• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis, Structure and Properties of a Novel Copolymer with Photochromic and Photoluminescence Functions

    2020-02-01 08:56:12YANGLong楊龍ZHAOTianxiangSHUDengkunXIPeng西鵬

    YANGLong(楊龍),ZHAOTianxiang,SHUDengkun,XIPeng(西鵬),2,3

    1 School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China 2 State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China 3 Tianjin Key Laboratory of Advanced Fibers and Energy Storage, Tianjin 300387, China

    Abstract: Photochromic and photoluminescence materials show bright colors under different excitation conditions, and thus, these functional materials have been applied in many fields. Based on the photochromic and photoluminescence theories, a block copolymer, which could be directly processed into nanofibers by electrospinning, was successfully prepared through atom transfer radical polymerization (ATRP). To synthesize the block copolymer, a vinyl monomer containing a spiropyran unit was employed to prepare the photochromic chain segment, and a polymethyl methacrylate (PMMA) chain segment was introduced to improve the processability of the block copolymer. Acting as the photoluminescence unit, the rare earth complex was linked to the side chain through coordination bonding between the rare earth ions and the ester groups of PMMA. When the photochromic and photoluminescence block copolymer was exposed to different wavelengths of ultraviolet (UV) light and visible (Vis) light, it could show white, red, green, yellow, and blue-purple. These results provide the potential of the as-prepared photochromic and photoluminescence block copolymer for application in fibers and fabrics.

    Key words: photochromic material; photoluminescence material; spiropyran; atom transfer radical polymerization (ATRP); block copolymer

    Introduction

    In recent decade years, photochromic materials have attracted much attention because of their superior properties and wide applications in various fields such as sensors and authentication systems[1], smart inkjet printing[2], data storage devices[3], smart fibers and textiles[4], and biomedical research[5]. Typical photochromic materials mainly include spiropyran[6], diarylethene[7], azobenzene[8], and schiffbase[9]. Among these, spiropyran and its derivatives display unique photochromic properties and good recyclability. Under ultraviolet (UV) light irradiation, the ring-closed and colorless spiropyran form can completely transform into the ring-opened and colored merocyanine form. In dark or in a heated environment, the transformation of merocyanine to spiropyran occurs (Fig. 1). Based on the photochromic mechanism of spiropyran, many photochromic materials were prepared by dispersing spiropyran in polymer matrices[10-12]. However, physical dispersion decreases the photostability, photochromic properties, coloration efficiency, and reversibility due to the precipitation of photochromic units from the polymer matrix[13]. In addition, the low thermal stability of spiropyran limits their direct application[14].

    Fig. 1 Reversible transformation of molecular structures of (a) spiropyran and (b) merocyanine units

    Recently, many efforts have been devoted to preparing novel photochromic materials with good thermal stability and photochromic properties. Tianetal.[15]prepared cellulose-based dynamic fluorescent materials with phototunable full-color emission by covalently attaching spiropyran and other photochromic units onto cellulose chains. Wangetal.[16]synthesized poly(ethylene glycol)-co-poly(spiropyran methacrylate) copolymers by modifying the linkage of the benzospiropyrane side chain functionality to the copolymer backbone. Sharifianetal.[17]synthesized a photochromic copolymer with acrylic-spiropyran, butyl acrylate, and methyl methacrylate (MMA) comonomers by emulsion polymerization. Through UV-Vis spectroscopy and the corresponding kinetic studies, they demonstrated that the flexibility and polarity of the polymer chains significantly affect the photoisomerization of spiropyran and merocyanine, and these nanoparticles were highly photostable. These results indicate that the functional modification of polymers is a successful strategy to immobilize spiropyran units onto other substrates through chemical bonding. Chemical bonding between the photochromic unit and polymeric chain can increase the photostability, fatigue resistance, lifetime, and photochromic efficiency of photochromic materials[18-19].

    In this work, we prepared a novel photochromic and photoluminescence copolymer. In the design of the molecular structure of the copolymer, we selected 2-(3′,3′-dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′-yl)ethyl methacrylate (SPMA) as the first monomer to synthesize a spiropyran-containing poly(2-(3′,3′-dimethyl-6-nitrospiro[chromene-2,2′-indolin]-1′-yl) ethyl methacrylate) (PSPMA) and MMA as the second monomer to prepare a photoluminescence unit by the coordination of PMMA chain segments with an organic rare earth complex. The atom transfer radical polymerization (ATRP) technology was used to control the molecular chain structure of the as-prepared photochromic and photoluminescence copolymer. The intrinsic relationship between the structure and the properties of the as-prepared samples was determined by1H nuclear magnetic resonance (1H-NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermo gravimetric analysis (TGA). These results open a path for the design and synthesis of multi-primary color functional polymer materials.

