• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Stability and Oscillation of a kind of Functional Differential Equations

    2020-01-15 06:47:20WANGQiYAOJieyi

    WANG Qi YAO Jie-yi

    (School of Applied Mathematics,Guangdong University of Technology,Guangzhou 510006,China)

    Abstract The paper focuses on the stability and oscillation of numerical solutions for a kind of functional differential equations.Firstly,the conditions of numerical stability and oscillation are obtained by using the θ-methods.Secondly,we studied the preservation behavior of numerical methods for the two dynamical properties,namely under which conditions the stability and oscillation of the analytic solution can be inherited by numerical methods.Finally,some numerical examples are given.

    Key words Functional differential equations;θ-methods;numerical solution;stability;oscillation

    0 Introduction

    As a special kind of functional differential equations,the differential equation with piecewise continuous arguments (DEPCA) has aroused lots of attention.Various properties of DEPCA have been investigated deeply.Such as convergence[16],stability[4,11],oscillation[2],periodicity[1],bifurcation[3]and asymptotic behavior[5],etc.However,all papers mentioned above deal with the properties of analytic solution of DEPCA.Nowadays,it is worth noting that numerical analysis of DEPCA be of particular interest for many scientists.Some important properties such as numerical stability[8],numerical oscillation[6,7]and numerical dissipativity[15]were investigated.In recent two papers [9,17],the authors discussed numerical approximation of DEPCA in stochastic and impulsive case,respectively.In the case of PDE,some our contributions[12,13]maybe noted.Different from above cases,in the present work,we shall study both numerical stability and oscillation for a more complicated DEPCA with scalar coefficients,and get some new results.

    In this paper we consider the following DEPCA

    (1)

    herea,b,care all real coefficients andu0is initial condition,[·] denotes the greatest integer function.In particularly,whenc=0,the equation in Eq.(1) becomesu′(t)=au(t)+bu([t]),which is exactly the case of [8].Ifb=0,the equation in Eq.(1) becomesu′(t)=au(t)+cu(2[(t+1)/2]),which is exactly the case of [10].Thus,the results in this paper are the generalization of corresponding ones in [8] and [10].The following results for the analytical stability and oscillation of Eq.(1) will be useful for the upcoming analysis.

    Theorem1[14]The analytic solution of Eq.(1) is asymptotically stable for any initial value,if one of the following cases is true

    (2)

    and

    (3)

    Theorem2[14]Assume thata≠0,then Eq.(1) is oscillatory if and only if one of the following conditions is true

    (4)

    1 The discrete scheme

    Seth=1/m(m≥1) be stepsize,we consider the linearθ-method to Eq.(1)

    (5)

    and the one-legθ-method to Eq.(1)

    (6)

    hereθ∈[0,1],un,uh([nh]) anduh(2[(nh+1)/2]) denote approximations tou(t),u([t]) andu(2[(t+1)/2]) attn,respectively.

    Letn=km+l(l=0,1,…,m-1),we defineuh(tn+ηh) asukm,uh(2[(tn+ηh+1)/2]) asu2kmaccording to [8,10],where 0≤η≤1.Thus Eqs.(5) and (6) can be reduced to the same recurrence relation

    (7)

    It is easily seen that Eq.(7) is equivalent to the following two cases

    (1) Ifa≠0,

    (8)

    (9)

    (2) Ifa=0,

    (10)

    (11)

    Theorem3 Assume thatλ≠0,then Eq.(1) has the numerical solution

    (12)

    fora≠0,wherel=0,1,2,…,m-1 and

    and

    (13)

    fora=0,wherel=0,1,2,…,m-1 andλ=(b+1)(b+c+1)/(1-c).

    ProofAssume thatunis a solution of Eq.(7) with conditionsu2jm=d2jandu(2j-1)m=d2j-1.It follows from (9) that

    (14)

    From (14) and (8) withl=m-1 we have

    which implies that

    (15)

    hence

    then ifa≠0 andλ≠0 we get (12).Formula (13) can be obtained in the same way.The proof is complete.

    2 Stability and oscillation of numerical solution

    Lemma1un→0 asn→if and only if |λ|<1,whereλis defined in Theorem 3.

    Theorem4 The numerical solution of Eq.(1) is asymptotically stable for u0,if one of the following cases is true

    (16)

    and

    (17)

    ProofAccording to Lemma 1 and Theorem 3 we know that the numerical solution of Eq.(1) is asymptotically stable if and only if

    (18)

    fora≠0 and

    (19)

    fora=0.

    Ifa≠0,from (18) we have the following two inequalities hold

    which are equivalent to

    so we can get (16).Ifa=0,similar to the case ofa≠0,we can get (17) from (19).

