• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distant Proximity Orbits About Asteroids

    2020-01-19 01:34:42DanielScheeres
    深空探測學報 2019年5期

    Daniel J.Scheeres

    (Smead Aerospace Engineering Sciences Department,University of Colorado Boulder,Boulder 80309-0429,USA)

    Abstract:This paper considers the design and dynamics of spacecraft distant from an asteroid,whose gravitational attraction can be neglected at leading order.The motion of the spacecraft then is a function of solar gravity and solar radiation pressure.The differential acceleration between the spacecraft and the small asteroid creates a unique relative dynamics between the two bodies,and provides the spacecraft certain orbits that will remain in the vicinity of the asteroid and which could be used advantageously for observations.The current paper completely solves the simpler case when the asteroid is in a circular heliocentric orbit.The elliptic case is also considered and formulated,with some initial results identified.

    Keywords:asteroid;proximity orbit;motion equation;higher order corrections

    Introduction

    Spacecraft missions to asteroids are a topic of great interest for the scientific and engineering communities.They are the most accessible planetary bodies outside of the Earth-Moon system,their study can deepen our scientific understanding of the formation circumstances of the solar system,and in the future they may prove to be key elements of the exploration infrastructure due to their mineral composition.They also can prove hazardous to society,as the impact of an asteroid could create significant damage on the surface of the Earth.Thus,many of the world's national space agencies have sent missions to explore these bodies for scientific and other purposes.

    These motivations have also led to the extensive study of spacecraft orbital dynamics in the proximity of these small bodies.In all asteroid rendezvous missions to date,the asteroids-though small-have been massive enough to require the attraction of these bodies to be taken into account.Previous missions have either orbited these bodies or have used propulsive controls to hover in their vicinity,essentially nulling the attraction of the asteroid on average.In this paper,we consider a possible future situation where the size of the target asteroid is so small,or the distance of the spacecraft from the asteroid large enough,to enable the overall attraction of the asteroid to be neglected.

    There are several situations where such a target asteroid,or such a proximity dynamics,may fit the overall mission goals.A short discussion of them follows.First,if the target asteroid is quite small,on the order of tens of meters,it may be impossible for a spacecraft to enter direct orbit about it,but instead will be on a neighboring elliptic orbit about the sun,perhaps with some perturbation from the small asteroid mass.The discussion in this paper will show that this motion can be designed to stay on the sunward side of the asteroid,and can vary periodically with an orbit period of one asteroid year.By adjusting the total acceleration acting on the spacecraft,it is also possible to place the spacecraft in an equilibrium point at an arbitrary point distance from a small asteroid on the sunward side.Also,if the asteroid is larger,a spacecraft can still be placed on a similar orbit that does not interact strongly with the asteroid an instead follows a neighboring heliocentric orbit that remains in the vicinity of the asteroid.Such a vantage point may allow for long-term monitoring of the asteroid,serve as a way-station for storing material to be used in the exploration of that asteroid,or if its instruments are properly designed may even be able to carry out substantive observations of the body.These are just some simple examples for when the situation studied in this paper could be of interest.

    The paper is structured as follows.First the fundamental models for motion of a spacecraft about an asteroid are reviewed,along with the appropriate equations of motion.Then we consider situations where the attraction of the asteroid can either be neglected or relegated to a higher-order perturbation.The governing equations of motion are derived for these cases and their general solution discussed.Finally,we make some application of these equations and discuss situations where this model of motion could be used.

    1 Asteroid and Spacecraft Model

    We assume the asteroid has a heliocentric orbit defined by a semi-major axisa,eccentricityeand related orbit parameterp.Furthermore,we assume it has a mean radius ofRand a bulk density ofρ,giving it a total mass ofM=4πρR3/3 and a gravitational parameter ofμ=GM,whereG=6.672 4 × 10-20km3/s2/kg is the gravitational constant.In this paper and analysis we assume that the asteroid is spherical with constant density.We note that the shape of the body can have a dramatic effect on proximity orbital dynamics,as studied in [1],however we do not consider such complexities here.Thus the gravitational attraction of the asteroid is simply -μr/r3,whereris the relative position vector of a point relative to the center of the asteroid andrdenotes its magnitude.