    1 Experiments

    1.1 Materials

    Ethyl 2-bromoisobutyrate (EBIB, analytical grade), dichloromethane (DCM, analytical grade), tetrahydrofuran (THF, analytical grade),N,N-dimethylformamide (DMF, analytical grade) and copper (I) bromide (CuBr) were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China.N,N′,N″,N″,N″-pentamethyldiet-hy-lenetriamine (PMDETA, analytical grade) was obtained from Tianjin Heowns Biochemical Technology Co., Ltd., Tianjin, China. 3,3′-Dimethyl-1′-(beta-hydroxyethyl)-6-nitrospiro [2H-1-benzopyran-2, 2′-indoline] (SP-OH, 93%) was purchased from Sigma-Aldrich. The organic rare earth complex [BCMT-Tb(III) complex] was prepared as reported in Refs.[28-29].Other chemicals were purchased from Tianjin Kemiou Chemical Reagent Co., Ltd., Tianjin, China. All reagents were dried and purified according to the standard process before use.

    1.2 Synthesis of photochromic and photoluminescence copolymer

    SPMA was synthesized according to the procedure reported in Ref.[30]. The photochromic copolymer (PSPMA-b-PMMA) was synthesized by the following procedures (Fig. 2). In a Schlenk bottle, SPMA (2.38 mmol), initiator EBIB (0.12 mmol), PMDETA (0.24 mmol), and THF (61.50 mmol) were added. The reaction system was degassed by three freeze-pump-thaw cycles. Then, CuBr (0.12 mmol) was added quickly at the last frozen state. The sealed Schlenk bottle was placed in an oil bath at 40 ℃ under a strong flow of nitrogen gas. After 6 h, MMA was added into the above reaction solution, and the reaction continued until the monomer completely disappeared. The as-prepared sample was precipitated by adding an excess of methanol and then vacuum filtered. The obtained sample was washed with methanol 10 times and dried in a vacuum oven at 60 ℃.

    The photochromic and photoluminescence copolymer was prepared as follows. Firstly, the photochromic copolymer (1.670 g) and [BCMT-Tb(III) complex] (0.018 g) were dissolved in DMF (50 mL) and the solution was stirred at 50 ℃. Then after 30 min, the pH of the mixed solution was adjusted to 8.5 with NH3·H2O. After the mixed solution was stirred at 50 ℃ for 2 h, it was cooled to 25 ℃ and maintained at this temperature for 24 h. Finally, the precipitate was quickly filtered, and the as-prepared product was washed five times with ethanol (total volume: 50 mL) and deionized water (total volume: 50 mL). The sample was dried in a vacuum oven at 60 ℃ for 24 h to obtain the final product of white powder with 86.52% yield. Samples with different mass ratios were prepared by the same process.

    Fig. 2 Synthesis route of photochromic and photoluminescence copolymer by ATRP

    1.3 Measurements and characterization of the samples

    1H-NMR spectra were recorded on the Avance 400 MHz instrument (Bruker, Germany) in CDCl3. FTIR spectra of the samples formed into KBr disks were collected by using the Nicollet NEXUS-670 FTIR spectrometer in the wavenumber range of 4 000-400 cm-1. Gel permeation chromatography (GPC) was performed by using the Viscotek 270 Gel chromatograph (Malvern, America). The test samples were prepared by chromatography using pure THF of 5-10 mg/mL samples. The molecular weights were expressed relative to polystyrene (PS) standards. The SEM images of the samples were recorded by using the Hitachi S4800 (Hitachi Co., Ltd., Japan) field-emission SEM operated at an acceleration voltage of 10 kV.

    The thermal stabilities of the samples were investigated by TGA. The TGA curves were obtained on the Netzsch STA 449F3 TGA at a heating rate of 10 ℃/min in the temperature range of 25-800 ℃. Steady-state luminescence spectra were collected by using the Gangdong F-380 spectrofluorometer at an excitation wavelength range of 200-400 nm and an emission wavelength range of 400-750 nm with a slit width of 2 nm. The UV-Vis spectra of the samples were collected by using the TU-1901 UV-Vis spectrophotometer (Puxi Co., Ltd., China). The sample was added into a sample pool. The spectral bandwidth was 2 nm, response time was 0.2 s, and the scanning range was 200-800 nm. All the above-mentioned measurements were carried out at room temperature.