    From Theorem 3 we have the following corollary.

    Corollary1 Assume thata≠0 then

    wheredj=ujmand satisfies (15).

    It is easy to check that the following two lemmas are hold.

    Lemma2 Sequenceul=-aαl/(αl-1) is strictly monotonic increasing forl=0,1,…,manda≠0.

    Lemma3 Assume thatb+c>-aαm/(αm-1) holds,thenb+c>-aαl/(αl-1) holds forl=0,1,…,m-1 implies thatαl+(b+c)(αl-1)/a>0.

    Theorem5 Assume thata≠0,then Eq.(7) is oscillatory if and only if any of the following conditions is satisfied

    (20)

    ProofSufficiency.It follows from (19) that the sequence {dj}oscillates under any of the condition (20).Sinceujm=djforj=0,1,…, sounalso oscillates.

    Necessity.We assume that any of the following hypotheses is satisfied

    (21)

    Letunbe the solution of Eq.(7),then from (15) and (21) we havedj>0 forj=0,1,2,…. By Corollary 1,Lemmas 2 and 3 we get

    (1) Forn=2jm+landj=0,1,2,…

    (2) Forn=(2j-1)m+landj=1,2,…

    So we know thatunis a monotonous sequence forn=(2j-1)m+l.On the other hand,u(2j-1)m+m=d2jatl=m,sounhas the minimum valued2jord2j-1forn=(2j-1)m+l,namely

    un≥min{d2j-1,d2j}>0.

    Combining (i) with (ii),we obtainun>0 forn=km+l.This contradicts the assumption thatunoscillates.The proof is complete.

    3 Preservation of stability

    Definition1 The set of all triples (a,b,c) which satisfy the condition (2) is called an asymptotical stability region denoted by H.

    Followed by Definition 1,the numerical asymptotical stability region can be denoted by S.

    Lemma4[18]Letφ(x)=1/x-1/(ex-1),thenφ(x) is a decreasing function andφ(-)=1,φ(0)=1/2 andφ(+)=0.

    Lemma5[18]For allm>|a|,

    (1+a/(m-θa))m≥eaif and only if 1/2≤θ≤1 fora>0,φ(-1)≤θ≤1 fora<0;

    (1+a/(m-θa))m≤eaif and only if 0≤θ≤1/2 fora<0,0≤θ≤φ(1) fora>0,

    whereφ(x)=1/x-1/(ex-1).

    Lemma6 For allm>M,

    (1) (1+a/(m-θa))m≥eaif and only if 1/2≤θ≤1 fora>0,φ(a/M)≤θ≤1 fora<0;

    (2) (1+a/(m-θa))m≤eaif and only if 0≤θ≤1/2fora<0,0≤θ≤φ(a/M) fora>0,

    whereφ(x)=1/x-1/(ex-1).

    Proof(i) From (1+a/(m-θa))m≥eawe haveθ≥m/a-1/(ea/m-1).So for allm>M,in view of Lemma 4 we obtain 1/2≤θ≤1fora>0,φ(a/M)≤θ≤1fora<0.The case of (ii) can be proved in the same way.

    Lemma7 Assume that inequalityp

    (1) 1/2≤θ≤1 or 0≤θ≤φ(1) form≥Manda>0;

    (2)φ(-1)≤θ≤1 or 0≤θ≤1/2 form≥Manda<0,

    whereφ(x)=1/x-1/(ex-1).

    ProofFor alla≠0,there exists aM0>0,whenm>M0,the range ofαmhas the following two cases

    ea≤αm

    Letε=min{q-ea,ea-p},ifea≤αm

    We will investigate which condition leads toH?S.For convenience,we divide the regionHinto five parts

    H0={(0,b,c)∈H:a=0},H1={(a,b,c)∈HH0:a>0,(a+b+c)(a+b-c)>0},

    H4={(a,b,c)∈HH0:a<0,(a+b+c)(a+b-c)<0}.

    In the similar way,we denote

    S0={(0,b,c)∈S:a=0},S1={(a,b,c)∈SS0:a>0,(a+b+c)(a+b-c)>0},

    S4={(a,b,c)∈SS0:a<0,(a+b+c)(a+b-c)<0}.

    Hi∩Hj=?,Si∩Sj=?,Hi∩Sj=?,i≠j,i,j=0,1,2,3,4.

    Therefore,we can conclude thatH?Sis equivalent toHi?Si,i=0,1,2,3,4.