    The other significant perturbation we consider is from the sun,both its gravitational attraction (modeled as a point mass withμSun=1.327 × 1011km3/s2),and due to the solar photons that impinge on the spacecraft.As a simple model we use the one presented in [1],which gives the solar radiation pressure acting on a spacecraft to be

    whereP0is a solar constant approximately equal to 1×108kg km3/s2/m2,dis the vector from the sun to the small body,σis the reflectance of the spacecraft andBis the mass to area ratio of the spacecraft (in kg/m2) which controls the relative strength of this perturbation.Typical values ofBrange between 10~100 kg/m2.Although the solar photons also have an effect on the asteroid orbit,we note that it is quite small relative to the spacecraft,and thus is neglected herein.

    2 Equations of Motion

    2.1 Asteroid-Sun Relative Equations of Motion

    The derivation of the equations of motion of a spacecraft in the vicinity of an asteroid,which in turn is in orbit about the sun,is derived in [1].The most relevant form of these equations for analytical study are taken such that the fundamental frame rotates with the sun-asteroid line,making that a fixed axis of the system.If the asteroid's true anomaly about the sun and its time rate of change is represented asfandthen the equations of motion in this rotating frame are given as

    whereris the position vector of the spacecraft,is the unit vector pointing from the sun to the asteroid,andis the direction perpendicular to the asteroid heliocentric orbit plane,and is the axis about which this frame rotates.

    2.2 Scaled Equations of Motion

    A standard approach for simplifying these equations is to introduce the true anomaly as an independent parameter and to scale the position vector by the time-varying distanced=p/(1+ecosf),defining a new position vectorR=r/d.Applying this transformation simplifies the equations of motion to

    where ()′ represents a derivative with respect to true anomaly (the new independent variable),the vectorRis dimensionless andis a non-dimensional term that represents the strength of the SRP force in terms of local solar gravitational attraction.Rewriting the equations in scalar formyields

    This equation was studied in [2]in a slightly different form.These equations have a close affinity with the elliptic restricted 3-body problem,with the change of moving the origin to the smaller primary,the addition of Hill's approximation for the effect of the larger primary,and the effect of the solar radiation pressure.

    Given a solution to these equations,as a function of true anomalyf,it can be scaled back to a fully dimensional solution relative to the asteroid center as

    2.2.1 Parameter Values

    For the current study it is reasonable to evaluate representative values for the parametersβandμ/μSun.Forβ,we setσ=0 for convenience and leaveBunspecified,to find

    whereBis given in units of kg/m2.Across our range ofBvalues we see thatβ=7.5 × 10-5→ 7.5 × 10-6.

    For the ratio of the asteroid and solar GM,we leave the asteroid density and radius as free parameters.This provides us with

    whereρis in kg/m3andRis in m.While we see that the magnitudes of these two non-dimensional parameters are quite different,we shall see next that when appropriately balanced they yield reasonable values.

    Finally,we note that for definiteness when necessary we assume the asteroid is at approximately 1 AU or~1.5×108km.

    2.2.2 Limits for Gravitational Influence

    The current study is specifically interested in when the attraction of the central asteroid can be neglected,as an approximation.To analyze this we leverage our previous study of these equations and the modified Hill sphere about the asteroid,accounting for SRP on the spacecraft.The limits of the Hill sphere can be approximately defined as the distance of the relative equilibria from the asteroid center.If the SRP effect is ignored,this results in the well-known equilibrium points for the Hill problem

    whereDis the distance in AU and withy*=z*=0.For a typical density of 2 000 kg/m3this distance becomes about 168 times the asteroid radius at 1AU.

    We are more interested in the case when the SRP acceleration is large compared to the gravitational attraction of the asteroid.We can formally represent this case asβ>>μ/μSun/R2.Then (as studied in more detail in[1~2]) the two equilibrium points become different in distance from the asteroid,with the sunward side(X<0)getting relatively far from the body and the anti-sunward side (X>0) getting very close to the body.At lowest order,the sunward side equilibrium distance is

    withy*=z*=0 again.For a mass to area ratio of 100 kg/m2this is 375 km away from the body towards the sun.Note that this point is,to first order,independent of the asteroid gravitational attraction.

    The anti-sunward side equilibrium distance is

    withy*=z*=0 again.Thus for our typical case ofρ=2 000 kg/m3andB=100 kg/m2this is a distance of 3.5×10-3R3/2km.When closer to the asteroid than this distance,the object can sustain orbit about it for at least a limited time.We see that this equilibrium point will be at or below the surface of the asteroid whenR≤17 m in size.Even for larger asteroids we note that this distance is relatively small compared to the sunward equilibrium point.

