• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bergmann’s rule and Allen’s rule in two passerine birds in China

    2020-01-11 06:02:06LiqingFanTianlongCaiYingXiongGangSongandFuminLei
    Avian Research 2019年4期

    Liqing Fan, Tianlong Cai, Ying Xiong, Gang Song and Fumin Lei,4*

    Abstract

    Keywords: Appendage size, Body size, Geographic variation, Thermoregulation

    Background

    Bergmann’s rule (1847), one of the best-known ecogeographic patterns, states that populations or closely related species of endotherms typically have a larger body size in colder climates as a result of thermoregulation (James 1970; Salewski and Watt 2017). Bergmann proposed the conventional heat conservation hypothesis to explain this pattern, which assumed that the volume of endothermic animals is a limiting factor for heat production and the surface area is a limiting factor for heat dissipation. Further, he posited that the lower surface area to volume ratio occurring in the larger body size endotherms would facilitate heat retention, which is favored in lower temperature environments or at higher latitudes (Mayr 1956;James 1970; Salewski and Watt 2017). Environmental factors other than temperature have been proposed as contributing to geographic variations in body size, such as humidity (James’s hypothesis) (James 1970), seasonality (the seasonality hypothesis) (Boyce 1979; Searcy 1980;Lindstedt and Boyce 1985) and precipitation (the primary productivity hypothesis) (Rosenzweig 1968).

    There is no agreement about whether Bergmann’s pattern is general or valid (Blackburn et al. 1999; Meiri and Dayan 2003; Watt et al. 2010; Teplitsky and Millien 2014).Empirical studies have found the predicted pattern at both the intraspecific and interspecific levels (Meiri 2011;Salewski and Watt 2017) in numerous mammals (Ashton et al. 2000; Rodriguez et al. 2008) and birds (Olson et al.2009; Sun et al. 2017). At the same time, animals that do not conform to Bergmann’s rule have also been reported(Yom-Tov et al. 2002; Freeman 2017; Sargis et al. 2018).For instance, decreases in body mass with increasing temperature within species have been found in only 14%of 952 endothermic species (Riemer et al. 2018).

    Allen’s rule (1877) is an extension of Bergmann’s rule,predicting that appendage size in endotherms, including limbs, tails and ears, become larger in warm climates for similar thermoregulatory reasons. Studies have found that this pattern is valid for some mammals (Yom-Tov and Yom-Tov 2005; Betti et al. 2015) and birds (Laiolo and Rolando 2001; VanderWerf 2012), but not in some cases (Wiedenfeld 1991; Bidau et al. 2011; Du et al. 2017).One of the most representative examples of Allen’s rule is bill size, which has been demonstrated to serve as an efficient radiator in birds (Scott et al. 2008; Tattersall et al. 2009; Campbell-Tennant et al. 2015). Smaller bills with less surface area help birds keep a constant temperature in colder environments, while the larger surface area of larger bills in warmer climates raises the effi-ciency of heat dissipation (Symonds and Tattersall 2010).For instance, Tattersall et al. (2016) found that 64 of 110 bird species have a smaller bill at cooler environments at the intraspecific level. In addition to bills, the featherless legs of birds are also reported to play a role in heat exchange (Martineau and Larochelle 1988; Arad et al.1989; Maloney and Dawson 1994) and several studies have revealed a profound effect of temperature on tarsus length (Laiolo and Rolando 2001; VanderWerf 2012). For example, Nudds and Oswald (2007) found that terns and gulls showed interspecific geographic variation predicted by Allen’s rule in the length of exposed leg elements, but not in feathered element length.

    For animals living in seasonal climates, the need for dissipating heat in the summer may tradeoff with the need for conserving heat in the winter. It remains unclear which season is the critical period for thermoregulation.Studies have found that selection on bill size for its thermoregulation function varies with climatic regions. For instance, bill size of Song Sparrows (Melospiza melodia)increases with high summer temperatures in California(Greenberg and Danner 2012) and decreases with cold winter temperatures in eastern North America (Danner and Greenberg 2015), suggesting that variation in bill size is selected for summer heat dissipation and winter heat retention in these two regional climates respectively.Friedman et al. (2017) further found that beak size across 158 Australasian species was positively correlated with winter minimum temperature but not with summer maximum temperature.

    Bergmann emphasized that it would be easier to find a geographic size cline among similar animals (Salewski and Watt 2017). Therefore, intraspecific comparisons are powerful in testing the relationships between climate and body trait variations (Mayr 1956; Shelomi 2012). The Oriental Magpie (Pica serica) and the Oriental Tit (Parus minor) are species within, respectively, Pica pica (Haring et al. 2007; Lee et al. 2003; Zhang et al. 2012; Song et al.2018) and Parus major (Kvist et al. 2003; P?ckert et al.2005) complex. Oriental Magpies and Oriental Tits are widespread across eastern and central China, abundant and resident or dispersed at short distances, providing two ideal groups to test Bergmann’ rule and Allen’s rule at the intraspecific level. In this study, we examined the geographical variations of several major morphological traits in Oriental Magpies and Oriental Tits to evaluate whether they support Bergmann’s rule and Allen’s rule.We also test correlation between morphological variation and climate variables, including temperature, precipitation and seasonality, to further explain the mechanisms of these two rules.