    Ifa>0,(2) becomes

    (22)

    (16) yields

    (23)

    Ifa<0,(2) turns into

    (24)

    (16) gives

    (25)

    Theorem6 The stability regions have the following five relationships

    H0?S0if and only if 0≤θ≤1;H1?S1if and only if 0≤θ≤φ(1);H2?S2if1/2≤θ≤1 or 0≤θ≤φ(1);H3?S3if and only ifφ(-1)≤θ≤1;H4?S4ifφ(-1)≤θ≤1 or 0≤θ≤1/2,whereφ(x)=1/x-1/(ex-1).

    Proof(i) Noticing that (3) and (17) are the same in form,soH0?S0holds for allθwith 0≤θ≤1.

    (ii) By the notation ofH1andS1,(22) yields

    (23)can be changed into

    Therefore,H1?S1if and only ifαm≤ea,so by Lemma 5 we haveH1?S1if and only if 0≤θ≤φ(1).

    (iii) By the notation ofH2andS2,(22) becomes

    (23) gives

    (iv) and (v) can be proved in the similar way.

    4 Preservation of oscillation

    Definition2 We call the θ-methods preserve oscillation of Eq.(1) if Eq.(1) oscillates,which implies that there is anh0such that Eq.(7) oscillates forh

    By some easy inductions we have the next lemma.

    Lemma8 For allm>|a| andθ∈[0,1],

    (1) -a-1<-aαm/(αm-1)<-aand 00;

    (2) -1<-aαm/(αm-1)<0 and -a

    The following lemma can be naturally obtained from Theorem 2.

    Lemma9 Eq.(1) is oscillatory if any of the following conditions is satisfied

    (1)b+c<-aea/(ea-1),b≥-aandc>a/(ea-1) fora>0;

    (2)b+c<-aea/(ea-1),b≥0 andc>a/(ea-1) for -ln2≤a<0;

    (3)b+c<-aea/(ea-1),b≥0 andc>a/(ea-1),b+c>0,b<-aea/(ea-1) andc≤-afora<-ln2.

    By Theorem 5,Lemmas 8 and 9 the following corollary is obtained.

    Corollary2 For allm>|a|,under the condition of Lemma 9,if

    holds,then the numerical solutions inherit oscillation of the analytic solutions of Eq.(1).

    So we have the first result for preservation of oscillation.

    Theorem7 The numerical solutions inherit oscillation of the analytic solutions of Eq.(1) if one of the following conditions holds

    (1) 1/2≤θ≤1 fora>0;

    (2) 0≤θ≤1/2 fora<0.

    ProofFrom Corollary 2 we obtain that the numerical solutions inherit oscillation of the analytic solutions of Eq.(1) ifαm≥eafora>0 andαm≤eafora<0.Then by Lemma 5 the proof is finished.

    Furthermore,from Theorem 2 we can easily obtain the following lemma.

    Lemma10 Eq.(1) is oscillatory if any of the following conditions is satisfied

    (1)b+c<-a-1,b>-aea/(ea-1) andc≥1 fora>a1;

    (2)b+c<-a-1,b>-aea/(ea-1) andc≥1,b+c>-aea/(ea-1),b≤-a-1,c

    (3)b+c≤-1,b>-aea/(ea-1) andc≥-a+1,b+c>-aea/(ea-1),b≤-1,c

    wherea1is the positive root of equationea-2a-1=0.

    By Theorem 5,Lemmas 8 and 10 the following corollary is got.

    Corollary3 For allm>|a|,under the condition of Lemma 10,if

    holds,then the numerical solutions inherit oscillation of the analytic solutions of Eq.(1).

    So we have the second result for preservation of oscillation.

    Theorem8 The numerical solutions inherit oscillation of the analytic solutions of Eq.(1) if one of the following conditions holds (1) 0≤θ≤φ(1) fora>0;(2)φ(-1)≤θ≤1 fora<0,whereφ(x)=1/x-1/(ex-1).

    ProofFrom Corollary 3 we obtain that the numerical solutions inherit oscillation of the analytic solutions of Eq.(1) ifαm≤eafora>0 andαm≥eafora<0.Then by Lemma 5 the proof is completed.

    andM=max{|a|,M*} such that

    so the third result for preservation of oscillation is as follows.

    Theorem9 The numerical solutions inherit oscillation of the analytic solutions of Eq.(1) if one of the following conditions holds (1) 0≤θ≤φ(1)or 1/2≤θ≤1 fora>0 andm≥M;(2)φ(-1)≤θ≤1 or 0≤θ≤1/2 fora<0 andm≥M,whereφ(x)=1/x-1/(ex-1).

    ProofIt is easy to know that the range ofa/(αm-1) has two cases for allm≥M,a/(αm-1)≤a/(ea-1) and (ii)a/(αm-1)≥a/(ea-1).