    2.3 Approximate Equations of Motion

    In the following we will formalize our assumption on the relative smallness of the asteroid gravity by introducing the parameterε=μ/μSun.The solution will be expanded by analytic continuation in this term asR=R0+εR1+ε2R2+…following standard techniques[3].Applying this expansion we find the zeroth order differential equations to be

    This is a modified form of the Tschauner-Hempel(TH) equations,which represent linearized motion about an elliptic orbit[4-6].The TH equations can be solved in closed form,and we show that this version of them can also be solved with the same technique.A spacecraft's trajectory avoiding close approaches to the central asteroid would follow these equations.

    The differential equations for the first order solution can be derived to be

    These are again a perturbed variation of the Tschauner-Hempel equations,with a non-homogeneous term driven by the solution of the zeroth order equations.The equations of motion for higher-order variations will have the same linear structure as above,but increasingly complex expansions of the lower order solutions.

    3 Solutions to the Equations

    In the following we detail the solution to the zeroth order equations of motion and give the form of the solution for higher-order effects.

    3.1 Zeroth Order Equations

    If we make the substitutionthe equations fall into the standard TH form,displacing the center towards the sun by the nominal equilibrium point distance.

    Then the solution can be expressed in standard form.In the following we rely on the discussion by [5],who gives a thorough review of the solutions to the TH equations.

    whereΦ∈R6×6is the state transition matrix for the system.The entries ofΦcan be written out in detail as

    where we inserted zeros in all of the cross coupling terms between the out-of-plane and in-plane terms.The remaining terms are then,takingfo=0,

    where we note the functionLis defined as

    wheretis the time from perihelion.Thus we see thatLwill linearly increase in time,and could lead to a secular drift between the spacecraft and the asteroid.

    3.2 Linear Drift in Orbit

    It is instructive if we combine all terms that contain the drift termL,as in general we would like to eliminate this term on average.This is most easily seen if we combine the different solution components as

    It is significant to note that the drift appears in theX,X′ andY′ components as well,a situation that does not occur for the circular orbit case.

    It is simple to see that all of the drift terms involve the combination of initial conditions (2+e)Xo+(1+e)Y′o,and thus choosing this combination to be zero will ensure that the drift terms do not appear.The simplest way to ensure this is to choose

    Substituting these initial conditions into the solutions forXandYwe find

    To get a better sense of the geometry of motion,we can put these equations into the general form of an ellipse.Doing so then yields the parametric equation

    From this equation we see that the path of the spacecraft will follow an "osculating" ellipse that is centered atX=0 andwith a pulsating "size" along theXaxis equal toand along theYaxis equal toWe note that the relative extent of these directions is now(1+ecosf)/(2+ecosf),and varies from (1+e)/(2+e)→(1 -e)/(2 -e) within one heliocentric orbit of the asteroid.When the drift term is nulled out we see that the resulting motion is stable.

    Figure 1 shows this relative bounded motion in the scaled coordinates over one heliocentric period for a number of different asteroid eccentricities,for a trajectory chosen in the asteroid orbital plane.Here,at periapsis the spacecraft is at a fixed location along the-Xaxis,which runs vertical.For increasing eccentricity the relative motion deviates strongly from an ellipse.Recall that the asteroid is located at the coordinateβ/3 along theXaxis (in scaled coordinates),so that depending on the strength of the SRP,the entire relative trajectory may lie on the sunward side of the asteroid.

    Fig.1 Bounded motion zeroth order scaled solution for different asteroid eccentricities.The X axis points up and away from the sun and the Y axis to the left along the direction of asteroid motion,following usual convention for the Clohessy-Wiltshire equations.The asteroid will lie at a value X=β/3 measured from the origin on the plot

    3.3 Higher Order Corrections

    For solving the first order corrections we note that the linear part of the equations are satisfied by the state transition matrixΦintroduced above.The zeroth order solutions have the form

    and this solution is substituted into the first order equations of motion given in Eqns.17~19.We note that the state transition matrixΦ(f,fo) is computed from the form given in Eqn.24,Φ(f,0),asΦ(f,fo)=Φ(f,0)Φ-1(fo,0)=Φ(f,0)Φ(0,fo).

    Applying standard variation of constants for nonhomogeneous linear systems we can then express the first order correction as

    where 0 is a 3×1 zero vector and

    where the nominal linear solution is substituted intoX0,Y0andZ0,and combined together intoR0=Higher order solutions can be generated in much the same way,providing a rigorous approach to developing an analytical solution to the full equations of motion.