    Methods

    Data collection

    We measured wing length (carpal joint to the tip of the longest primary feather unflattened, ± 0.01 mm), total bill length (± 0.01 mm) and tarsus length (joint of tibiotarsus and tarsometatarsus to the distal edge of the last undivided scute on the anterior surface of the leg,± 0.01 mm) of 165 specimens of Oriental Magpies and 410 specimens of Oriental Tits from collections of the Zoological Museum of Institute of Zoology, Chinese Academy of Sciences. All measurements were performed by Liqing Fan. Data corresponding to juveniles or molting adults was excluded from analysis. Specimens of Oriental Magpie were collected from 21°27.5′N to 40°59.0′N at latitude and 0 to 3500 m a.s.l. at elevation between 1953 and 2009 at 65 localities (Additional file 1: Table S1), and Oriental Tits were collected from 23°9.6′N to 47°1.7′N at latitude and 0 to 1565 m a.s.l. at elevation between 1951 and 2009 at 52 localities in Chinese mainland (Additional file 2: Table S2).

    Body mass (± 1 g), location data and collection date were obtained from the specimen labels. We georeferenced the site at which each specimen was captured and obtained the climate variables for each locality from WorldClim Version 1.4 (http://www.world clim.org/) for 30-year means (1960-1990) with 30 s spatial resolution(Hijmans et al. 2005), including annual mean temperature(bio1), temperature seasonality (bio4), maximum temperature of warmest month (bio5), minimum temperature of coldest month (bio6), temperature annual range(bio7), mean temperature of warmest quarter (bio10),mean temperature of coldest quarter (bio11), annual precipitation (bio12), precipitation seasonality (bio15), precipitation of warmest quarter (bio18) and precipitation of coldest quarter (bio19).

    Statistical analyses

    We checked the relationships of body size (body mass and wing length) and appendage size (bill length and tarsus length) with the geographic and environmental variables. We used bio1, bio4-7, bio10-12, bio15, bio18 and bio19 to test for Bergmann’s rule, and used bio1, bio5,bio6, bio10 and bio11 for Allen’s rule.

    Traits in males and females may show different geographic patterns due to sexual selection and sexual dimorphism (Mccollin et al. 2015), and the effect of sex on morphological measurements was analyzed with linear mixed-effect models (LME) using the restricted maximum likelihood (REML) method (fixed effect: sex,random effects: collection site) (Pinheiro et al. 2015). If the bird displayed sexual dimorphism in morphological measurements, data were analyzed separately for each sex. We checked the correlations of the traits in each sex.Then, we regressed bill length and tarsal length against wing length and extracted the residuals from the models(residual of bill length/tarsus length). The residuals were subsequently used as size-independent appendage variables. Linear mixed-effect models were also performed to examine the impact of latitude, elevation and climate variables on each morphological measurement with collection site as random effect. In models with multiple climate variables as predictors, we used Akaike’s Information Criterion (AIC, Burnham and Anderson 2002)to identify the best mode with the lowest AIC score. We then performed Collinearity Diagnostics and discarded the models if the variance inflation factor > 10, eigenvalue< 0.05 or condition index > 10. All statistical analysis were conducted using R 3.4.4. (R Development Core Team 2012).

    Results

    Male Oriental Magpies were significantly larger than females in all of the morphological measurements (all t ≤ - 6.153, p < 0.001; Table 1). In Oriental Tits, males did not differ from females in body mass (t = - 1.117,p = 0.264) and bill length (t = - 0.269, p = 0.788), but the males had larger wing length (t = - 8.147, p < 0.001)and tarsus length (t = - 3.218, p = 0.001; Table 1) thanthe females. Therefore, data were analyzed separately for each sex for both species.

    Table 1 Effect of sex on morphological measurements in the Oriental Magpie (Pica serica) and the Oriental Tit(Parus minor)

    Oriental Magpies

    There were significant positive correlations between each pair of morphological measurements in both sexes for Oriental Magpies (all Spearman’s rank Correlation r ≥ 0.236, p < 0.05; Table 2) except correlations between wing length and bill length, and correlations between wing length and tarsus length in males (both p > 0.05;Table 2).

    We did not find support for Bergmann’s rule in magpies. Neither body mass nor wing length in either sex—excepting wing length of males, which increased with elevation significantly (t = 2.177, p = 0.030)—showed latitudinal or elevational cline, or related to climate variables(Fig. 1; Table 3).

    There were no significant relationships between residual of tarsus length in males and bio5 (maximum temperature of warmest month) or bio10 (mean temperature of warmest quarter), nor between residual of tarsus length in females and bio5. Beyond that, residual of bill length and residual of tarsus length in both sexes all significantly decreased with latitude (all t ≤ -4.42, p < 0.001;Fig. 1) and increased with temperature variables (all t ≥ 2.173, p < 0.05; Table 4), concordant with the patterns predicted by Allen’s rule. In all of these significant relationships, temperature variables explained 9.9-38.1%of all variations in bill length, and 8.1-36.6% of all variations in tarsus length (Table 4). Residual of bill length and residual of tarsus length in both sexes did not vary with elevation with the exception of residual of bill length in females (t = - 2.757, p = 0.006; Table 4). According to the AIC value and Collinearity Diagnostics, the bestfit models explaining geographic variation in bill length for male and female magpies included, respectively,bio6 (minimum temperature of coldest month) and bio1(annual mean temperature), and accounted for 38.1% and 25.6% of the total variance. The best predictors for tarsus length in males and females were bio6 and bio11 (meantemperature of coldest quarter), respectively, explaining 22.6% and 36.6% of the total variance (Table 4; Additional file 3: Table S3).

