較長(zhǎng),排列整齊,寬度顯著變窄(<0.05);鰓小片間距增大,長(zhǎng)度縮短,寬度變窄,與S0、S10組均差異顯著(<0.05);泌氯細(xì)胞體積增大,數(shù)量增多(圖1.3)。鹽度為2時(shí),鰓絲較S15組寬,鰓小片減少,鰓小片間距較寬,長(zhǎng)度縮短(表2);泌氯細(xì)胞體積明顯增大,細(xì)胞排列疏松,扁平上皮細(xì)胞有脫落溶解現(xiàn)象(圖1.4)。鹽度為30時(shí),鰓絲寬度較大,出現(xiàn)斷裂脫落現(xiàn)象,鰓絲上細(xì)胞排列疏松,泌氯細(xì)胞明顯膨大,見溶解狀態(tài)(圖1.5);鰓小片數(shù)量較少,形態(tài)不規(guī)則,小片間距和長(zhǎng)度顯著增大(<0.05) (表1)。
圖1 鹽度對(duì)花鱸幼魚鰓的影響
1:鹽度0;2:鹽度10;3:鹽度15;4:鹽度20;5:鹽度30
BC:血細(xì)胞;CSC:泌氯細(xì)胞;GL:鰓小片;PVC:扁平上皮細(xì)胞;PC:柱細(xì)胞;CC:軟骨細(xì)胞
1:Salinity 0; 2:Salinity 10; 3:Salinity 15; 4:Salinity 20; 5:Salinity 30
BC: Blood cell;CSC: Chloride secreting cell;GL: Gill lamellae;PVC: Pavement cell;PC: Pillar cell;CC: Chondrocyte
表2 鹽度對(duì)花鱸幼魚鰓組織測(cè)量性狀的影響
Tab.2 The effect of salinity on the gill meristic characters of L. maculatus juveniles (μm)
注:同列數(shù)據(jù)上標(biāo)不同字母表示組間差異顯著(<0.05),下同
Note: Different superscripts in the same column indicate significant differences between groups (<0.05), the same as below
花鱸脾臟外層為由結(jié)締組織和扁平細(xì)胞組成的被膜,被膜往里為實(shí)質(zhì)組織,結(jié)締組織往內(nèi)部延伸使實(shí)質(zhì)組織形成脾小葉,小葉間排列緊密界限不明顯。脾臟內(nèi)有大量的血管和血細(xì)胞。脾實(shí)質(zhì)由紅髓質(zhì)和白髓組成,二者分界不明顯,互相穿插;紅髓染色較淺,主要由紅細(xì)胞組成;白髓染色較深,主要由大量的淋巴細(xì)胞和少量巨噬細(xì)胞及顆粒細(xì)胞組成;脾細(xì)胞形態(tài)多樣,呈圓形、橢圓形或多角形(圖2)。鹽度為0時(shí),脾臟有較多血細(xì)胞,淋巴細(xì)胞較少(圖2.1);鹽度為10時(shí),血細(xì)胞減少,有較多的巨噬細(xì)胞,淋巴細(xì)胞聚集中心明顯(圖2.2);鹽度為15時(shí),出現(xiàn)較多的黑色素巨噬細(xì)胞中心(圖2.3);鹽度為20時(shí),脾竇范圍增大,血細(xì)胞增多(圖2.4)。鹽度為30時(shí),見部分脾細(xì)胞和淋巴細(xì)胞腫大,并出現(xiàn)空泡,細(xì)胞間排列較為疏松,有少許細(xì)胞溶解,差異較為明顯(圖2.5)。
花鱸幼魚肌肉組織由神經(jīng)、結(jié)締組織、血管以及形狀大小不規(guī)則的肌纖維組成,肌纖維由結(jié)締組織包圍成纖維束,肌纖維有許多細(xì)胞核,排列在基膜附近,橢圓形或梭形,呈藍(lán)紫色。肌肉橫切肌纖維呈多角形、橢圓形或梭形,排列較緊密,直徑不均一(圖3)。鹽度為0時(shí),肌纖維排列較為疏松,多角形或長(zhǎng)橢圓形,長(zhǎng)徑和短徑較大,密度較小(表3)。鹽度為10時(shí),肌纖維長(zhǎng)徑變小,短徑變化不明顯,排列較緊密,形狀較規(guī)則,呈多角形,密度顯著增大(圖3、表3)。鹽度為15時(shí),肌纖維短徑變小,密度增大,與S0、S10組均差異顯著(<0.05)。鹽度為20時(shí),肌纖維橢圓形或多角形,排列疏松,纖維束間隙較大(圖3d)。鹽度為30時(shí),肌纖維長(zhǎng)徑增大,密度減小(表3)。
圖2 鹽度對(duì)花鱸幼魚脾臟的影響
1:鹽度0;2:鹽度10;3:鹽度15;4:鹽度20;5:鹽度30,“↑”示淋巴細(xì)胞腫大和空泡化BC:血細(xì)胞;E:橢圓體;EC:內(nèi)皮細(xì)胞;C:脾索;G:粒細(xì)胞;L:淋巴細(xì)胞;LC:淋巴細(xì)胞中心;M:巨噬細(xì)胞;MC:黑色素巨噬細(xì)胞中心;S:脾竇;ST:脾小梁;SRBC:衰老紅細(xì)胞
1:Salinity 0; 2:Salinity 10; 3:Salinity 15; 4:Salinity 20; 5:Salinity 30. “↑”indicate lymphocyte enlargement and vacuolation BC: Blood cell; C: Splenic cord; E: Ellipsoid; G: Granulocyte; L: Lymphocyte; LC: Lymphocytes center; M: Macrophage;MC: Melano-macrophage center; S: Splenic sinus; ST: Spleen trabecular; SRBC: Senile red blood cell
圖3 鹽度對(duì)花鱸幼魚肌肉的影響
1:鹽度0;2:鹽度10;3:鹽度15;4:鹽度20;5:鹽度30
BC:毛細(xì)血管;CT:結(jié)締組織;MF:肌纖維;MN:肌細(xì)胞核;NF:神經(jīng)纖維
1:Salinity 0; 2:Salinity 10; 3:Salinity 15; 4:Salinity 20; 5:Salinity 30