    With this correction term,the full solution to first order is then

    We note that this form of the equations holds for both circular and elliptic cases.

    As a specific example we consider the equilibrium point solution for the circular orbit case.Then the zeroth order state solution is,identically,The correction term is

    and the full expression for the time-varying in-plane positions are

    4 Discussion

    We finish this paper by discussing how these equations and their solution can be used in developing mission designs to small asteroids or that keep a far distance to the central asteroid.The most significant aspect to consider is the existence of the sunward equilibrium point,which serves as a natural vantage point for observation.In these linear equations the equilibrium point is technically unstable,as a small random error will excite the drift term and cause the spacecraft to drift away from the body at a linear increase in time.This instability is not exponential,and thus it can be easily nulled through the execution of control maneuvers.The influence of the asteroid gravitational attraction is seen to only cause an oscillation in its location and,in some sense,stabilizes the motion.Note that the full stability of these equilibria are considered in[2].It is also significant to note that the location of this equilibrium point can be controlled by the addition of a small amount of thrusting.If a constant thrust is added towards the sun,the effect of the SRP is reduced and the equilibrium point will move towards the asteroid.Conversely,thrusting away from the sun will push the equilibrium further from the asteroid and towards the sun.As the level of thrusting is less than the effect of SRP on the spacecraft,we see that by definition this is a modest thrust.

    In addition to the stationary equilibrium orbits,it is also possible to utilize the time-varying periodic solutions.These will naturally provide a range of viewing geometries,and can also be excited in the out of plane direction.These orbits can be chosen such that they always remain on the sunward side,or if a larger amplitude is used can also cross the asteroid radius and pass behind the asteroid.A drawback for these orbits is their long period,an asteroid year.Thus,they may only be of interest for long-term monitoring or a mission with no significant time constraints.Again,it is possible to modify the characteristics of these orbits through the addition of a small value of thrust towards or away from the sun.

    The current discussion does not consider the first order perturbations to these solutions except in the most trivial case.A future topic of interest would be what the effect of the asteroid gravity is,at first order,when the spacecraft is parked at a distance away from the sunasteroid line or when it is placed into a periodic orbit.These cases can all be considered rigorously as the general solution to the equations is known,and the first order perturbations can be evaluated through a simple quadrature.

    5 Conclusion

    This paper considers the orbital dynamics and design of trajectories about very small asteroids or distant from larger asteroids.In these cases the motion is dominated by the heliocentric asteroid orbit,and motion occurs on a timescale of one asteroid year.Despite this drawback,there may be specific applications that may be attractive in these situations,and which this analysis may help develop.The paper provides a summary of the equations governing spacecraft motion in this case and reviews the basic solution procedures for these equations.