    The first case implies thatαm≥eafora>0 andαm≤eafora<0,then by Lemmas 5,6 we have that the numerical solutions inherit oscillation of Eq.(1) if 1/2≤θ≤1 fora>0 and 0≤θ≤1/2 fora<0.

    The second case can be obtained similarly.The proof is complete.

    Remark1 It is easy to see thatun=u(tn) fora=0,so the preservation of oscillation of the θ-methods is obvious whena=0.

    5 Numerical simulations

    We propose some examples to test the above main results.

    Consider the equation

    (26)

    Letm=100 andθ=0.5,it is can be seen that the condition (16) is satisfied fora=1,b=1,c=-3.In Figure 1,we draw the figure of the numerical solution of Eq.(26),from this figure we know that the numerical solution of Eq.(26) is asymptotically stable,which is in agreement with Theorem 4.

    For the equation

    (27)

    We can test thata=1,b=-1,c=-3,m=100 andθ=0.4 satisfy the third condition in (20).In Figure 2,we draw the figure of the numerical solution of Eq.(27),we can see that the numerical solution of Eq.(27) is oscillatory,which coincides with Theorem 5.

    We consider the equation

    (28)

    it is easy to see thata=1,b=1.5,c=-3,m=100>M=2 andθ=0.4 satisfy (iii) in Theorem 6.We gave the analytic solutions and the numerical solutions of Eq.(28) in Figure 3,we can easily see that the numerical solutions inherit the stability of analytic solutions of Eq.(28),which in accordance with Theorem 6.

    Consider the equation

    (29)

    Letm=100 andθ=0.7,it can be checked thata=-1,b=-1,c=1 satisfy (iv) in Theorem 6.In Figure 4,we draw the figures of the analytic solution and the numerical solution of Eq.(29),respectively,we can see that theθ-methods preserve the stability of Eq.(29),which is in agreement with Theorem 6.

    For the equation

    (30)

    it is not difficult to see thata=-1,b=-0.8,c=1 satisfy (iii) in Lemma 9.Letm=100 andθ=0.4.We gave the analytic solutions and the numerical solutions of Eq.(30) in Figure 5.It shows that the numerical solutions inherit the oscillation of analytic solutions of Eq.(30),which coincides with Theorem 7.

    Furthermore,for the equation

    (31)

    We can verify that the coefficientsa=1,b=1,c=-5 satisfy (iii) in Lemma 10.Letm=100>M=2 andθ=0.8,in Figure 6,we draw the figures of the analytic solution and the numerical solution of Eq.(31),respectively,we can see that theθ-methods preserve the oscillation of Eq.(31),which is in agreement with Theorem 9.

    The other results can be tested in the same way.All numerical results show good agreement with our theoretical results.

    6 Conclusions

    In this paper,we consider the numerical properties ofθ-methods for a special kind of functional differential equations.Some conditions for the stability and oscillation of the numerical solution are given.The conditions that theθ-methods preserve the stability and oscillations of the analytic solutions are obtained.The numerical examples show that theθ-methods are suitable and effective for solving this kind of equation.We will consider the multidimensional case and the linear multistep methods in our further work.