    2 Results and Discussion

    2.1 Structure of photochromic copolymer

    The structure of PSPMA-b-PMMA was determined by1H-NMR and FTIR spectroscopy. Figure 3 shows the1H-NMR spectra of PSPMA-b-PMMA and SPMA. The characteristic proton peaks of SP appeared at 8.01, 6.72-7.28, 4.38, 3.4-3.58, and 1.25-1.31 [Fig. 3(b)][31], and the proton peaks at 5.58 and 6.15 corresponded to vinyl protons. The characteristic proton peaks of spiropyran shown in Fig. 3(a) are broader than those of SPMA, which indicates that the spiropyran moieties are attached on the polymer chains instead of being physically mixed. The disappearance of proton peaks at 5.58 and 6.15 further proves that the polymerization of SPMA occurred. The proton peak at 1.31 increases significantly, and two new proton peaks appear at 1.61 and 1.84. These results indicate that MMA repeat units are introduced into the polymer chains[32-33]. The1H-NMR analysis confirms the successful synthesis of the photochromic copolymer.

    Fig. 3 1H-NMR spectra of (a) PSPMA-b-PMMA; (b) SPMA

    Fig. 4 FTIR spectra of (a) PMMA; (b) SPMA; (c) PSPMA-b-PMMA

    Moreover, the intensities of the absorption peaks of —CH2— and —CH3at 2 860-2 960, 865, and 748 cm-1were increased. These results indicate the formation of the photochromic copolymer, and the structure of the as-prepared photochromic copolymer determined by FTIR spectroscopy are consistent with those data shown in Fig. 3(a).

    2.2 Structure optimization of photochromic and photoluminescence copolymer

    The photochromic and photoluminescence copolymer is composed of PSPMA, PMMA chain segments, and a photoluminescence unit [BCMT-Tb(III) complex]. Electrospinning is an efficient technique for the fabrication of polymer nanofibers under mild conditions. To optimize the structure of the photochromic and photoluminescence copolymer, the electrospinning technique is employed[36-38]. Figure 5(a) shows the GPC curve of PSPMA. The number average molecular weight of PSPMA is 5 669 g/mol. Table 1 presents the solubility and thermal properties of PSPMA. As can be seen from Fig. 5(b), the process of PSPMA into fibers using different solvent systems by electrospinning is difficult. Moreover, since the initial decomposition temperature of PSPMA is only 136 ℃, the process of PSPMA directly by melting is also difficult.

    PMMA has good processability. With the introduction of PMMA segments to the PSPMA chains, the processability of the as-prepared PSPMA-b-PMMA copolymer was improved. Figure 6 presents the GPC and TGA curves of PSPMA-b-PMMA.

    Table 1 Solubility and thermal properties of PSPMA and PSPMA-b-PMMA

    Fig. 5 Characterization of PSPMA: (a) GPC curve; (b) SEM images of electrospun PSPMA with different solvent systems

    Through the coordination of rare earth ions with the ester groups of PMMA, polymeric rare earth photoluminescence materials can be prepared[39]. As rare earth elements are strongly paramagnetic[40], the1H-NMR and13C nuclear magnetic resonance (13C-NMR) spectroscopy of the photochromic and photoluminescence copolymer are difficult to obtain. In the FTIR spectra of the photochromic and photoluminescence copolymer containing the rare earth complex (Fig. 7), the stretching vibration peak of the carbonyl groups in the ester group of PMMA shifts to 1 728 cm-1, which indicates the coordination of Tb3+ions with the carbonyl groups of PSPMA-b-PMMA[41-43]. Figure 8 shows the fluorescence spectra of the photochromic and photoluminescence copolymer with different contents of the rare earth complex. And the fluorescence intensity of the photochromic and photoluminescence copolymer gradually increased with an increase in the content of rare earth complex[44]. When the content of rare earth complex is more than 6% (mass percent of the PSPMA-b-PMMA copolymer), the increase in the fluorescence intensity of the photochromic and photoluminescence copolymer is no longer obvious.

    Based on the above analysis, the optimized composition of the photochromic and photoluminescence copolymer is presented in Table 2. A schematic diagram of the molecular structure of the as-prepared photochromic and photoluminescence copolymer is shown in Fig. 9. The photochromic unit is located at one end of the polymer chain, which is wound around and protected by the flexible PMMA chain. Therefore, PSPMA-b-PMMA shows good thermal stability [Fig. 6(b)]. The photoluminescence units are attached to the branched polymer chain through the coordination of the ester group of PMMA with the Tb3+ion. The mole number ratio of the PMMA segments and [BCMT-Tb(III) complex] units is 365.65∶2.49. In the aggregated structure of the photochromic and photoluminescence polymer, the photoluminescence units are distributed in many MMA units. Because of the coordination of the PMMA unit with the Tb3+ion of the rare earth complex, the photochromic and photoluminescence units are formed in a unitary manner and uniformly distributed in the copolymer, thereby realizing a multi-primary color photoluminescence function.