    日韩视频在线欧美| 97超视频在线观看视频| 能在线免费看毛片的网站| 99久国产av精品| 久久这里有精品视频免费| 国产av码专区亚洲av| 亚洲成人中文字幕在线播放| 偷拍熟女少妇极品色| 最近2019中文字幕mv第一页| 天堂网av新在线| 小说图片视频综合网站| 精品久久久久久电影网 | 99热这里只有精品一区| 国产精品99久久久久久久久| 亚洲自拍偷在线| 丰满乱子伦码专区| 好男人在线观看高清免费视频| 亚洲国产精品久久男人天堂| 精品酒店卫生间| 日韩欧美精品v在线| 色综合站精品国产| 非洲黑人性xxxx精品又粗又长| 国产日韩欧美在线精品| 色网站视频免费| 国产一区二区在线观看日韩| 国产黄片视频在线免费观看| 老司机福利观看| av在线亚洲专区| 在线观看av片永久免费下载| 中文字幕熟女人妻在线| 桃色一区二区三区在线观看| 欧美+日韩+精品| 男人舔奶头视频| 变态另类丝袜制服| 午夜激情欧美在线| 国产精品不卡视频一区二区| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 中文乱码字字幕精品一区二区三区 | 精品久久久久久成人av| 夫妻性生交免费视频一级片| 久久久久久久久久黄片| 国产淫片久久久久久久久| 国产乱人偷精品视频| 精品酒店卫生间| 男人舔女人下体高潮全视频| 99国产精品一区二区蜜桃av| 18禁动态无遮挡网站| 高清视频免费观看一区二区 | 最近视频中文字幕2019在线8| 能在线免费观看的黄片| 91精品一卡2卡3卡4卡| 成人毛片a级毛片在线播放| 最近最新中文字幕免费大全7| 国模一区二区三区四区视频| 99热精品在线国产| 汤姆久久久久久久影院中文字幕 | 亚洲av熟女| 如何舔出高潮| 色网站视频免费| av免费在线看不卡| 日本一二三区视频观看| 免费人成在线观看视频色| 国产成人精品久久久久久| 亚洲一级一片aⅴ在线观看| 亚洲国产最新在线播放| 国产淫语在线视频| 欧美日本亚洲视频在线播放| 免费搜索国产男女视频| 男女那种视频在线观看| 又粗又爽又猛毛片免费看| 久久久久久国产a免费观看| 熟女人妻精品中文字幕| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| 久久精品久久精品一区二区三区| 特大巨黑吊av在线直播| 国内精品一区二区在线观看| 久久久久久久久久黄片| 少妇熟女欧美另类| 伊人久久精品亚洲午夜| 我的女老师完整版在线观看| 成人性生交大片免费视频hd| 色5月婷婷丁香| 日日啪夜夜撸| 亚洲综合色惰| 欧美日本亚洲视频在线播放| av在线蜜桃| 美女黄网站色视频| 欧美激情在线99| 婷婷色av中文字幕| 日韩成人伦理影院| 国产爱豆传媒在线观看| 2021天堂中文幕一二区在线观| 美女大奶头视频| 亚洲av电影在线观看一区二区三区 | 干丝袜人妻中文字幕| 啦啦啦观看免费观看视频高清| 成人欧美大片| 老司机影院毛片| 黄片wwwwww| 日韩av在线大香蕉| 丰满少妇做爰视频| 午夜福利成人在线免费观看| 国产免费又黄又爽又色| 高清视频免费观看一区二区 | 国产伦精品一区二区三区四那| 小说图片视频综合网站| 精品人妻偷拍中文字幕| 高清日韩中文字幕在线| 久久久久久久午夜电影| av女优亚洲男人天堂| 联通29元200g的流量卡| 你懂的网址亚洲精品在线观看 | 最近手机中文字幕大全| 九九爱精品视频在线观看| 国产淫语在线视频| 欧美+日韩+精品| 精品人妻偷拍中文字幕| 国内揄拍国产精品人妻在线| 精品午夜福利在线看| 美女xxoo啪啪120秒动态图| 两个人视频免费观看高清| 一区二区三区乱码不卡18| 免费黄色在线免费观看| 久久草成人影院| 免费人成在线观看视频色| 久久鲁丝午夜福利片| 麻豆久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 日本猛色少妇xxxxx猛交久久| 欧美性感艳星| 久久韩国三级中文字幕| 久久精品国产亚洲网站| av在线老鸭窝| 欧美高清成人免费视频www| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一区二区三区不卡| 免费观看a级毛片全部| 国产高清视频在线观看网站| 少妇裸体淫交视频免费看高清| 91精品伊人久久大香线蕉| 一本一本综合久久| 久久久国产成人免费| 国产精品一二三区在线看| 晚上一个人看的免费电影| 欧美另类亚洲清纯唯美| 亚洲美女搞黄在线观看| 免费人成在线观看视频色| 国产毛片a区久久久久| 91aial.com中文字幕在线观看| 99久久中文字幕三级久久日本| 美女国产视频在线观看| 久久精品影院6| 99久久无色码亚洲精品果冻| 男插女下体视频免费在线播放| 午夜福利视频1000在线观看| 99热全是精品| 