    Table 2 Spearman’s rank correlation between morphological measurements in the Oriental Magpie (Pica serica)and the Oriental Tit (Parus minor)

    Oriental Tits

    In male Oriental Tits, body mass was positively correlated with wing length (Spearman’s rank correlation r = 0.291,p < 0.001) and tarsus length (r = 0.223, p < 0.001), and wing length was correlated with bill length (r = - 0.136,p = 0.033) and tarsus length (r = 0.170, p = 0.007). In females, body mass was correlated with wing length(r = 0.368, p < 0.001), and tarsus length was correlated with wing length (r = 0.182, p = 0.045) and bill length(r = 0.197, p = 0.036; Table 2).

    Body mass in tits in both sexes showed little variation along latitudinal, elevational or the environmental gradients (all p > 0.05). In both sexes, wing length was significantly related to latitude (both t ≥ 9.536, p < 0.001)and the climate variables (all |t| ≥ 2.305, p < 0.05; Fig. 2;Table 3). Residual of bill length and residual of tarsus length were not related to latitude, elevation or the climate variables in either sex (Fig. 2; Table 4). According to the AIC value and Collinearity Diagnostics, the primary driver of wing length of tits for both sexes was bio6 (minimum temperature of coldest month; Table 3; Additional file 3: Table S3), explaining 38.2% and 36.5% of the variances for males and females respectively.

    Discussion

    Our results show that body size of Oriental Magpies did not follow Bergmann’s rule, as no geographic variation was found. Nevertheless, appendage size (bill length and tarsus length) of Oriental Magpies tend to be smaller in higher latitudes, concordant with Allen’s rule. Whereas Oriental Tits followed Bergmann’ rule instead of Allen’s rule, with longer wings at higher latitudes. The different patterns of morphological traits with latitudinal gradients in these two birds suggest that species may adopt different thermoregulation strategies to adapt to environment. Similar findings have been reported previously,for example, the Red-billed Chough (Pyrrhocorax pyrrhocorax) and the Alpine Chough (Pyrrhocorax graculus) follow both Bergmann’s rule and Allen’s rule (Laiolo and Rolando 2001), and the Red Squirrel (Tamiasciurus hudsonicus) follows Allen’s rule but not Bergmann’s rule(Lindsay 1987), whereas the Wedge-tailed Shearwater(Puffinus pacificus) conforms to Bergmann’s rule rather than to Allen’s rule (Bull 2006). In addition to changes in body size or appendage size, changes in the thickness of fur or feathers and in certain behaviors (panting, bathing,ptilo-erection and microsite selection) could be effective mechanisms that allow animals to cope with temperature gradients (Scholander 1955; Hafez 1964). In this study,the decline of appendage size in Oriental Magpies with the decrease in temperature may help the magpies retain heat in cold climates; this would have an effect similar to the increase in body size in Oriental Tits in cold temperatures.

    Fig. 1 Linear regressions between the morphological measurements and latitude in male (filled red circles and solid lines) and female (hollow circles and dash lines) Oriental Magpie (Pica serica)

    el b air a v l at n e m n ori v n e hc a e hti w ht g n el g ni w r o ss a my d o b f o s pi hs n oit al e R 3 el b aT 9 1 oi b 8 1 oi b 5 1 oi b 2 1 oi b 1 1 oi b 0 1 oi b 7 oi b 6 oi b 5 oi b 4 oi b 1 oi b n oitavel E e d utit aL r et e m ara P)n( x e S tiarT s eic e p S s n s n s n s n s n s n s n s n s n s n s n s n s n p)08( ela M ssa m y d o B acires aciP 2R s n s n s n s n s n s n s n s n s n s n s n s n s n p)18( ela meF 2R s n s n s n s n s n s n s n s n s n s n s n 030.0 s n)28( ela M ht g nelg ni W p 2 650.0 R s n s n s n s n s n s n s n s n s n s n s n s n s n)38( ela meF p2R s n s n s n s n s n s n s n s n s n s n s n s n s n)962( ela M ssa m y d o B p roni m suraP 2R s n s n s n s n s n s n s n s n s n s n s n s n s n)331( ela meF p2R 100.0<100.0<100.0<100.0<100.0<100.0<100.0<100.0<100.0<100.0<100.0<8010.0 100.0<p)662( ela M ht g nelg ni W 2 062.0 321.0 542.0 583.0 563.0 312.0 682.0 283.0 971.0 462.0 523.0 750.0 983.0 R 100.0<120.0 100.0<100.0<100.0<100.0<100.0<100.0<100.0<100.0<100.0<s n 100.0<p)131( ela meF 2 903.0 270.0 473.0 653.0 753.0 252.0 632.0 563.0 342.0 452.0 343.0 144.0 R nae m 01 oi b ,e g nar la u n na er utare p m et 7 oi b ,ht n o m tse dl oc f o er utare p m etm u mi ni m 6 oi b ,ht n o m tse mra w f o er utare p m etm u mixa m 5 oi b ,ytila n osa eser utar e p met 4 oi b ,er utare p met nae m la u n na 1 oi b ,t nacifi n gis o n s n r etra u q ts e dl oc f on oitati picer p 91 oi b ,r etra u q tse mra w f on oitati pic er p 81 oi b ,ytila n osaesn oitati picer p 51 oi b ,n oitati pic er p la u n na 21 oi b ,retra u q tse dl oc f o er utare p m et nae m 11 oi b ,retra u q ts e mra w f o er utare p met

    Table 4 Relationships of residual of bill length or residual of tarsus length with each environmental variable