BC: Blood capillary; CT: Connective tissue; MF: Muscel fiber; MN: Myocyte nucleus; NF: Nerve fiber
表3 鹽度對(duì)花鱸幼魚肌肉測(cè)量性狀的影響
Tab.3 The effect of salinity on the muscle meristic characters of L. maculatus juveniles
該實(shí)驗(yàn)中各組花鱸幼魚的存活率都較高,表明在0~30的鹽度范圍內(nèi),花鱸幼魚能夠保持完整的滲透調(diào)節(jié)能力,能夠生長(zhǎng)、存活。
該實(shí)驗(yàn)結(jié)果顯示,花鱸在淡水和低鹽環(huán)境中(S0和S10)其鰓絲和鰓小片較寬、形態(tài)較長(zhǎng),細(xì)胞飽滿,排列緊密,有利于與水體充分接觸,更易攝入水中的無(wú)機(jī)離子以適應(yīng)低滲環(huán)境;泌氯細(xì)胞體積較小,數(shù)量很少,表現(xiàn)出適應(yīng)低滲環(huán)境的形態(tài)特征;扁平細(xì)胞較厚,排列緊密,可能是防止離子自由滲漏(Evans, 2005)。隨著鹽度的增加,鰓絲寬度變小,鰓小片間距增大,長(zhǎng)度變短;泌氯細(xì)胞體積顯著增大。當(dāng)鹽度達(dá)到20時(shí),部分鰓小片變形脫落,鰓絲上的泌氯細(xì)胞明顯增多增大;鹽度為30時(shí),鰓絲寬度較大,出現(xiàn)斷裂脫落,鰓絲上細(xì)胞排列疏松,泌氯細(xì)胞明顯膨大,見溶解狀態(tài)。這與鯔魚()、羅非魚()(于娜等, 2012; Nolan, 1999)的研究結(jié)果基本一致。隨著鹽度的增加,花鱸幼魚為適應(yīng)環(huán)境需增加水、氧交換量以維持滲透平衡,其鰓絲的結(jié)構(gòu)發(fā)生一定程度的萎縮,鰓絲細(xì)胞縮小和鰓小片間距增大,當(dāng)鹽度超過(guò)一定的耐受范圍(鹽度為30時(shí)),其鰓絲結(jié)構(gòu)不同程度的脫落或分離。鰓絲上的泌氯細(xì)胞數(shù)量明顯增加,胞體變大,說(shuō)明其泌氯功能和細(xì)胞的代謝水平明顯提高,發(fā)揮了Na+、K+、Cl–等離子代謝平衡調(diào)節(jié)作用(Prunet, 1994)?;|為維持機(jī)體滲透平衡,在不同鹽度下,鰓組織發(fā)生適應(yīng)性改變,過(guò)高的鹽度波動(dòng)會(huì)造成組織損傷。
肌肉的組織結(jié)構(gòu)主要由構(gòu)成肌肉的肌纖維數(shù)量、肌纖維的直徑大小、長(zhǎng)度以及肌原纖維決定,而肌纖維直徑是描述肌肉特征的重要參數(shù)。研究表明,營(yíng)養(yǎng)水平、運(yùn)動(dòng)方式、環(huán)境因子等直接影響肌纖維的發(fā)育(郭瓊林等, 1993; Johnston, 2000、2003)。研究結(jié)果顯示,隨著鹽度的增加,花鱸幼魚肌纖維長(zhǎng)徑和短徑均有先減小后增加的趨勢(shì),單位面積肌纖維數(shù)量則呈先增加后減小的趨勢(shì),差異顯著(<0.05)。研究表明,肌纖維數(shù)目在出生前已固定,因此,在出生后的生長(zhǎng)發(fā)育中主要是肌纖維直徑與長(zhǎng)度的增加(Stickland, 1975)。肌纖維密度反映了肌肉增生速率的大小,推測(cè)是魚類增長(zhǎng)速度在不同鹽度下差異的原因之一(關(guān)文靜等, 2008)。本研究在不同鹽度條件下,花鱸幼魚的肌肉組織結(jié)構(gòu)產(chǎn)生差異,隨著肌纖維增粗,肌肉間結(jié)締組織與脂肪組織的增加,肌纖維密度下降,該結(jié)果可為解析其生長(zhǎng)調(diào)控機(jī)理提供參考。
Chen SX, Wang PF, Ou YJ,. Acute and chronic hypoxia effect on gills of golden pompano (). South China Fisheries Science, 2017, 13(1): 124–130 [陳世喜, 王鵬飛, 區(qū)又君, 等. 急性和慢性低氧脅迫對(duì)卵形鯧鲹鰓器官的影響. 南方水產(chǎn)科學(xué), 2017, 13(1): 124–130]
Ern R, Esbaugh AJ. Effects of salinity and hypoxia-induced hyperventilation on oxygen consumption and cost of osmoregulation in the estuarine red drum (). Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2018, 222: 52–59
Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 2005, 85(1): 97–177
Gibbons TC, McBryan TL, Schulte PM. Interactive effects of salinity and temperature acclimation on gill morphology and gene expression in threespine stickleback. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 2018, 221: 55–62
Guan WJ, Zhu YF, Chen ZD. Muscle quality in fish related to characteristics of muscular fibers. Fisheries Science, 2008, 27(2): 101–104 [關(guān)文靜, 朱藝峰, 陳芝丹. 魚類肌纖維特性與魚肉品質(zhì)關(guān)系. 水產(chǎn)科學(xué), 2008, 27(2): 101–104]