    Fig. 8 Fluorescence spectra of the photochromic and photoluminescence copolymer with different contents of rare earth complex

    Table 2 Optimized composition of photochromic and photoluminescence copolymer

    Fig. 9 Schematic diagram of the molecular structure of photochromic and photoluminescence copolymer

    2.3 Photochromic properties of photochromic and photoluminescence copolymer

    The photochromic properties of the as-prepared samples were determined by UV absorption spectroscopy, and the absorption curves were recorded in every minute under UV light irradiation at 365 nm wavelength. Figures 10 (a) and (b) show the process of color change. As can be seen, new absorption peaks appeared at 450-700 nm, which are attributed to the ring-opening reaction of spiropyran under UV light irradiation. The intensity of the absorption peak increased with the duration of UV irradiation. After 2 min, the intensity of the absorption peak was 50% of the total intensity, and the as-prepared sample began to turn pale blue. After 10 min, the intensity of the absorption peak reached the maximum value, and the as-prepared sample turned deep blue with complete spiropyran to merocyanine transformation of the photochromic units.

    Under dark conditions, merocyanine to spiropyran transformation of the photochromic units will occur. Figures 10(c) and (d) show the retained intensity of the UV absorption peak of the photochromic and photoluminescence fibers after different time. The result indicates that the transformation of merocyanine to spiropyran is slow. After 4 h, the sample retains a conspicuous blue color. The sample did not turn white until after 30 h. However, upon heating, merocyanine rapidly transformed into spiropyran. For example, merocyanine to spiropyran transformation was completed within 2 min at 60 ℃.

    Fig. 10 Variation in absorption intensity of photochromic and photoluminescence copolymer at different time intervals: (a) and (b) under UV light irradiation at 365 nm; (c) and (d) under dark conditions

    2.4 Multi-primary color photochromic functions of photochromic and photoluminescence nonwoven fabrics

    The as-prepared photochromic and photoluminescence copolymer was electrospun to nonwoven fabrics with photochromic and photoluminescence functions. The multi-primary color photochromic functions of the as-prepared nonwoven fabrics are shown in Fig. 11.

    The nonwoven fabrics exhibited different colors, and turned white, red, green, yellow, and blue-purple under excitations of 295 and 365 nm UV light and Vis light, thus exhibiting multi-primary color photochromic and photoluminescence properties.

    Fig. 11 Photographs of multi-primary color of the photochromic and photoluminescence nonwoven fabrics excited by different UV wavelengths

    The stability of the photochromic and photoluminescence properties of the as-prepared nonwoven fabrics is essential for practical applications. The optical switching of UV-Vis absorption was repeated 500 times to study the reversibility and reproducibility of the photochromic and photoluminescence properties of the as-prepared nonwoven fabrics. The reversible conversion between spiropyran and merocyanine could be realized by alternating UV light/Vis light irradiations. As shown in Fig. 12, after 500 cycles, the photochromic and photoluminescence properties of the nonwoven fabrics did not decrease significantly, which was significantly improved compared with the reversibility of conventional organic photochromic luminescent materials.

    Fig. 12 Reversibility and reproducibility of the photochromic and photoluminescence properties of photochromic and photoluminescence copolymer

    3 Conclusions

    A multi-primary color photochromic and photoluminescence copolymer was prepared, which could be directly processed into nanofibers by electrospinning. The as-prepared photochromic and photoluminescence copolymer exhibited good thermostability and prolonged photochromic and photoluminescence functions. Furthermore, a nonwoven fabrics made of the photochromic and photoluminescence copolymer turned white, red, green, yellow, and blue-purple under the excitations of 295 nm and 367 nm UV light and Vis light. Moreover, after 500 cycles, the photochromic and photoluminescence properties of the nonwoven fabrics did not decrease significantly. These results provide a foundation for the wide application of the as-prepared photochromic and photoluminescence copolymer.