    For Oriental Magpies, appendage size in males and tarsus length in females were most strongly related to bio6(minimum temperature of coldest month) and bio11(mean temperature of coldest quarter) respectively, and both were less or not related to bio5 (maximum temperature of warmest month) and bio10 (mean temperature of warmest quarter; see Table 4). These results indicate that heat retention in winter cold environments, especially in the coldest month, rather than heat dissipation in summer warm environments, drives appendage size in magpies. The seasonal climates may have distinct influences on fitness (Greenberg and Danner 2012; Danner and Greenberg 2015). Compared with the relatively cool summer (19.834.8 °C for bio5), Oriental Magpies in this study suffered a hard winter (as low as - 22.7 °C for bio6) in the high latitude areas. Similar to the study on bill length of song sparrows in eastern North America(Danner and Greenberg 2015), winter was the season of critical thermal stress for Oriental Magpies of Chinese mainland, as indicated by their appendage size.

    Body size of Oriental Tits, like appendage size of Oriental Magpies, was closely related to climate conditions in the winter. Wing length of tits in both sexes were driven by bio6 (minimum temperature of coldest month;Table 3), supporting the heat conservation hypothesis (Mayr 1956; James 1970). Environmental variables were highly correlated with each other for Oriental Tits in this study (Additional file 4: Table S4), and bio6 explained nearly as much of the variance of wing length in males as bio12 (annual precipitation; 38.2% vs 38.5%)and of the variance of wing length in females as bio15(precipitation seasonality; 36.5% vs 37.4%; Table 3).Precipitation is a major limiting factor for net primary productivity, and increased precipitation elevates net primary productivity. According to the primary productivity hypothesis, increase of net primary productivity would lead to an increase in food availability and thus an increase in body mass (Rosenzweig 1968; Yom-Tov and Geffen 2011). While, wing length in male tits decreased with bio12 (t = - 11.9; Additional file 3: Table S3), showing an opposite pattern predicted by the primary productivity hypothesis. Wing length in female tits increased with bio15 (t = 6.863; Additional file 3: Table S3), consistent with the seasonality hypothesis, which suggests that a larger body size would allow for higher fasting endurance and would be advantageous in regions with greater seasonality (Boyce 1979). These results indicate that temperature in the winter (bio6) and seasonality (bio15)limit natural selection for tits living at high latitudes, who become larger to retain their heat and survive food shortages in the winter.

    Fig. 2 Linear regressions between the morphological measurements and latitude in male (filled red circles and solid lines) and female (hollow circles and dash lines) Oriental Tit (Parus minor)

    Body mass and wing length are widely used as proxies for bird body size (Snow 1954; Gosler et al. 1998).In Oriental Tits, body mass provided little evidence for Bergmann’s rule. In contrast, wing length showed clear patterns of Bergmann’s rule in both sexes, with temperature being the main driver of the variance. It is not surprising that we did not detect a strong geographic cline in body mass, given that the samples we used in this study were collected throughout the year (Additional file 2:Table S2), and, as we know, body mass fluctuates considerably during the breeding cycle (Croxall and Ricketts 1983) and seasonally (Marks and Leasure 1992; Yom-Tov et al. 2002). Besides, Oriental Tits are resident but normally undergo seasonal elevational movements, which may mitigate the potential climatic effects on morphology. In this study, wing length is a satisfactory indicator of body size for Oriental Tits, for they do not disperse over long distances.

    Only a few morphological measurements (wing length of male magpies, residual of bill length of female magpies and wing length of male tits) showed an elevational cline,all with only a little part of the total variance attributed to elevation (R2≤ 9.6%; Tables 3, 4). Temperature varies along both elevational gradients and latitudinal gradients.Nevertheless, the variation of some climate conditions,such as air pressure and solar radiation, with elevation are entirely different from those that occur with latitude(K?rner 2007). Therefore, biological traits along elevational gradients do not necessarily show similar clines as those along latitudinal gradients (Zhang and Lu 2012;Hille and Cooper 2015). For example, body mass of Torrent Ducks (Merganetta armata) followed Bergmann’s rule along latitudinal gradients but not along elevational gradients (Gutierrez-Pinto et al. 2014). And body mass and wing length of Eurasian Tree Sparrow (Passer montanus) showed an opposite pattern, increasing with elevation but not with latitude (Sun et al. 2017). More specimens from high elevations should be studied to further investigate elevational variation in morphological measurements.

    Conclusions

    Oriental Magpies followed Allen’s rule in relation to variation in bill length and tarsus length across latitudes,and latitudinal variation in wing length in Oriental Tits supported Bergmann’s rule. Minimum temperature of coldest month (bio6) was the best climate variable that predicted geographic variation in bill length and tarsus length in male Oriental Magpies, and also wing length in male and female Oriental Tits, and bill length and tarsus length in female Oriental Magpies were best predicted by, respectively, Annual mean temperature (bio1) and mean temperature of coldest quarter (bio11), supporting the conventional heat conservation hypothesis and demonstrating that the morphological measurements reflect selection for heat conservation in the winter rather than for heat dissipation in the summer.

    Supplementary information

    Supplementary informationaccompanies this paper at https://doi.org/10.1186/s4065 7-019-0172-7.

    Additional file 1: Table S1.Sampling information of the Oriental Magpie(Pica serica).Additional file 2: Table S2.Sampling information of the Oriental Tit(Parus minor).

    Additional file 3: Table S3.AIC and t values of the linear mixed-effect models for the relationships of morphological measurements with each climate variable.

    Additional file 4: Table S4.Pearson’s correlation coefficient (r) between climate variables.