Guo QL, Lu QZ. Observation on the development of blood cells in kidney and spleen of grass carp.Acta Hydrobiologica Sinica, 1993, 17(1): 40–45 [郭瓊林, 盧全章. 草魚腎臟和脾臟血細(xì)胞發(fā)育過(guò)程的觀察. 水生生物學(xué)報(bào), 1993, 17(1): 40–45]
He YF, Wang LM, Liu N,. Effects of acute salinity stress and chronic salinity acclimatization on survival and muscle component of Malaysia red tilapia. Journal of Dalian Ocean University, 2016, 31(3): 280–284 [何燕富, 王蘭梅, 劉念, 等. 急性鹽度脅迫和慢性鹽度馴化對(duì)馬來(lái)西亞紅羅非魚存活及肌肉組分的影響. 大連海洋大學(xué)學(xué)報(bào), 2016, 31(3): 280–284]
Hu XW, Shangguan JB, Li ZB,. Effects of dietary chitosan oligosaccharide on the performance, digestion and serum biochemical indexs of the juvenile Japanese seabass (). Acta Oceanologica Sinica, 2018, 40(2): 69–76 [胡曉偉, 上官靜波, 黎中寶, 等. 飼料中添加殼寡糖對(duì)花鱸()幼魚的生長(zhǎng)、消化和血清生化指標(biāo)的影響. 海洋學(xué)報(bào), 2018, 40(2): 69–76]
Johnston IA, Alderson R, Sandham C,. Muscle fibre density in relation to the colour and texture of smoked Atlantic salmon (L.). Aquaculture, 2000, 189(3–4): 335– 349
Johnston IA, Manthri S, Alderson R,. Freshwater environment affects growth rate and muscle fibre recruitment in seawater stages of Atlantic salmon (L.). Journal of Experimental Biology, 2003, 206(8): 1337–1351
Li CL, Cao FJ, Liu CW,. The microstructure of spleen and head kidney in. Marine Science Bulletin, 2002, 21(2): 30–35 [李長(zhǎng)玲, 曹伏君, 劉楚吾, 等. 花尾胡椒鯛脾臟和頭腎顯微結(jié)構(gòu)的觀察. 海洋通報(bào), 2002, 21(2): 30–35]
Li FX, Wang PF, Yan LL,. Molecular cloning and expression pattern analysis ofin sea perch (). South China Fisheries Science, 2018, 14(5): 70– 79 [李富祥, 王鵬飛, 閆路路, 等. 花鱸基因cDNA的克隆與表達(dá)分析. 南方水產(chǎn)科學(xué), 2018, 14(5): 70–79
Luo HZ, Li WY, Fu RB,. The effects of salinity on the growth of juvenileand Na+/K+- ATP enzyme. Progress in Fishery Sciences, 2015, 36(2): 94–99 [羅海忠, 李偉業(yè), 傅榮兵, 等. 鹽度對(duì)四指馬鲅()幼魚生長(zhǎng)及其鰓絲Na+/K+- ATP酶的影響. 漁業(yè)科學(xué)進(jìn)展, 2015, 36(2): 94–99]
Nolan DT, Op’t Veld RLJM, Balm PHM,. Ambient salinity modulates the response of the tilapia,(Peters), to net confinement. Aquaculture, 1999, 177(1–4): 297–309
Pan YY, Gu XY, Zhang DM,. Effects of fasting and refeeding onintestinal microflora diversity. Journal of Fisheries of China, 2016, 40(5): 776– 784 [潘艷艷, 顧曉英, 張德民, 等. 饑餓及恢復(fù)喂食對(duì)花鱸腸道菌群多樣性的影響. 水產(chǎn)學(xué)報(bào), 2016, 40(5): 776–784]
Prunet P, Pisam M, Claireaux JP,. Effects of growth hormone on gill chloride cells in juvenile Atlantic salmon (). American Journal of Physiology, 1994, 266(2): 850–857
Qin GX, Wei Q, Yu JQ. Histological characterization muscular and gill of. Journal of Qinghai University (Natural Science), 2010, 28(2): 4–7 [秦桂香, 魏青, 余家慶. 青海湖裸鯉肌肉和鰓組織結(jié)構(gòu)特征. 青海大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 28(2): 4–7]