    麻豆乱淫一区二区| 欧美精品高潮呻吟av久久| 永久免费av网站大全| 人妻一区二区av| 日韩一区二区三区影片| 欧美日韩av久久| 精品少妇内射三级| 777米奇影视久久| av免费观看日本| 久久免费观看电影| 国产精品99久久久久久久久| 99久久人妻综合| 18禁动态无遮挡网站| 热re99久久精品国产66热6| 婷婷色av中文字幕| 久久久久国产精品人妻一区二区| 国产乱来视频区| 91精品国产九色| 久热久热在线精品观看| 午夜精品国产一区二区电影| 久久久久久久久久久丰满| 一级爰片在线观看| 晚上一个人看的免费电影| 丰满迷人的少妇在线观看| 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 一区二区三区精品91| 纵有疾风起免费观看全集完整版| 精品酒店卫生间| 成人美女网站在线观看视频| 黄色欧美视频在线观看| 欧美成人精品欧美一级黄| 国精品久久久久久国模美| 激情五月婷婷亚洲| 色吧在线观看| 久久久久久伊人网av| 九九久久精品国产亚洲av麻豆| 精品一区二区免费观看| 国产精品福利在线免费观看| 只有这里有精品99| av播播在线观看一区| 日韩熟女老妇一区二区性免费视频| 国产色婷婷99| 超碰97精品在线观看| av国产久精品久网站免费入址| 又粗又硬又长又爽又黄的视频| 亚洲真实伦在线观看| 日日啪夜夜撸| 久久鲁丝午夜福利片| 夜夜爽夜夜爽视频| 99热这里只有是精品50| 黑人巨大精品欧美一区二区蜜桃 | 99久久人妻综合| 亚洲av不卡在线观看| 午夜激情福利司机影院| 免费观看的影片在线观看| 国精品久久久久久国模美| 亚洲内射少妇av| 国产男人的电影天堂91| 久久久久久久久大av| 中国三级夫妇交换| 日本猛色少妇xxxxx猛交久久| 偷拍熟女少妇极品色| 亚洲欧美日韩卡通动漫| 一区二区三区四区激情视频| 欧美另类一区| 久久影院123| 国产黄片视频在线免费观看| 91久久精品国产一区二区成人| 美女内射精品一级片tv| 9色porny在线观看| 成人国产av品久久久| 精品人妻熟女毛片av久久网站| 午夜福利,免费看| 欧美+日韩+精品| 亚洲国产日韩一区二区| 边亲边吃奶的免费视频| 男人舔奶头视频| 国产一区二区三区av在线| 亚洲av.av天堂| 一级片'在线观看视频| 免费大片18禁| 91精品伊人久久大香线蕉| 中文字幕精品免费在线观看视频 | 亚洲精品,欧美精品| 亚洲av福利一区| 亚洲精品乱久久久久久| 有码 亚洲区| 免费久久久久久久精品成人欧美视频 | 99久久人妻综合| 国产精品无大码| 久久久亚洲精品成人影院| 国产黄色免费在线视频| 欧美亚洲 丝袜 人妻 在线| 99热网站在线观看| 丰满迷人的少妇在线观看| 嫩草影院新地址| 久久人人爽av亚洲精品天堂| 欧美少妇被猛烈插入视频| 一二三四中文在线观看免费高清| 欧美性感艳星| 搡老乐熟女国产| 夜夜骑夜夜射夜夜干| 国产精品99久久99久久久不卡 | 少妇猛男粗大的猛烈进出视频| 在线观看国产h片| 欧美日韩国产mv在线观看视频| 好男人视频免费观看在线| 精品国产国语对白av| 热re99久久国产66热| 亚洲欧美清纯卡通| 天堂俺去俺来也www色官网| 国产精品一二三区在线看| 国产美女午夜福利| 女性被躁到高潮视频| 99久久精品国产国产毛片| 啦啦啦视频在线资源免费观看| 日本wwww免费看| 日韩一本色道免费dvd| 国产高清不卡午夜福利| 国产av精品麻豆| 精品国产一区二区三区久久久樱花| 国产成人精品福利久久| 欧美高清成人免费视频www| 久久av网站| 国产在线免费精品| 精品国产露脸久久av麻豆| 天天躁夜夜躁狠狠久久av| 久久久亚洲精品成人影院| 国产午夜精品久久久久久一区二区三区| 只有这里有精品99| 欧美日韩在线观看h| 女人精品久久久久毛片| 九色成人免费人妻av| 国产精品人妻久久久影院| 欧美日韩视频高清一区二区三区二| 啦啦啦视频在线资源免费观看| 亚洲婷婷狠狠爱综合网| 国产老妇伦熟女老妇高清| 免费看av在线观看网站| 自线自在国产av| 国产成人一区二区在线| av有码第一页| 久久免费观看电影| 国产 一区精品| 国产男人的电影天堂91| 97在线视频观看| 亚洲精品国产成人久久av| 亚洲情色 制服丝袜| 插阴视频在线观看视频| videossex国产| 亚洲av免费高清在线观看| 在线观看www视频免费| 国产一区有黄有色的免费视频| 国产欧美日韩一区二区三区在线 | 国产日韩欧美视频二区| 国产高清三级在线| 日韩在线高清观看一区二区三区| 