    Acknowledgements

    Special thanks to Peng He from the National Zoological Museum of China for providing locality and other information on specimens. We also thank the assistance of two anonymous reviewers for useful comments on our manuscript.

    Authors’ contributions

    LF and FL conceived the research project, LF collected the data, LF and YX analyzed the data, and LF, TC and GS led the writing. All authors read and approved the final manuscript.

    Funding

    This study was funded by Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19050202), the National Natural Science Foundation of China (NSFC 31672299) and Collaborative Innovation Center for

    Research and Development of Tibetan Agricultural and Animal Husbandry Resources.

    Ethics approval and consent to participate

    The experiments comply with the current laws of China.

    Consent for publication

    Not applicable.

    Competing interests

    The authors declare that they have no competing interests.

    Author details

    1Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.2College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.

    3Key Laboratory of Forest Ecology in Tibet Plateau of Ministry of Education,Institute of Tibet Plateau Ecology, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China.4Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.

    Received: 28 April 2019 Accepted: 18 August 2019

    窝窝影院91人妻| 国产高清激情床上av| 91成年电影在线观看| 国产成人精品无人区| 国产成人一区二区三区免费视频网站| 麻豆一二三区av精品| 国产视频一区二区在线看| 国产xxxxx性猛交| 国产精品爽爽va在线观看网站 | 老汉色∧v一级毛片| 精品人妻在线不人妻| 亚洲精品美女久久av网站| 人人妻人人爽人人添夜夜欢视频| 叶爱在线成人免费视频播放| 久久久国产一区二区| 亚洲成a人片在线一区二区| 国产精品秋霞免费鲁丝片| 国产亚洲欧美98| 午夜成年电影在线免费观看| 国产在线精品亚洲第一网站| 可以在线观看毛片的网站| 在线观看舔阴道视频| 又黄又粗又硬又大视频| 手机成人av网站| 亚洲一区二区三区色噜噜 | 视频区欧美日本亚洲| 国产高清视频在线播放一区| 美女 人体艺术 gogo| 久久久精品欧美日韩精品| 久久天堂一区二区三区四区| 免费看a级黄色片| 国产精品综合久久久久久久免费 | 黄片播放在线免费| 9191精品国产免费久久| 老司机在亚洲福利影院| 老汉色∧v一级毛片| 亚洲欧美日韩无卡精品| 另类亚洲欧美激情| 日本黄色日本黄色录像| 久久人妻福利社区极品人妻图片| 久久久久久久久久久久大奶| 一区在线观看完整版| 欧美黄色淫秽网站| 黑人猛操日本美女一级片| 巨乳人妻的诱惑在线观看| 777久久人妻少妇嫩草av网站| 久久国产亚洲av麻豆专区| 日日摸夜夜添夜夜添小说| 成人永久免费在线观看视频| 在线观看免费视频日本深夜| 午夜精品国产一区二区电影| 国产精品久久久av美女十八| 亚洲视频免费观看视频| 午夜福利免费观看在线| av超薄肉色丝袜交足视频| av福利片在线| 亚洲精品国产一区二区精华液| 久久人人爽av亚洲精品天堂| 97人妻天天添夜夜摸| 老熟妇仑乱视频hdxx| 长腿黑丝高跟| 久久这里只有精品19| 亚洲精品av麻豆狂野| 身体一侧抽搐| 精品久久久久久久毛片微露脸| 国产国语露脸激情在线看| 久久人妻av系列| 亚洲色图综合在线观看| 国产精品久久久人人做人人爽| 国产又色又爽无遮挡免费看| 黄色女人牲交| 免费高清视频大片| 国产成人精品在线电影| 色精品久久人妻99蜜桃| 