    这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 午夜影院在线不卡| 成人亚洲精品一区在线观看| 99精品久久久久人妻精品| 青春草亚洲视频在线观看| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看| 精品人妻熟女毛片av久久网站| 亚洲一区二区三区欧美精品| 亚洲avbb在线观看| 精品福利观看| 人妻 亚洲 视频| 高清黄色对白视频在线免费看| 99久久精品国产亚洲精品| 亚洲 欧美一区二区三区| 久久人人爽人人片av| 亚洲欧美色中文字幕在线| 国产成人精品在线电影| 久久久国产成人免费| 精品一区在线观看国产| 国产av国产精品国产| 久久国产亚洲av麻豆专区| 国产1区2区3区精品| 中文字幕高清在线视频| 亚洲一区中文字幕在线| 一级a爱视频在线免费观看| 超碰97精品在线观看| 在线观看舔阴道视频| 国精品久久久久久国模美| 高潮久久久久久久久久久不卡| 青春草亚洲视频在线观看| 精品一区在线观看国产| 午夜成年电影在线免费观看| 99久久国产精品久久久| 一本—道久久a久久精品蜜桃钙片| 国产成人欧美在线观看 | 国产xxxxx性猛交| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 亚洲精品国产色婷婷电影| a级毛片黄视频| 国产精品久久久av美女十八| cao死你这个sao货| svipshipincom国产片| 下体分泌物呈黄色| 91麻豆精品激情在线观看国产 | 激情视频va一区二区三区| 国产精品久久久人人做人人爽| 欧美精品人与动牲交sv欧美| 国产区一区二久久| 国产精品熟女久久久久浪| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花| 热99re8久久精品国产| 一级毛片女人18水好多| 午夜精品国产一区二区电影| 国产精品av久久久久免费| 99久久精品国产亚洲精品| 欧美日韩国产mv在线观看视频| 欧美+亚洲+日韩+国产| av有码第一页| 少妇的丰满在线观看| 一本久久精品| 曰老女人黄片| av在线老鸭窝| 少妇裸体淫交视频免费看高清 | 激情视频va一区二区三区| 人妻一区二区av| 成人手机av| 亚洲精品久久午夜乱码| 少妇粗大呻吟视频| 日韩熟女老妇一区二区性免费视频| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| av又黄又爽大尺度在线免费看| 国产成人啪精品午夜网站| 自拍欧美九色日韩亚洲蝌蚪91| 日本撒尿小便嘘嘘汇集6| 极品人妻少妇av视频| 亚洲综合色网址| 777米奇影视久久| 精品第一国产精品| 窝窝影院91人妻| 午夜福利视频精品| 午夜福利影视在线免费观看| 欧美激情久久久久久爽电影 | 丁香六月欧美| 一区二区三区乱码不卡18| 午夜激情av网站| 超碰成人久久| 老司机在亚洲福利影院| 中文字幕制服av| 波多野结衣av一区二区av| 日本欧美视频一区| 亚洲视频免费观看视频| 亚洲中文av在线| 90打野战视频偷拍视频| 亚洲欧美一区二区三区黑人| 这个男人来自地球电影免费观看| 麻豆国产av国片精品| 自拍欧美九色日韩亚洲蝌蚪91| 精品高清国产在线一区| 亚洲精品在线美女| 欧美精品高潮呻吟av久久| 一区福利在线观看| 久久狼人影院| 亚洲,欧美精品.| 高清视频免费观看一区二区| 美女高潮到喷水免费观看| 免费观看人在逋| 国产免费福利视频在线观看| 久久精品成人免费网站| 别揉我奶头~嗯~啊~动态视频 | 精品人妻一区二区三区麻豆| 在线永久观看黄色视频| 性色av乱码一区二区三区2| 别揉我奶头~嗯~啊~动态视频 | 欧美+亚洲+日韩+国产| 999久久久国产精品视频| 亚洲国产毛片av蜜桃av| 1024香蕉在线观看| videosex国产| 亚洲欧美精品自产自拍| 啪啪无遮挡十八禁网站| 波多野结衣一区麻豆| 99热国产这里只有精品6| 免费在线观看黄色视频的| 首页视频小说图片口味搜索| 国产精品一区二区免费欧美 | 桃红色精品国产亚洲av| 正在播放国产对白刺激| 国产精品熟女久久久久浪| 国产xxxxx性猛交| 国产黄色免费在线视频| 国产1区2区3区精品| 无遮挡黄片免费观看| 久久久久久久久久久久大奶| 黄色a级毛片大全视频| 日韩制服丝袜自拍偷拍| 美女大奶头黄色视频| 搡老乐熟女国产| 国产高清视频在线播放一区 | 欧美精品亚洲一区二区| 91成人精品电影| 国产欧美亚洲国产| 最新在线观看一区二区三区| 欧美日韩国产mv在线观看视频| 精品人妻1区二区| 在线看a的网站| 一级毛片电影观看| 18禁观看日本| 性色av乱码一区二区三区2| 亚洲av男天堂| av电影中文网址| 久久精品国产a三级三级三级| 90打野战视频偷拍视频| 