Shivakumar K, Jayaraman J. Salinity adaptation in fish: Interaction of thyroxine with fish gill mitochondria. Archives of Biochemistry and Biophysics, 1986, 245(2): 356–362
Shui C, Shi Y, Hua X,. Serum osmolality and ions, and gill Na+/K+-ATPase of spottedtail goby(R.) in response to acute salinity changes. Aquaculture and Fisheries, 2018, 3(2): 79–83
Stickland NC, Widdowson EM, Goldspink G. Effects of severe energy and protein deficiencies on the fibres and nuclei in skeletal muscle of pigs. British Journal of Nutrition, 1975, 34(3): 421–428
Wang HH, Li CL, Cao FJ,. Microstructure of head-kindey and spleen in.Journal of Oceanography in Taiwan Strait, 2006, 25(3): 360–367 [王鴻鵠, 李長(zhǎng)玲, 曹伏君, 等. 紅笛鯛頭腎和脾臟顯微結(jié)構(gòu)的觀察. 臺(tái)灣海峽, 2006, 25(3): 360–367]
Yu N, Li JE, Ou YJ,. Structural changes in gill and kidney of juvenile grey mullet under different salinity. Ecological Science, 2012, 31(4): 424–428 [于娜, 李加兒, 區(qū)又君, 等. 不同鹽度下鯔魚幼魚鰓和腎組織結(jié)構(gòu)變化. 生態(tài)科學(xué), 2012, 31(4): 424–428]
Zhang TT, Chen XR, Liang MQ,. Effects of different protein hydrolysates on growth performance and non- specific immunity of Japanese seabass (). Progress in Fishery Sciences, 2017, 38(3): 96–105 [張婷婷,陳效儒, 梁萌青, 等. 不同蛋白水解物對(duì)花鱸()生長(zhǎng)性能及非特異性免疫的影響. 漁業(yè)科學(xué)進(jìn)展, 2017, 38(3): 96–105]
Zhang XY, Wen HS, Zhang KQ,. Analysis of the isotonic point and effects of seawater desalination on the Na+/K+/Cl–concentration, Na+-K+-ATPase activity and relative gene expressions in. Journal of Fisheries of China, 2018, 42(8): 1199–1208 [張曉燕, 溫海深, 張凱強(qiáng), 等. 花鱸等滲點(diǎn)分析及海水淡化對(duì)Na+/K+/Cl–濃度、Na+-K+-ATP酶活性及基因表達(dá)的影響. 水產(chǎn)學(xué)報(bào), 2018, 42(8): 1199–1208]
Effects of Salinity on the Histological Structure of the Gills, Spleen, and Muscle inJuveniles
WEN Jiufu1, LAN Junnan1,2, CAO Ming3, ZHOU Hui1, OU Youjun1①, LI Jiaer1
(1. South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation andUtilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300; 2. Shanghai Ocean University, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; National Demonstration Center for Experimental Fisheries, Science Education; Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai 201306; 3. Guangdong Provincial Fishery Germplasm Conservation Center, Guangzhou 511453)