18禁黄网站禁片午夜丰满| 国产精品久久电影中文字幕| 午夜91福利影院| av免费在线观看网站| 日韩精品青青久久久久久| 久热这里只有精品99| videosex国产| 久久天躁狠狠躁夜夜2o2o| 日韩一卡2卡3卡4卡2021年| 国内久久婷婷六月综合欲色啪| 日韩免费高清中文字幕av| 婷婷精品国产亚洲av在线| 亚洲性夜色夜夜综合| 操美女的视频在线观看| 高清欧美精品videossex| 国产又爽黄色视频| www.www免费av| 国产在线精品亚洲第一网站| av中文乱码字幕在线| 丝袜美腿诱惑在线| 黑人猛操日本美女一级片| 中文亚洲av片在线观看爽| 国产精品一区二区三区四区久久 | 99re在线观看精品视频| 男人的好看免费观看在线视频 | 国内毛片毛片毛片毛片毛片| 欧洲精品卡2卡3卡4卡5卡区| 麻豆久久精品国产亚洲av | 欧美精品啪啪一区二区三区| 午夜福利一区二区在线看| 久久精品成人免费网站| 欧美久久黑人一区二区| 神马国产精品三级电影在线观看 | 午夜两性在线视频| 亚洲人成77777在线视频| 在线av久久热| 亚洲三区欧美一区| 久久久久久久午夜电影 | 久久亚洲精品不卡| 久久香蕉激情| 欧美日韩瑟瑟在线播放| 亚洲av美国av| 最新在线观看一区二区三区| 一级黄色大片毛片| 国产精品爽爽va在线观看网站 | 大型av网站在线播放| 男女高潮啪啪啪动态图| 亚洲精品国产区一区二| 少妇裸体淫交视频免费看高清 | 亚洲国产精品sss在线观看 | 欧美精品亚洲一区二区| 亚洲第一青青草原| 久久久久久亚洲精品国产蜜桃av| 欧美成人午夜精品| 久久人妻福利社区极品人妻图片| 丰满迷人的少妇在线观看| 亚洲成人久久性| 国产一区二区三区在线臀色熟女 | 免费在线观看完整版高清| 久久香蕉激情| 曰老女人黄片| 99在线人妻在线中文字幕| 97超级碰碰碰精品色视频在线观看| 99国产精品一区二区三区| 日本 av在线| 国产精品成人在线| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 男女下面插进去视频免费观看| 91大片在线观看| 12—13女人毛片做爰片一| 日韩视频一区二区在线观看| 黄色丝袜av网址大全| 麻豆久久精品国产亚洲av | 亚洲五月色婷婷综合| 国产精品二区激情视频| 精品久久久久久电影网| 欧美激情久久久久久爽电影 | 国产av又大| 中文字幕高清在线视频| 男女做爰动态图高潮gif福利片 | 高清av免费在线| 亚洲熟女毛片儿| 女性生殖器流出的白浆| 国产高清videossex| 国产高清视频在线播放一区| 亚洲精华国产精华精| 久久人妻av系列| 亚洲午夜精品一区,二区,三区| 老司机深夜福利视频在线观看| 久久久久久久久久久久大奶| 嫁个100分男人电影在线观看| svipshipincom国产片| 在线观看免费午夜福利视频| 免费在线观看日本一区| 老汉色∧v一级毛片| 亚洲精品美女久久av网站| 男人操女人黄网站| xxxhd国产人妻xxx| 久久精品91蜜桃| 亚洲第一av免费看| 亚洲人成电影免费在线| 后天国语完整版免费观看| 高清av免费在线| 国产成+人综合+亚洲专区| 久久国产精品影院| 欧美黄色片欧美黄色片| 欧美日韩乱码在线| 久久久精品国产亚洲av高清涩受| 伦理电影免费视频| 免费在线观看日本一区| 桃红色精品国产亚洲av| 欧美日韩视频精品一区| 两性夫妻黄色片| 熟女少妇亚洲综合色aaa.| 日韩免费高清中文字幕av| 精品无人区乱码1区二区| 男人的好看免费观看在线视频 | 狂野欧美激情性xxxx| 国产精品一区二区免费欧美| 水蜜桃什么品种好| 乱人伦中国视频| 亚洲av美国av| 黄片大片在线免费观看| 我的亚洲天堂| 国产精品亚洲一级av第二区| 国产精品久久久av美女十八| 99国产精品免费福利视频| 十八禁人妻一区二区| 成熟少妇高潮喷水视频| 黑人操中国人逼视频| 中文亚洲av片在线观看爽| 国产91精品成人一区二区三区| 日韩视频一区二区在线观看| 别揉我奶头~嗯~啊~动态视频| 女警被强在线播放| 久久午夜综合久久蜜桃| 亚洲av片天天在线观看| 亚洲精品中文字幕在线视频| 精品国产一区二区三区四区第35| 午夜福利免费观看在线| 欧美日韩视频精品一区| 99久久综合精品五月天人人| 国产精品久久久久成人av| 国产av在哪里看| 成年人免费黄色播放视频| 天堂√8在线中文| 久久香蕉国产精品| 两人在一起打扑克的视频| 可以在线观看毛片的网站| 色哟哟哟哟哟哟| 国产一区二区三区在线臀色熟女 | 亚洲中文字幕日韩| 99国产精品免费福利视频| 香蕉国产在线看| 婷婷丁香在线五月| 一本综合久久免费| 在线观看www视频免费| av在线播放免费不卡| cao死你这个sao货| bbb黄色大片| 国产在线精品亚洲第一网站| 欧美精品亚洲一区二区| 午夜福利欧美成人| 欧美成人性av电影在线观看| 成人18禁高潮啪啪吃奶动态图| 黑人巨大精品欧美一区二区mp4| 亚洲精品成人av观看孕妇| av欧美777| 一夜夜www| 国产精品久久电影中文字幕| 国产精品乱码一区二三区的特点 | 自线自在国产av| 国产一区二区三区综合在线观看| 人成视频在线观看免费观看| 最新在线观看一区二区三区| 一本综合久久免费| 午夜免费成人在线视频| 免费高清在线观看日韩| 国产成人一区二区三区免费视频网站| 91精品国产国语对白视频| 精品电影一区二区在线| 欧美黑人欧美精品刺激| 久久久久九九精品影院| 