伦理电影大哥的女人| 天堂中文最新版在线下载| 欧美精品一区二区大全| 国产欧美另类精品又又久久亚洲欧美| 伦理电影免费视频| 欧美另类一区| 一二三四中文在线观看免费高清| 能在线免费看毛片的网站| av女优亚洲男人天堂| 久久精品国产亚洲网站| 欧美 日韩 精品 国产| 亚洲美女搞黄在线观看| videos熟女内射| 国产色婷婷99| 国产欧美日韩精品一区二区| 国产日韩欧美在线精品| 免费少妇av软件| 免费少妇av软件| 久久久a久久爽久久v久久| 免费人成在线观看视频色| 国产成人午夜福利电影在线观看| 99国产精品免费福利视频| av有码第一页| 欧美日韩一区二区视频在线观看视频在线| 中文字幕人妻丝袜制服| 国产精品偷伦视频观看了| av又黄又爽大尺度在线免费看| 我要看日韩黄色一级片| 一本久久精品| 韩国av在线不卡| 国产深夜福利视频在线观看| tube8黄色片| 日韩精品免费视频一区二区三区 | 国产欧美日韩综合在线一区二区 | 嫩草影院入口| 久久久久网色| 另类精品久久| 观看免费一级毛片| 99久久精品一区二区三区| 国产高清不卡午夜福利| 日本色播在线视频| 精品久久久久久久久亚洲| 日韩大片免费观看网站| 亚洲av电影在线观看一区二区三区| 亚洲色图综合在线观看| 性色avwww在线观看| 国产精品99久久99久久久不卡 | 亚洲第一区二区三区不卡| 最新的欧美精品一区二区| 日本午夜av视频| 日韩三级伦理在线观看| 丰满迷人的少妇在线观看| 亚洲国产最新在线播放| 丝袜在线中文字幕| 中文在线观看免费www的网站| 久久狼人影院| 亚洲精品一二三| 国产精品久久久久久久电影| 亚洲美女黄色视频免费看| 日日撸夜夜添| 男女国产视频网站| 精品卡一卡二卡四卡免费| 99热全是精品| 中文字幕人妻熟人妻熟丝袜美| 赤兔流量卡办理| 国产黄片美女视频| 久久免费观看电影| 中文精品一卡2卡3卡4更新| 美女xxoo啪啪120秒动态图| 国产成人免费无遮挡视频| 精品人妻熟女av久视频| 国产爽快片一区二区三区| 成年女人在线观看亚洲视频| 国产成人freesex在线| 大话2 男鬼变身卡| 国产熟女午夜一区二区三区 | 3wmmmm亚洲av在线观看| av又黄又爽大尺度在线免费看| 91久久精品国产一区二区成人| 天美传媒精品一区二区| 亚洲精品日本国产第一区| 免费看日本二区| 久久这里有精品视频免费| 午夜福利网站1000一区二区三区| 桃花免费在线播放| 青青草视频在线视频观看| 男人和女人高潮做爰伦理| 免费看日本二区| 秋霞伦理黄片| 日韩熟女老妇一区二区性免费视频| 精品人妻偷拍中文字幕| 免费观看a级毛片全部| 高清av免费在线| videossex国产| 妹子高潮喷水视频| 欧美97在线视频| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 一本色道久久久久久精品综合| 视频中文字幕在线观看| 亚洲国产色片| 精品人妻一区二区三区麻豆| 十八禁网站网址无遮挡 | 日本欧美国产在线视频| 中文字幕免费在线视频6| 成年人免费黄色播放视频 | 我要看日韩黄色一级片| 简卡轻食公司| 亚洲三级黄色毛片| 欧美xxⅹ黑人| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 91成人精品电影| 女人久久www免费人成看片| 中文欧美无线码| 日韩强制内射视频| 啦啦啦啦在线视频资源| 国产在线视频一区二区| 观看av在线不卡| 大片电影免费在线观看免费| 成人无遮挡网站| 亚洲av在线观看美女高潮| 色94色欧美一区二区| 视频区图区小说| 美女福利国产在线| 亚洲精品一区蜜桃| 中文字幕人妻丝袜制服| 国产精品人妻久久久影院| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩另类电影网站| 另类亚洲欧美激情| 亚洲精品,欧美精品| 亚洲精品国产色婷婷电影| 欧美精品亚洲一区二区| 日韩电影二区| av网站免费在线观看视频| 午夜久久久在线观看| 人妻系列 视频| 人妻一区二区av| a级毛片在线看网站| 欧美少妇被猛烈插入视频| 春色校园在线视频观看| 97在线人人人人妻| 国产在线免费精品| 七月丁香在线播放| 男男h啪啪无遮挡| 十八禁高潮呻吟视频 | 免费观看性生交大片5| 最近中文字幕高清免费大全6| 午夜福利影视在线免费观看| av线在线观看网站| 99精国产麻豆久久婷婷| 日韩大片免费观看网站| 日本黄色日本黄色录像| 成人亚洲欧美一区二区av| 