亚洲五月婷婷丁香| 亚洲综合色网址| 免费日韩欧美在线观看| 精品人妻一区二区三区麻豆| 黄色视频不卡| 欧美人与性动交α欧美精品济南到| 久久影院123| 亚洲精品一卡2卡三卡4卡5卡 | 香蕉丝袜av| 亚洲综合色网址| 亚洲国产精品成人久久小说| 精品一区二区三卡| 69av精品久久久久久 | 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 国产成人av激情在线播放| 国产欧美日韩一区二区三区在线| 女人高潮潮喷娇喘18禁视频| 欧美激情 高清一区二区三区| 亚洲av电影在线进入| 交换朋友夫妻互换小说| 欧美人与性动交α欧美精品济南到| 正在播放国产对白刺激| 成年人午夜在线观看视频| 91字幕亚洲| 亚洲国产精品999| 亚洲国产欧美一区二区综合| 看免费av毛片| 国产xxxxx性猛交| 日本av免费视频播放| 一本久久精品| 国产91精品成人一区二区三区 | 大片免费播放器 马上看| 国产真人三级小视频在线观看| 18在线观看网站| 精品高清国产在线一区| 两个人免费观看高清视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品久久久久成人av| 国产伦理片在线播放av一区| av片东京热男人的天堂| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区久久久樱花| 黑人猛操日本美女一级片| 国产欧美日韩一区二区三区在线| 久久人妻福利社区极品人妻图片| 亚洲欧美成人综合另类久久久| 午夜激情av网站| 国产又爽黄色视频| 这个男人来自地球电影免费观看| 亚洲va日本ⅴa欧美va伊人久久 | 精品一区二区三区av网在线观看 | 欧美老熟妇乱子伦牲交| 中文字幕色久视频| 精品国产超薄肉色丝袜足j| 中文字幕另类日韩欧美亚洲嫩草| 免费一级毛片在线播放高清视频 | 国产精品 国内视频| 国精品久久久久久国模美| 男女无遮挡免费网站观看| 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区mp4| 日韩熟女老妇一区二区性免费视频| www.精华液| 亚洲专区中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 80岁老熟妇乱子伦牲交| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 亚洲av成人不卡在线观看播放网 | 精品高清国产在线一区| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 在线av久久热| 热99国产精品久久久久久7| 久久毛片免费看一区二区三区| 欧美亚洲 丝袜 人妻 在线| 久久 成人 亚洲| 久久人人97超碰香蕉20202| 精品国产一区二区三区久久久樱花| 久久这里只有精品19| 91精品国产国语对白视频| 纯流量卡能插随身wifi吗| 免费在线观看完整版高清| 啪啪无遮挡十八禁网站| 精品久久蜜臀av无| 啦啦啦视频在线资源免费观看| 久久久久久免费高清国产稀缺| 久久精品aⅴ一区二区三区四区| 久久人妻福利社区极品人妻图片| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜添小说| 777久久人妻少妇嫩草av网站| 丁香六月天网| 91av网站免费观看| 成人三级做爰电影| 老熟女久久久| 操出白浆在线播放| 国产精品一二三区在线看| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 人妻 亚洲 视频| e午夜精品久久久久久久| 动漫黄色视频在线观看| 久久久久国内视频| av免费在线观看网站| 99国产综合亚洲精品| 精品国产乱子伦一区二区三区 | 9色porny在线观看| 在线永久观看黄色视频| 午夜久久久在线观看| 精品人妻1区二区| 国产一区二区三区av在线| 美女国产高潮福利片在线看| 精品国产乱码久久久久久男人| 色视频在线一区二区三区| 久久精品aⅴ一区二区三区四区| 老司机午夜十八禁免费视频| 好男人电影高清在线观看| 最新的欧美精品一区二区| 免费在线观看视频国产中文字幕亚洲 | 久久久久国内视频| 国产精品99久久99久久久不卡| 黑丝袜美女国产一区| 色视频在线一区二区三区| 午夜免费观看性视频| 欧美黄色淫秽网站| 午夜免费成人在线视频| 日韩制服骚丝袜av| 丝瓜视频免费看黄片| 香蕉国产在线看| 美女国产高潮福利片在线看| 男女免费视频国产| 夜夜骑夜夜射夜夜干| 19禁男女啪啪无遮挡网站| 亚洲精品国产色婷婷电影| 啦啦啦免费观看视频1| 性少妇av在线| 99久久人妻综合| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 