免费黄网站久久成人精品| 级片在线观看| 别揉我奶头 嗯啊视频| 99久久成人亚洲精品观看| 天堂av国产一区二区熟女人妻| 可以在线观看毛片的网站| 久久久久久久久中文| 久久亚洲国产成人精品v| 久久精品国产亚洲av涩爱| 久久久久国产网址| 黄色一级大片看看| 国产毛片a区久久久久| 国产老妇女一区| 精品熟女少妇av免费看| 成人毛片60女人毛片免费| 久久精品人妻少妇| 国产三级在线视频| 久久久久精品久久久久真实原创| 午夜a级毛片| 国产成人91sexporn| 少妇的逼好多水| 色综合站精品国产| 欧美一区二区亚洲| 亚洲欧美日韩卡通动漫| 一区二区三区四区激情视频| 亚洲五月天丁香| 亚洲欧美日韩高清专用| 国产精品久久久久久精品电影小说 | 日本色播在线视频| 亚洲av.av天堂| 久久久久久伊人网av| 亚洲精品色激情综合| 99在线人妻在线中文字幕| 日本免费a在线| 1024手机看黄色片| 在线播放国产精品三级| 欧美高清成人免费视频www| 少妇的逼水好多| 国产黄片美女视频| 午夜福利在线在线| 国产精品人妻久久久影院| 欧美zozozo另类| 97热精品久久久久久| 日韩av在线大香蕉| 免费av毛片视频| 国产精品国产三级国产av玫瑰| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 最近中文字幕高清免费大全6| 日日干狠狠操夜夜爽| 性插视频无遮挡在线免费观看| 国产在视频线精品| 午夜爱爱视频在线播放| 成人二区视频| 亚洲av电影不卡..在线观看| 久热久热在线精品观看| 别揉我奶头 嗯啊视频| 高清毛片免费看| 精品国内亚洲2022精品成人| 99久国产av精品| 乱码一卡2卡4卡精品| 国产精品电影一区二区三区| 成人亚洲欧美一区二区av| 久久99精品国语久久久| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| a级毛色黄片| 欧美变态另类bdsm刘玥| 亚洲中文字幕日韩| 91午夜精品亚洲一区二区三区| 自拍偷自拍亚洲精品老妇| 国产高清视频在线观看网站| 久久久久网色| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 中文欧美无线码| АⅤ资源中文在线天堂| 日韩高清综合在线| 女的被弄到高潮叫床怎么办| 日本一本二区三区精品| 欧美日本视频| 亚洲电影在线观看av| av免费在线看不卡| 97在线视频观看| 偷拍熟女少妇极品色| 亚洲av免费高清在线观看| 午夜久久久久精精品| 白带黄色成豆腐渣| 97人妻精品一区二区三区麻豆| 黄片wwwwww| 久久亚洲精品不卡| 亚洲综合色惰| 午夜亚洲福利在线播放| 少妇熟女欧美另类| 国产又色又爽无遮挡免| 亚洲人成网站在线观看播放| 成年版毛片免费区| 在线观看av片永久免费下载| 亚洲国产欧美在线一区| 亚洲精品国产av成人精品| 晚上一个人看的免费电影| 99久久精品一区二区三区| 国产精品.久久久| 纵有疾风起免费观看全集完整版 | 在线免费十八禁| 国产69精品久久久久777片| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 黄色配什么色好看| 国产免费福利视频在线观看| 亚洲精品日韩av片在线观看| 亚洲18禁久久av| 91在线精品国自产拍蜜月| 好男人在线观看高清免费视频| 91精品国产九色| 一级毛片aaaaaa免费看小| 国产成人freesex在线| 国产免费一级a男人的天堂| av免费观看日本| 99久久中文字幕三级久久日本| 有码 亚洲区| 丝袜美腿在线中文| 欧美3d第一页| 久久久久免费精品人妻一区二区| 国产精品国产三级专区第一集| 亚洲国产精品sss在线观看| 亚洲av.av天堂| 69人妻影院| 建设人人有责人人尽责人人享有的 | 身体一侧抽搐| 日韩精品有码人妻一区| 欧美激情在线99| 嘟嘟电影网在线观看| 国产探花极品一区二区| 国内少妇人妻偷人精品xxx网站| 97人妻精品一区二区三区麻豆| 国产成人91sexporn| 国产精品女同一区二区软件| 麻豆成人午夜福利视频| 一级爰片在线观看| 久久久久国产网址| 亚洲中文字幕一区二区三区有码在线看| 久久99精品国语久久久| 国产精品国产三级国产av玫瑰| 免费大片18禁| 国产麻豆成人av免费视频| 亚洲国产精品国产精品| 不卡视频在线观看欧美| 午夜福利高清视频| 国产精品av视频在线免费观看| 有码 亚洲区| 国产精华一区二区三区| 欧美高清性xxxxhd video| 高清视频免费观看一区二区 | 又爽又黄a免费视频| 尾随美女入室| 欧美精品一区二区大全| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 卡戴珊不雅视频在线播放| 