国产aⅴ精品一区二区三区波| 亚洲 欧美 日韩 在线 免费| 成年人免费黄色播放视频| 狂野欧美激情性xxxx| 老司机亚洲免费影院| 在线永久观看黄色视频| 精品免费久久久久久久清纯| 亚洲avbb在线观看| 亚洲va日本ⅴa欧美va伊人久久| 在线观看一区二区三区激情| 免费人成视频x8x8入口观看| 欧美丝袜亚洲另类 | 成人av一区二区三区在线看| 亚洲成人国产一区在线观看| 久久久久九九精品影院| 美女高潮到喷水免费观看| 久99久视频精品免费| 欧美激情久久久久久爽电影 | 精品国产一区二区三区四区第35| 俄罗斯特黄特色一大片| 人妻久久中文字幕网| 欧美成人午夜精品| 91精品三级在线观看| 在线观看免费日韩欧美大片| 国产成人av激情在线播放| 黑人巨大精品欧美一区二区蜜桃| 欧美午夜高清在线| 亚洲一区二区三区欧美精品| 国产在线精品亚洲第一网站| www.自偷自拍.com| videosex国产| 99久久综合精品五月天人人| 欧美精品亚洲一区二区| 国产成年人精品一区二区 | 又紧又爽又黄一区二区| 在线免费观看的www视频| 免费在线观看黄色视频的| 91九色精品人成在线观看| 亚洲欧美日韩无卡精品| 在线观看午夜福利视频| 看片在线看免费视频| 涩涩av久久男人的天堂| 亚洲av熟女| www国产在线视频色| 变态另类成人亚洲欧美熟女 | 19禁男女啪啪无遮挡网站| 国产亚洲欧美98| 欧美精品亚洲一区二区| 黄色女人牲交| 午夜精品久久久久久毛片777| 国产熟女xx| 欧美av亚洲av综合av国产av| 51午夜福利影视在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 中文亚洲av片在线观看爽| 日韩三级视频一区二区三区| 久久精品91无色码中文字幕| 亚洲情色 制服丝袜| 国产无遮挡羞羞视频在线观看| 亚洲人成77777在线视频| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 美女高潮到喷水免费观看| 成年女人毛片免费观看观看9| 欧美不卡视频在线免费观看 | av在线天堂中文字幕 | 午夜激情av网站| 国产精品久久久人人做人人爽| 久久久国产成人免费| 精品国内亚洲2022精品成人| 男女午夜视频在线观看| av超薄肉色丝袜交足视频| 看片在线看免费视频| 国产成人系列免费观看| 1024视频免费在线观看| 精品国产乱子伦一区二区三区| 日韩欧美国产一区二区入口| 久久中文字幕一级| 99久久国产精品久久久| 97人妻天天添夜夜摸| 国产黄a三级三级三级人| 欧美一级毛片孕妇| 国产亚洲av高清不卡| 久久精品影院6| 久久久国产成人精品二区 | 桃红色精品国产亚洲av| 黑人欧美特级aaaaaa片| 人人妻,人人澡人人爽秒播| 国产精品 国内视频| 黄色毛片三级朝国网站| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 人人妻人人添人人爽欧美一区卜| 99久久久亚洲精品蜜臀av| 香蕉丝袜av| 美女扒开内裤让男人捅视频| 国产精品影院久久| 一级片免费观看大全| 黄片播放在线免费| 亚洲国产精品999在线| 麻豆av在线久日| 久久精品国产综合久久久| 久热这里只有精品99| 99在线视频只有这里精品首页| 最近最新中文字幕大全电影3 | www.www免费av| 亚洲精品av麻豆狂野| 国产高清激情床上av| 国产极品粉嫩免费观看在线| 欧美精品啪啪一区二区三区| 深夜精品福利| 久久伊人香网站| 每晚都被弄得嗷嗷叫到高潮| 女生性感内裤真人,穿戴方法视频| 中出人妻视频一区二区| 精品电影一区二区在线| 国产精品 国内视频| 91大片在线观看| 成人av一区二区三区在线看| 日本免费a在线| 久久国产精品人妻蜜桃| 妹子高潮喷水视频| 日韩视频一区二区在线观看| 久久国产精品人妻蜜桃| 色在线成人网| av福利片在线| 亚洲一区中文字幕在线| 成年人免费黄色播放视频| 欧美成人免费av一区二区三区| 一区二区三区激情视频| 久久久久久久精品吃奶| 黄色毛片三级朝国网站| 午夜福利欧美成人| 麻豆国产av国片精品| 欧美日韩精品网址| 琪琪午夜伦伦电影理论片6080| 成熟少妇高潮喷水视频| 欧美日韩亚洲高清精品| 亚洲av熟女| 可以在线观看毛片的网站| av视频免费观看在线观看| 国产极品粉嫩免费观看在线| 亚洲欧美精品综合一区二区三区| 美女高潮到喷水免费观看| 午夜成年电影在线免费观看| av天堂在线播放| 亚洲色图 男人天堂 中文字幕| 91在线观看av| 宅男免费午夜| 久久久久久亚洲精品国产蜜桃av| 动漫黄色视频在线观看| 狠狠狠狠99中文字幕| 欧美日韩国产mv在线观看视频| 国产免费av片在线观看野外av| 三上悠亚av全集在线观看| 久久久久久久久久久久大奶| 一区二区三区国产精品乱码| 人人妻人人爽人人添夜夜欢视频| 成人亚洲精品av一区二区 | 久久精品国产亚洲av高清一级| 人人澡人人妻人| 国产野战对白在线观看| 欧美色视频一区免费| 黄色成人免费大全| 日本免费a在线| 亚洲中文日韩欧美视频| 欧美黑人欧美精品刺激| 精品久久久久久成人av| 国产男靠女视频免费网站| 中国美女看黄片| 侵犯人妻中文字幕一二三四区| 国产黄色免费在线视频| 国产精品综合久久久久久久免费 | 精品久久久久久成人av| 99热只有精品国产| 看黄色毛片网站| 国产亚洲精品久久久久5区| 国产欧美日韩一区二区三| 国产精品一区二区在线不卡| 亚洲精品粉嫩美女一区| 美国免费a级毛片| 欧美在线一区亚洲| 精品一区二区三区视频在线观看免费 | 国产欧美日韩综合在线一区二区| 91成人精品电影| 熟女少妇亚洲综合色aaa.