• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of cavitation turbulence in Francis turbine runner with splitter blades

    2020-01-03 05:02:40,,,,

    , , , ,

    (School of Energy and Power Engineering, Xihua University, Chengdu, Sichuan 610039, China)

    Abstract: Cavitation will reduce the turbine performance and even damage the turbine components. To verify the effects of splitter blades on improving the cavitation performance, the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-ε turbulence model. The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions, and the cavitation in the flow field of the runner was analyzed. The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades, and there is almost no cavitation on the short blades; their distributions are more uniform under small flow conditions than those under large flow conditions; and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade. The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.

    Key words: Francis turbine;splitter blades;runner;cavitation;numerical simulation

    1 Introduction

    Cavitation is a common phenomenon during the operation of hydraulic turbines. It can reduce the turbine performance, cause the erosion of flow components, generate vibration and noise, and even damage turbine components. With the development of hydraulic turbines towards high head and high speed, the research on cavitation has attracted more and more attention.

    Numerous researches on cavitation mechanism and cavitation theory have laid a solid foundation for the study of cavitation in hydraulic machinery. PORTISKY[1]provided a new way to solve the problem of viscosity by taking the velocity calculated from the ideal fluid as the approximate velocity of viscous fluid, and then applying the calculated viscous stress on the ideal fluid. By solving the equations of motion during bubble collapse both in the Lagrangian and in the chara-cteristic forms, HICKLING, et al[2]presented the perfect numerical solutions for the flow in the vicinity of a collapsing spherical bubble in water. Then PLESSET, et al[3]designed a numerical method to solve vapor bubble collapse problems lacking spherical symmetry. ARNDT[4]reviewed the physical phenomena of cavi-tation and discussed factors affecting the occurrence of cavitation, such as cavitation nuclei, surface roughness and viscosity. FRANC, et al[5]provided a comprehensive presentation of the phenomena involved in cavitation, explained all types of cavitation developed in real liquid flows, and covered the field of cavitation inception as well as developed cavitation. KUMAR,et al[6]discussed the various aspects related to cavitation in hydro turbines, the different causes for the declined performance and efficiency of the hydro turbines, and the suitable remedial measures suggested by various investigators. HUANG, et al.[7]conducted mixed nume-rical simulation to the 3D cavitating turbulent flow field in a Francis turbine, and obtained the distribution of pressure and cavitation bubble volume components on the blade under different conditions. ZHANG, et al[8]simulated the cavitating status of a Francis turbine at different cavitation coefficients, and calculated the cri-tical cavitation coefficient. Based on the modified mass transfer equation, LIU, et al[9]numerically simulated the cavitation in a model Francis turbine on different Thoma numbers.

    Numerical simulations are considerably helpful to evaluating the cavitating flows and the cavitation performance. However, the flow inside Francis turbines with splitter blades is more complicated than other conventional Francis turbines, and the study of cavitation in them is few. With the multiphase cavitation mode-ling approach, a basic two-phase cavitation model co-nsists of the standard viscous flow equations go-verning the transport of mixture or phases, and a conventional turbulence model were developed. To have an insight into the nature of cavitating flows in Francis turbines with splitter blades, the Singhal cavitation model and the standardk-εturbulence model were used to simulate the cavitation flow in the turbine. The main reason to choose the Singhal cavitation model instead of the Zwart-Gerber-Belamri and Schnerr and Sauer models is that the effects of turbulence and noncondensable gases are taken into account in the Singhal cavitation model, besides it has the capability to account for multiphase flows, the effects of slip velocities between the liquid and gas phases, and the thermal effects and compressibility of both liquid and gas phases.

    2 Mathematical model

    2.1 Control equations

    The no-slip model of mixed fluid was used to si-mulate the gas-liquid two-phase flow in the turbine, namely there is no relative sliding between the liquid phase and the cavitation phase. The continuity equation and momentum equation of the two-phase flow can be expressed as follow:

    Continuity equation of the mixture is

    (1)

    Momentum equation of the mixture is

    (2)

    wheretis the time,xiis the coordinate component,vis the velocity magnitude of the mixture,pis the pressure of the flow field,gis the acceleration of gravity,ρmis the density of the mixture,ρm=φlρl+φvρv+φgρg,φl,φvandφgare volume fractions of water, water vapor (cavitation bubbles) and noncondensable gas (φl+φv+φg=1),ρl,ρvandρgare densities of them, separately,μmis the dynamic viscosity of the mixture, and subscriptsiandjare tensor coordinates.