国产成人免费观看mmmm| 国产亚洲精品久久久com| 日本欧美视频一区| 免费观看av网站的网址| 日韩中文字幕视频在线看片| 国产精品久久久久成人av| 夜夜爽夜夜爽视频| 人妻夜夜爽99麻豆av| 亚洲国产欧美在线一区| 亚洲国产精品成人久久小说| 少妇的逼水好多| 国产黄色免费在线视频| 久久人人爽av亚洲精品天堂| 亚洲av综合色区一区| 少妇被粗大的猛进出69影院 | 狂野欧美激情性xxxx在线观看| 免费看日本二区| 久久久国产精品麻豆| 一级毛片 在线播放| 成年人午夜在线观看视频| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 午夜久久久在线观看| 国产中年淑女户外野战色| 欧美一级a爱片免费观看看| 天天操日日干夜夜撸| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 国产伦理片在线播放av一区| 美女主播在线视频| 亚洲精品国产av成人精品| 亚洲图色成人| 久久女婷五月综合色啪小说| 久久久久久久久大av| 成人无遮挡网站| av黄色大香蕉| 最近中文字幕2019免费版| av免费在线看不卡| 人妻人人澡人人爽人人| 国产在线一区二区三区精| 国产黄片美女视频| 亚洲怡红院男人天堂| 大片免费播放器 马上看| 自线自在国产av| 久久久国产精品麻豆| 九九久久精品国产亚洲av麻豆| 一二三四中文在线观看免费高清| 欧美成人午夜免费资源| 日韩一本色道免费dvd| 一级毛片久久久久久久久女| 成人二区视频| 赤兔流量卡办理| 亚洲av中文av极速乱| 国产亚洲最大av| 简卡轻食公司| 午夜视频国产福利| 汤姆久久久久久久影院中文字幕| av天堂久久9| 内地一区二区视频在线| 高清黄色对白视频在线免费看 | 国产在线一区二区三区精| 日本免费在线观看一区| 一级毛片电影观看| 另类精品久久| av福利片在线观看| 黑人猛操日本美女一级片| 三上悠亚av全集在线观看 | 夫妻午夜视频| 在线免费观看不下载黄p国产| 国产精品99久久久久久久久| 国产精品国产三级国产av玫瑰| 少妇 在线观看| 五月开心婷婷网| 国产男女内射视频| 最近2019中文字幕mv第一页| 人妻一区二区av| 欧美精品一区二区免费开放| 亚洲精品久久午夜乱码| 久久精品国产鲁丝片午夜精品| 欧美亚洲 丝袜 人妻 在线| 毛片一级片免费看久久久久| 在线观看免费视频网站a站| 欧美日韩视频精品一区| 一二三四中文在线观看免费高清| 在线观看一区二区三区激情| 亚洲精品日韩在线中文字幕| 亚洲精品久久午夜乱码| av黄色大香蕉| 91久久精品电影网| 国产高清国产精品国产三级| 中文字幕制服av| a级毛片在线看网站| 日日爽夜夜爽网站| 亚洲国产毛片av蜜桃av| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 亚洲精品一区蜜桃| 在线观看av片永久免费下载| 久久人人爽av亚洲精品天堂| 99久久人妻综合| 久久免费观看电影| 午夜91福利影院| 熟女av电影| 久久久久久久久大av| 最近2019中文字幕mv第一页| 蜜桃在线观看..| 99热网站在线观看| 51国产日韩欧美| 99re6热这里在线精品视频| 亚洲国产精品专区欧美| 国产老妇伦熟女老妇高清| 97超碰精品成人国产| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 少妇的逼水好多| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 精品一区二区免费观看| 人妻少妇偷人精品九色| 一个人看视频在线观看www免费| 精品一区二区免费观看| 人妻少妇偷人精品九色| 精品少妇黑人巨大在线播放| 99久久中文字幕三级久久日本| 国产老妇伦熟女老妇高清| 高清视频免费观看一区二区| 精品久久久久久电影网| 乱系列少妇在线播放| 国产在线免费精品| 国产国拍精品亚洲av在线观看| 成人二区视频| 肉色欧美久久久久久久蜜桃| 久久午夜综合久久蜜桃| 老熟女久久久| 婷婷色麻豆天堂久久| 亚洲国产最新在线播放| 中文资源天堂在线| 十分钟在线观看高清视频www | 女人久久www免费人成看片| 高清av免费在线| 晚上一个人看的免费电影| 天堂中文最新版在线下载| 一级毛片久久久久久久久女| 国产高清三级在线| 91aial.com中文字幕在线观看| 亚洲精品国产av成人精品| 亚洲无线观看免费| 日韩大片免费观看网站| 欧美丝袜亚洲另类| 日本-黄色视频高清免费观看| 