| 欧美老熟妇乱子伦牲交| 久久国产亚洲av麻豆专区| 国内毛片毛片毛片毛片毛片| 亚洲欧美精品综合一区二区三区| 欧美日韩视频精品一区| 国产男靠女视频免费网站| av网站在线播放免费| 午夜免费观看网址| 久久 成人 亚洲| 免费观看人在逋| 国产乱人伦免费视频| 欧美精品一区二区免费开放| 人人妻,人人澡人人爽秒播| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 韩国av一区二区三区四区| 精品福利永久在线观看| 老汉色∧v一级毛片| 极品人妻少妇av视频| 国产在线观看jvid| 国产日韩一区二区三区精品不卡| 久久久久久大精品| 欧美日韩av久久| 男人的好看免费观看在线视频 | 亚洲精品国产一区二区精华液| 国产一卡二卡三卡精品| 热re99久久国产66热| 欧美成人性av电影在线观看| 国产99白浆流出| 亚洲欧美激情综合另类| 国产主播在线观看一区二区| xxxhd国产人妻xxx| 免费女性裸体啪啪无遮挡网站| 777久久人妻少妇嫩草av网站| 欧美成狂野欧美在线观看| 人人妻,人人澡人人爽秒播| 熟女少妇亚洲综合色aaa.| 国产成年人精品一区二区 | 国产精品久久视频播放| 女人被躁到高潮嗷嗷叫费观| 久9热在线精品视频| 一进一出抽搐gif免费好疼 | 国产精品亚洲一级av第二区| 日韩av在线大香蕉| 亚洲av成人一区二区三| 午夜福利在线免费观看网站| 热re99久久国产66热| 香蕉丝袜av| 日韩精品中文字幕看吧| 亚洲av熟女| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 亚洲中文字幕日韩| 黄片大片在线免费观看| 999久久久精品免费观看国产| 亚洲色图 男人天堂 中文字幕| 每晚都被弄得嗷嗷叫到高潮| 女警被强在线播放| 欧美+亚洲+日韩+国产| 免费不卡黄色视频| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 日本欧美视频一区| 成年女人毛片免费观看观看9| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 久久人人爽av亚洲精品天堂| 在线天堂中文资源库| 国产精品野战在线观看 | 国产精品久久电影中文字幕| 80岁老熟妇乱子伦牲交| av天堂久久9| 男女床上黄色一级片免费看| 一级毛片精品| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 色婷婷久久久亚洲欧美| 亚洲一码二码三码区别大吗| 日韩国内少妇激情av| 一个人观看的视频www高清免费观看 | 国产精品电影一区二区三区| av欧美777| 久久这里只有精品19| 久久人人97超碰香蕉20202| 视频区图区小说| 久久欧美精品欧美久久欧美| 首页视频小说图片口味搜索| 久久精品国产亚洲av香蕉五月| 久久国产亚洲av麻豆专区| 日韩av在线大香蕉| 男人舔女人的私密视频| 免费av中文字幕在线| 午夜福利免费观看在线| 少妇 在线观看| 很黄的视频免费| 国产欧美日韩一区二区三| 亚洲午夜理论影院| 嫁个100分男人电影在线观看| 国产三级在线视频| 久久国产精品人妻蜜桃| 黄频高清免费视频| 亚洲国产欧美日韩在线播放| 校园春色视频在线观看| 成人免费观看视频高清| 一级黄色大片毛片| 亚洲免费av在线视频| 欧美激情 高清一区二区三区| 久久精品国产综合久久久| 18禁裸乳无遮挡免费网站照片 | 搡老熟女国产l中国老女人| 高清毛片免费观看视频网站 | bbb黄色大片| 80岁老熟妇乱子伦牲交| 亚洲欧美一区二区三区久久| 91国产中文字幕| 国产在线观看jvid| 窝窝影院91人妻| 国产精品 国内视频| 国产精品影院久久| xxx96com| 欧美成人性av电影在线观看| 日本免费一区二区三区高清不卡 | 精品少妇一区二区三区视频日本电影| 操美女的视频在线观看| 男女床上黄色一级片免费看| 757午夜福利合集在线观看| 99热国产这里只有精品6| 久久精品aⅴ一区二区三区四区| 亚洲国产欧美网| 一区二区三区精品91| 日韩成人在线观看一区二区三区| 看免费av毛片| 夜夜爽天天搞| 女人高潮潮喷娇喘18禁视频| 欧美久久黑人一区二区| 高清黄色对白视频在线免费看| 亚洲 国产 在线| 亚洲精品国产色婷婷电影| 少妇裸体淫交视频免费看高清 | www.www免费av| 天天躁狠狠躁夜夜躁狠狠躁| 国产激情欧美一区二区| 麻豆av在线久日| 久久国产乱子伦精品免费另类| 看免费av毛片| 久久精品91无色码中文字幕| 亚洲自拍偷在线| 99精品在免费线老司机午夜| 18美女黄网站色大片免费观看| 最好的美女福利视频网| 50天的宝宝边吃奶边哭怎么回事| 免费搜索国产男女视频| 午夜免费成人在线视频| 我的亚洲天堂| 国产精品免费视频内射| 色婷婷av一区二区三区视频| 天堂动漫精品| 国产精品一区二区精品视频观看| 夜夜夜夜夜久久久久| 欧美日本中文国产一区发布| 久久国产精品影院| 可以免费在线观看a视频的电影网站| 亚洲精品国产精品久久久不卡| 少妇 在线观看| 中出人妻视频一区二区| 午夜福利免费观看在线| 热re99久久精品国产66热6| 自拍欧美九色日韩亚洲蝌蚪91| 露出奶头的视频|