To explore the histological features ofjuveniles cultured at different salinities, the structures of the gills, spleen, and muscle were analyzed at different salinities (0, 10, 15, 20, and 30) via histological analysis. The results showed that at salinity 0, the gill filaments ofjuveniles were closely arranged, the top of the gills expanded into a rod shape, and the gill cells were plump with more chlorine-secreting cells; the breadth of the gill filaments decreased, and the intervals of the gill lamella became larger as the salinity increased (<0.05). At salinity 20, some gill lamellas decomposed and fell off, the number of chlorine-secreting cells on the gill filaments increased significantly. At salinity 30, the number and size of chloride cells increased as the salinity increased and some chloride cells expanded and dissolved. In freshwater, more blood cells and fewer lymphocytes were observed in the spleen, whereas in the hyposaline environment (salinity 10 and 15), the lymphocytes were enlarged and the number of melanin macrophages increased. At high salinity (30), the spleen cells and some lymphocytes showed swelling and vacuolation and were loosely arranged. At salinity 0, the muscle fibers of the juveniles were loosely arranged, polygonal or oblong, with larger major and minor diameters and smaller densities. With the increasing salinity, both the major and minor diameters of muscle fibers tended to decrease first and then increase again. At salinity 15, the short diameter of muscle fibers decreased and their densities increased, which were significantly different from that observed at salinity 0 and 10. At salinity 30, the long diameter of muscle fibers increased and their densities decreased. In summary, as the salinity increased, both the long and short diameters of muscle fibers tended to decrease first and then increase (<0.05). The results indicated that the histological structures of the gill, spleen, and muscle ofjuveniles were affected by the environment and salinity.
Salinity;; Gills; Spleen; Muscle; Histological structure
S917.4
A
2095-9869(2020)01-0112-07
10.19663/j.issn2095-9869.20181101001
* 中國(guó)水產(chǎn)科學(xué)研究院南海水產(chǎn)研究所中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(2016TS02)資助 [This work was supported by Central Public-Interest Scientific Institution Basal Research Fund, South China Sea Fisheries Research Institute, CAFS (2016TS02)]. 溫久福,E-mail: nhswjf@163.com
區(qū)又君,研究員,E-mail: ouyoujun@126.com
2018-11-01,
2018-12-10
http://www.yykxjz.cn/
溫久福, 藍(lán)軍南, 曹明, 周慧, 區(qū)又君, 李加兒. 鹽度對(duì)花鱸幼魚鰓、脾及肌肉組織結(jié)構(gòu)的影響. 漁業(yè)科學(xué)進(jìn)展, 2020, 41(1): 112–118
Wen JF, Lan JN, Cao M, Zhou H, Ou YJ, Li JE. Effects of salinity on the histological structure of the gills, spleen, and muscle injuveniles. Progress in Fishery Sciences, 2020, 41(1): 112–118
OU Youjun, E-mail: ouyoujun@126.com
(編輯 馬璀艷)