久久久久久久精品精品| 日韩视频在线欧美| 在线观看免费日韩欧美大片 | 亚洲精品国产色婷婷电影| 老熟女久久久| 欧美三级亚洲精品| av又黄又爽大尺度在线免费看| 麻豆精品久久久久久蜜桃| 亚洲性久久影院| 亚洲真实伦在线观看| 国产片特级美女逼逼视频| 黄色配什么色好看| 91久久精品国产一区二区三区| 久久久久久久久久久丰满| 婷婷色麻豆天堂久久| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 美女国产视频在线观看| 啦啦啦啦在线视频资源| 国产成人精品无人区| 久久韩国三级中文字幕| 在线精品无人区一区二区三| 亚洲精品国产成人久久av| 久久国产精品男人的天堂亚洲 | 精品亚洲乱码少妇综合久久| av在线观看视频网站免费| 男人和女人高潮做爰伦理| 欧美区成人在线视频| 日日爽夜夜爽网站| 内射极品少妇av片p| 国产精品欧美亚洲77777| 丁香六月天网| 国产欧美日韩综合在线一区二区 | 日韩在线高清观看一区二区三区| 一边亲一边摸免费视频| 午夜影院在线不卡| 女人精品久久久久毛片| 欧美日韩亚洲高清精品| 这个男人来自地球电影免费观看 | 午夜av观看不卡| 狂野欧美激情性bbbbbb| 亚洲av日韩在线播放| 午夜91福利影院| 精品酒店卫生间| 一级毛片久久久久久久久女| 日韩成人伦理影院| 中国国产av一级| 人人妻人人看人人澡| 99久久中文字幕三级久久日本| 嘟嘟电影网在线观看| 日韩一本色道免费dvd| 日韩亚洲欧美综合| .国产精品久久| 国精品久久久久久国模美| 国产成人一区二区在线| 免费久久久久久久精品成人欧美视频 | 秋霞在线观看毛片| 亚洲欧美精品自产自拍| 久久97久久精品| 97超碰精品成人国产| 少妇的逼好多水| 老女人水多毛片| 看非洲黑人一级黄片| 久久99热6这里只有精品| 久久99一区二区三区| 91精品伊人久久大香线蕉| 在线播放无遮挡| 精品久久久久久久久av| 丁香六月天网| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 亚洲精品乱码久久久久久按摩| 中文字幕精品免费在线观看视频 | 精品一区在线观看国产| 精品久久久噜噜| 国产成人免费观看mmmm| 国产精品蜜桃在线观看| 两个人的视频大全免费| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 99九九线精品视频在线观看视频| 国产成人精品一,二区| 99热网站在线观看| 在线亚洲精品国产二区图片欧美 | 国产精品国产三级专区第一集| 国产成人aa在线观看| 只有这里有精品99| 免费在线观看成人毛片| 欧美日韩一区二区视频在线观看视频在线| 一区二区三区免费毛片| 五月开心婷婷网| av在线播放精品| 成年人免费黄色播放视频 | 国产精品99久久99久久久不卡 | 精品人妻熟女av久视频| 这个男人来自地球电影免费观看 | 极品人妻少妇av视频| 九九爱精品视频在线观看| 最黄视频免费看| 欧美日韩亚洲高清精品| 亚洲精品日韩av片在线观看| 婷婷色av中文字幕| 如日韩欧美国产精品一区二区三区 | 国产成人精品无人区| 在现免费观看毛片| 精品熟女少妇av免费看| 欧美 亚洲 国产 日韩一| 欧美三级亚洲精品| 国内精品宾馆在线| 久久99一区二区三区| 精品一区二区三区视频在线| 国产精品一区二区性色av| 日韩亚洲欧美综合| 中文天堂在线官网| 欧美日韩av久久| 91久久精品国产一区二区成人| 午夜免费男女啪啪视频观看| 精品一区在线观看国产| 亚洲精品一二三| 18禁在线播放成人免费| 欧美人与善性xxx| 国产黄片视频在线免费观看| 大香蕉久久网| 久久午夜福利片| 国产成人精品久久久久久| 国产精品99久久99久久久不卡 | 免费看av在线观看网站| 26uuu在线亚洲综合色| 亚洲精品一区蜜桃| 国产欧美另类精品又又久久亚洲欧美| 亚洲三级黄色毛片| 欧美另类一区| 午夜免费男女啪啪视频观看| 亚洲欧洲精品一区二区精品久久久 | 国产白丝娇喘喷水9色精品| 国产免费一区二区三区四区乱码| 国产精品一区二区在线观看99| 国产免费一区二区三区四区乱码| 国产av码专区亚洲av| av女优亚洲男人天堂| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 国产伦精品一区二区三区视频9| 国产精品麻豆人妻色哟哟久久| √禁漫天堂资源中文www| 日韩成人伦理影院| 国产av国产精品国产| 国产熟女欧美一区二区| 在现免费观看毛片|