国产精品美女特级片免费视频播放器| 国产一区有黄有色的免费视频 | 三级国产精品片| 欧美一级a爱片免费观看看| 国产精品一区二区三区四区免费观看| 亚洲欧美日韩无卡精品| 嫩草影院精品99| 麻豆av噜噜一区二区三区| 国产探花极品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲高清免费不卡视频| 干丝袜人妻中文字幕| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 97人妻精品一区二区三区麻豆| 一边亲一边摸免费视频| 亚洲最大成人手机在线| 午夜福利成人在线免费观看| 精品酒店卫生间| 亚洲伊人久久精品综合 | 久久久久网色| 国产大屁股一区二区在线视频| 亚洲,欧美,日韩| 热99在线观看视频| 久久精品久久精品一区二区三区| 91精品国产九色| 亚洲性久久影院| 日本与韩国留学比较| 免费大片18禁| 亚洲av电影不卡..在线观看| 国产精品.久久久| av国产免费在线观看| 亚洲18禁久久av| 毛片一级片免费看久久久久| 久久草成人影院| av福利片在线观看| 亚洲av福利一区| 久久久久九九精品影院| 高清毛片免费看| 夫妻性生交免费视频一级片| 国产伦精品一区二区三区视频9| 卡戴珊不雅视频在线播放| 别揉我奶头 嗯啊视频| 老司机影院毛片| 日韩欧美三级三区| 中文乱码字字幕精品一区二区三区 | 日日干狠狠操夜夜爽| 婷婷色av中文字幕| 国产精品不卡视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久末码| 尤物成人国产欧美一区二区三区| 亚洲国产高清在线一区二区三| 久久精品国产自在天天线| 中国国产av一级| 乱系列少妇在线播放| 成人综合一区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 91午夜精品亚洲一区二区三区| 国产一区二区在线av高清观看| 国产真实乱freesex| 99热精品在线国产| ponron亚洲| 久久久久久国产a免费观看| 国产成人aa在线观看| 国产精品人妻久久久久久| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 国产精品国产三级国产专区5o | 九色成人免费人妻av| 国产人妻一区二区三区在| 成人午夜精彩视频在线观看| 亚洲精品乱码久久久久久按摩| 欧美一区二区国产精品久久精品| 国语对白做爰xxxⅹ性视频网站| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕日韩| 欧美性猛交黑人性爽| 精品久久久久久成人av| 国产精品1区2区在线观看.| 欧美bdsm另类| 欧美xxxx黑人xx丫x性爽| 天堂网av新在线| 一区二区三区高清视频在线| 免费观看人在逋| 国产色爽女视频免费观看| 日日啪夜夜撸| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 国产av在哪里看| 一级毛片久久久久久久久女| 国产精品久久电影中文字幕| 国产精品综合久久久久久久免费| 69人妻影院| 国产免费又黄又爽又色| 久久精品久久久久久噜噜老黄 | 91狼人影院| 国产三级在线视频| 日韩强制内射视频| 久久99热6这里只有精品| 97超碰精品成人国产| 色噜噜av男人的天堂激情| 国产精品一区www在线观看| 久久亚洲国产成人精品v| 91aial.com中文字幕在线观看| 搡老妇女老女人老熟妇| 亚洲美女搞黄在线观看| 日本免费在线观看一区| 亚洲欧洲日产国产| 国产精品一二三区在线看| 少妇高潮的动态图| 美女黄网站色视频| 国产美女午夜福利| 一个人看视频在线观看www免费| 搡女人真爽免费视频火全软件| 一区二区三区乱码不卡18| 欧美97在线视频| 亚洲精品亚洲一区二区| 少妇被粗大猛烈的视频| 欧美激情在线99| 精品久久久久久成人av| 夜夜看夜夜爽夜夜摸| 亚洲一级一片aⅴ在线观看| 超碰97精品在线观看| 大话2 男鬼变身卡| 男女视频在线观看网站免费| 啦啦啦韩国在线观看视频| 亚洲av中文av极速乱| 久久6这里有精品| 又黄又爽又刺激的免费视频.