久久精品国产亚洲av高清一级| 亚洲国产欧美网| 日韩,欧美,国产一区二区三区| 亚洲精品国产色婷婷电影| 日韩视频在线欧美| 亚洲综合色网址| 丁香六月天网| 在线av久久热| 午夜福利视频在线观看免费| 99热网站在线观看| 国产在线一区二区三区精| 欧美日韩福利视频一区二区| 飞空精品影院首页| 亚洲熟女精品中文字幕| 欧美亚洲日本最大视频资源| 亚洲人成电影观看| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 韩国高清视频一区二区三区| 一个人免费在线观看的高清视频 | 亚洲欧美日韩高清在线视频 | 国产主播在线观看一区二区| 欧美日韩福利视频一区二区| 一二三四在线观看免费中文在| 天天添夜夜摸| 丰满迷人的少妇在线观看| 大香蕉久久成人网| 欧美大码av| 岛国毛片在线播放| 午夜两性在线视频| 丝袜脚勾引网站| 又黄又粗又硬又大视频| 老司机深夜福利视频在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 国产成人免费无遮挡视频| 一区二区三区四区激情视频| 国产精品 欧美亚洲| 亚洲国产欧美在线一区| 老熟妇乱子伦视频在线观看 | 蜜桃国产av成人99| 国产高清videossex| 久久九九热精品免费| a级毛片在线看网站| 交换朋友夫妻互换小说| 欧美在线一区亚洲| 岛国毛片在线播放| 精品国产乱码久久久久久男人| 久久久国产精品麻豆| 成年美女黄网站色视频大全免费| 日本wwww免费看| 精品卡一卡二卡四卡免费| 国产精品一二三区在线看| 建设人人有责人人尽责人人享有的| 午夜两性在线视频| 国产精品免费视频内射| 少妇粗大呻吟视频| 黄色 视频免费看| av在线老鸭窝| 捣出白浆h1v1| 69av精品久久久久久 | 老汉色av国产亚洲站长工具| 人人妻人人澡人人爽人人夜夜| 欧美精品一区二区大全| 成人黄色视频免费在线看| 老司机午夜福利在线观看视频 | 国产精品 国内视频| 桃红色精品国产亚洲av| 亚洲国产av新网站| 大码成人一级视频| 看免费av毛片| 老司机亚洲免费影院| 国产精品一二三区在线看| 女人被躁到高潮嗷嗷叫费观| 新久久久久国产一级毛片| 亚洲欧美色中文字幕在线| 高清视频免费观看一区二区| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| 精品欧美一区二区三区在线| 国产亚洲午夜精品一区二区久久| xxxhd国产人妻xxx| 欧美激情久久久久久爽电影 | 极品少妇高潮喷水抽搐| 一本一本久久a久久精品综合妖精| 亚洲精品国产精品久久久不卡| 男女免费视频国产| 视频区图区小说| 夫妻午夜视频| 9热在线视频观看99| 老司机靠b影院| 十八禁高潮呻吟视频| 亚洲精品一二三| 欧美xxⅹ黑人| 人人妻人人澡人人看| 法律面前人人平等表现在哪些方面 | 国产av又大| 欧美少妇被猛烈插入视频| 老司机影院成人| 亚洲 国产 在线| 一本一本久久a久久精品综合妖精| 亚洲精品中文字幕一二三四区 | av有码第一页| 亚洲一卡2卡3卡4卡5卡精品中文| 两人在一起打扑克的视频| 丁香六月欧美| 亚洲熟女毛片儿| 国产亚洲av片在线观看秒播厂| 免费在线观看完整版高清| 狠狠狠狠99中文字幕| 这个男人来自地球电影免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 侵犯人妻中文字幕一二三四区| 欧美97在线视频| 免费观看人在逋| 免费不卡黄色视频| 精品一区二区三区av网在线观看 | 麻豆国产av国片精品| 国产激情久久老熟女| 咕卡用的链子| 黑人巨大精品欧美一区二区蜜桃| av视频免费观看在线观看| 久久人妻福利社区极品人妻图片| 久久久国产成人免费| 两个人看的免费小视频| 中文欧美无线码| 亚洲五月婷婷丁香| 国产成人欧美在线观看 | 看免费av毛片| 搡老熟女国产l中国老女人| 一级a爱视频在线免费观看| 好男人电影高清在线观看| 亚洲成av片中文字幕在线观看| 51午夜福利影视在线观看| 99精品久久久久人妻精品| 午夜久久久在线观看| 在线观看免费高清a一片| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 免费观看a级毛片全部| 亚洲中文日韩欧美视频| 亚洲精品第二区| av在线app专区| 视频区欧美日本亚洲| 日韩大码丰满熟妇| 两人在一起打扑克的视频| 青青草视频在线视频观看| av又黄又爽大尺度在线免费看| 脱女人内裤的视频| 精品欧美一区二区三区在线| 50天的宝宝边吃奶边哭怎么回事| 九色亚洲精品在线播放| 巨乳人妻的诱惑在线观看| 视频区欧美日本亚洲| 免费看十八禁软件| 亚洲免费av在线视频| 热re99久久国产66热| 999久久久精品免费观看国产| 