| 久久精品人妻少妇| 午夜老司机福利剧场| 高清视频免费观看一区二区 | 五月伊人婷婷丁香| 国产中年淑女户外野战色| 亚洲av成人精品一区久久| 黄色日韩在线| 国产精品一及| 非洲黑人性xxxx精品又粗又长| 小说图片视频综合网站| 偷拍熟女少妇极品色| 中文字幕人妻熟人妻熟丝袜美| 久久久午夜欧美精品| 亚洲va在线va天堂va国产| 亚洲在久久综合| 久久人人爽人人爽人人片va| 欧美极品一区二区三区四区| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 少妇的逼水好多| 国产精品久久久久久精品电影| 人妻少妇偷人精品九色| 一级黄色大片毛片| 国产精品女同一区二区软件| 国产探花在线观看一区二区| 久久精品夜夜夜夜夜久久蜜豆| 麻豆av噜噜一区二区三区| 麻豆久久精品国产亚洲av| 国产黄色小视频在线观看| 天堂网av新在线| 少妇丰满av| 在线免费观看不下载黄p国产| 少妇高潮的动态图| 亚洲av福利一区| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 女人十人毛片免费观看3o分钟| 日韩一区二区视频免费看| 精品一区二区免费观看| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看 | 国产91av在线免费观看| 只有这里有精品99| 久99久视频精品免费| 伦理电影大哥的女人| 久久久久久久午夜电影| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 亚洲在线观看片| 国产精品国产三级国产av玫瑰| 国产在视频线在精品| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 插逼视频在线观看| 日韩成人av中文字幕在线观看| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 在线免费观看不下载黄p国产| 欧美潮喷喷水| 国产精品久久久久久精品电影| 国产精品一二三区在线看| 国产一级毛片七仙女欲春2| 91在线精品国自产拍蜜月| 秋霞伦理黄片| 99久久中文字幕三级久久日本| 国产单亲对白刺激| 国产精品综合久久久久久久免费| 亚洲婷婷狠狠爱综合网| 国产午夜精品论理片| 亚洲精品色激情综合| 亚洲久久久久久中文字幕| 久久99精品国语久久久| 性色avwww在线观看| 少妇高潮的动态图| 久久久精品94久久精品| 老女人水多毛片| 久久久久久久久大av| 国产精品久久电影中文字幕| av免费观看日本| 婷婷色av中文字幕| 只有这里有精品99| 免费在线观看成人毛片| 国产极品精品免费视频能看的| 久久精品久久精品一区二区三区| 波多野结衣巨乳人妻| 国产欧美另类精品又又久久亚洲欧美| 欧美高清性xxxxhd video| 亚洲国产精品sss在线观看| 麻豆精品久久久久久蜜桃| 日韩av在线免费看完整版不卡| av播播在线观看一区| 黄色配什么色好看| 高清视频免费观看一区二区 | 高清日韩中文字幕在线| 久久99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 国产精品精品国产色婷婷| 一级爰片在线观看| 在线免费观看的www视频| 日本黄色片子视频| 亚洲精品aⅴ在线观看| 99国产精品一区二区蜜桃av| 色5月婷婷丁香| 久久久久久久午夜电影| 中文字幕久久专区| 国产精品人妻久久久影院| 亚洲在线自拍视频| 国产一区亚洲一区在线观看| 国产精品永久免费网站| 精品久久久久久电影网 | 精华霜和精华液先用哪个| 国产v大片淫在线免费观看| 91av网一区二区| 国产精品久久电影中文字幕| 成人国产麻豆网| 国产精品久久电影中文字幕| 男女下面进入的视频免费午夜| 女人被狂操c到高潮| 国产一区二区三区av在线| 久久精品国产亚洲网站| 久久久午夜欧美精品| 国产乱来视频区| 日韩人妻高清精品专区| 成人性生交大片免费视频hd| 欧美一区二区精品小视频在线| 简卡轻食公司| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 亚洲中文字幕日韩| 禁无遮挡网站| 麻豆久久精品国产亚洲av| 国产片特级美女逼逼视频| 中文天堂在线官网| 国产黄色视频一区二区在线观看 | 久久久国产成人免费| ponron亚洲| 99热全是精品| 日本午夜av视频| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品久久久久久久电影| 2021少妇久久久久久久久久久| 国产女主播在线喷水免费视频网站 | 日韩欧美在线乱码| 国产视频首页在线观看| 亚洲欧美成人精品一区二区| 美女xxoo啪啪120秒动态图| 久久久久免费精品人妻一区二区| 99九九线精品视频在线观看视频| 欧美激情国产日韩精品一区| 一个人免费在线观看电影| 黄色一级大片看看| 午夜福利在线观看吧| 中文亚洲av片在线观看爽| 久久久色成人| 亚洲精品亚洲一区二区| 韩国高清视频一区二区三区| 亚洲成人中文字幕在线播放| 午夜精品国产一区二区电影 | 免费看av在线观看网站| 看非洲黑人一级黄片| 在线播放国产精品三级| 亚洲av福利一区| 国产又色又爽无遮挡免| 一级二级三级毛片免费看| 成人高潮视频无遮挡免费网站| 嫩草影院入口|