热99久久久久精品小说推荐| 51午夜福利影视在线观看| 精品第一国产精品| 精品人妻1区二区| 这个男人来自地球电影免费观看| 91九色精品人成在线观看| 欧美午夜高清在线| 少妇人妻久久综合中文| 久久国产精品影院| 十八禁网站免费在线| 777米奇影视久久| 飞空精品影院首页| 国产免费福利视频在线观看| 午夜福利视频精品| 久久精品国产亚洲av香蕉五月 | 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 王馨瑶露胸无遮挡在线观看| 亚洲成人国产一区在线观看| 精品久久蜜臀av无| 天天躁夜夜躁狠狠躁躁| 男女下面插进去视频免费观看| 久久国产亚洲av麻豆专区| 午夜免费观看性视频| 国产精品秋霞免费鲁丝片| 建设人人有责人人尽责人人享有的| 俄罗斯特黄特色一大片| 亚洲国产精品一区三区| av在线老鸭窝| 两性夫妻黄色片| 曰老女人黄片| 久久久水蜜桃国产精品网| √禁漫天堂资源中文www| 97在线人人人人妻| 嫁个100分男人电影在线观看| 美国免费a级毛片| 国产精品九九99| 一级毛片电影观看| av在线老鸭窝| 美女主播在线视频| 黄网站色视频无遮挡免费观看| 久久中文字幕一级| 中文字幕av电影在线播放| 欧美变态另类bdsm刘玥| 国产区一区二久久| 飞空精品影院首页| 大香蕉久久成人网| 国产精品免费视频内射| 黄色视频,在线免费观看| 天堂8中文在线网| 日韩电影二区| 桃花免费在线播放| 自线自在国产av| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站| 人成视频在线观看免费观看| 欧美日韩国产mv在线观看视频| 久久久欧美国产精品| 日韩中文字幕视频在线看片| 丝瓜视频免费看黄片| 日本av免费视频播放| 99热全是精品| 电影成人av| 女性被躁到高潮视频| 久久人妻福利社区极品人妻图片| 中文字幕高清在线视频| 一本一本久久a久久精品综合妖精| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品中文字幕在线视频| 亚洲一区二区三区欧美精品| 欧美激情久久久久久爽电影 | 一边摸一边做爽爽视频免费| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 欧美激情极品国产一区二区三区| 成人三级做爰电影| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 精品国产超薄肉色丝袜足j| 亚洲精华国产精华精| 超碰成人久久| 香蕉丝袜av| 精品国产国语对白av| 视频区欧美日本亚洲| 一级毛片精品| 午夜福利,免费看| 亚洲情色 制服丝袜| 午夜影院在线不卡| 成人国语在线视频| 午夜免费成人在线视频| 一区在线观看完整版| 欧美成人午夜精品| 最新的欧美精品一区二区| 亚洲精品第二区| 老鸭窝网址在线观看| 一边摸一边抽搐一进一出视频| 久久中文字幕一级| 天天躁日日躁夜夜躁夜夜| 在线天堂中文资源库| 亚洲av电影在线观看一区二区三区| 欧美午夜高清在线| 亚洲精品国产色婷婷电影| av欧美777| www.精华液| 亚洲精品久久成人aⅴ小说| 免费久久久久久久精品成人欧美视频| 午夜影院在线不卡| 成年女人毛片免费观看观看9 | 亚洲国产欧美一区二区综合| 久久久久网色| 纵有疾风起免费观看全集完整版| 老司机亚洲免费影院| cao死你这个sao货| 丝袜脚勾引网站| 精品人妻在线不人妻| 老司机福利观看| 久久精品aⅴ一区二区三区四区| 美女扒开内裤让男人捅视频| 国产主播在线观看一区二区| 熟女少妇亚洲综合色aaa.| 久久精品国产亚洲av香蕉五月 | 亚洲国产精品999| 亚洲精品久久午夜乱码| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品熟女久久久久浪| 久久人妻熟女aⅴ| 亚洲精品国产av成人精品| 国内毛片毛片毛片毛片毛片| 国产在视频线精品| 十八禁网站免费在线| 久久热在线av| 欧美黄色片欧美黄色片| 久久久久久久精品精品| www.av在线官网国产| 午夜日韩欧美国产| 国产av精品麻豆| 我要看黄色一级片免费的| 免费女性裸体啪啪无遮挡网站| 手机成人av网站| 日韩人妻精品一区2区三区| 国产精品1区2区在线观看. | 久久影院123| 18禁国产床啪视频网站| av一本久久久久| 精品人妻熟女毛片av久久网站| 亚洲中文日韩欧美视频| 亚洲人成77777在线视频| 我要看黄色一级片免费的| 在线看a的网站| 黑人巨大精品欧美一区二区mp4| 国产成人影院久久av| 欧美亚洲日本最大视频资源| 一区二区av电影网| 涩涩av久久男人的天堂| 黄色片一级片一级黄色片| 嫩草影视91久久| 国产成人一区二区三区免费视频网站| 99久久人妻综合|