    2.2 Turbulence model

    Turbulence kinetic energykequation:

    (3)

    Dissipation rate of the turbulence kinetic energyεequation:

    (4)

    whereμtis the eddy viscosity or turbulent viscosity,μt=ρmCμk2/ε,Cμ=0.09,σkandσεare turbulent Prandtl numbers,σk=1.0 andσε=1.3,Ce=0.02,Cc=0.01,C1ε=1.44,C2ε=1.92, andC3ε= tanh(vx/vz),kis the turbulence kinetic energy,εis the turbulence eddy dissipation,Gkrepresents the turbulence kinetic energy generated by the average velocity gradient,Gbrepresents the turbulence kinetic energy gene-rated by the buoyancy force, andYMrepresents the contribution of transitional diffusion to the turbulence eddy dissipation during compressible turbulent flow.

    2.3 Transport equations

    Transport equation of the water vapor phase (cavitation phase) obtained from the continuity equation:

    (5)

    whereγis the effective exchange coefficient;eandcare generation rate and condensation rate of water vapor, separately.

    Transport equation of the noncondensable gas phase in water:

    (6)

    2.4 Cavitation model

    SINGHAL, et al[10]introduced the simplified Rayleigh-Plesset equation into the cavitation model, and obtained the following cavitation model:

    Ifp≤pv, bubble growing (cavitation) process:

    (7)

    Ifp>pv, bubble condensation (collapse) process:

    (8)

    Cavitation flow involves a phase transition process, so there will be a very large density change in the low pressure area. Singnal cavitation model takes into account all the major factors affecting cavitation. wherepvis the saturation pressure of water vapor, empirical coefficientsCe=0.02,Cc=0.01, andσis the coefficient of surface tension. This model has been used to simulate the solid-liquid two-phase turbulent flow in the runner of Francis turbines used in Jinping II Hydropower Station on Yalong River in China, and has proved reliable[11].

    3 Geometric model and boundary conditions

    3.1 Geometric model

    The real type HLA542-130 Francis turbine with splitter blades was taken as the calculation model. The parameters of this turbine are as follows: runner diameterD1=1,300 mm, design headHd=250 m, design flow rateQd=5.07 m3/s, rated speedn=750 r/min, number of long and short bladesZ1=Z2=15, separately, number of stay vanesZ3=9, and number of guide vanesZ4=16. The cavitation performance curve of the turbine is shown in Fig.1.

    Fig.1 Cavitation performance curve of HLA542-130 Francis turbine with splitter blades

    According to the design parameters, the spiral casing, stay vanes ring, runner and draft tube of the turbine were modeled. The geometric model of the whole flow passage is shown in Fig.2.

    Fig.2 3D model of whole flow passage of turbine

    The unstructured grid was used for the whole flow passage, the near wall area was densified separately, and the dynamic-static coupling was adopted for the interface between the runner and the stay vanes ring. The grid division of the runner is shown in Fig.3. According to the variation pattern of the hydraulic performance with the number of grids, the grid indepen-dence was verified when the variation rate of efficiency is less than 0.5%. The total computational grids on the whole flow passage of the turbine is 1.46 million.

    Fig.3 Grids of runner

    3.2 Boundary conditions

    The calculation results of single phase flow at non-cavitation conditions were taken as the initial values to increase the convergence rate of calculation. The velocity inlet and pressure outlet were used as the boundary conditions, and the no-slip conditions was adopted for the solid wall in the flow passage. The initial gas volume fractions at the inlet and outlet were set as 0.

    4 Calculation and results analysis

    The Singhal cavitation model and the standardk-εturbulence model were used to numerically simulate the cavitation flow in the Francis turbine with splitter blades. In view of the proneness of cavitation under off-design conditions, the small flow condition (flow rateQ=0.5Qd, guide vane openinga=34.7 mm) and the large flow condition (flow rateQ=1.2Qd, guide vane openinga=54.7 mm) were selected for calculation and analysis.

    4.1 Distribution of static pressure on blade surface

    The calculation results of static pressure distribu-tion on the leading face and trailing face of the long blades are shown in Fig.4 and Fig.5. Under small flow conditions, on the leading face of the long blade, the static pressure is evenly distributed from the inlet tip to the outlet tip, and a small low pressure zone is generated at the outlet tip near the crown. On the trailing face of the long blade, a large low pressure zone is generated at the outlet tip near the crown. Meanwhile, an elliptic low pressure zone is formed near the band indicating the flow separation at this region.

    Fig.4 Static pressure on leading face of long blade

    Fig.5 Static pressure on trailing face of long blade

    Under large flow conditions, on the leading face of long blade, low pressure zones are generated at the outlet tip near the band and there are comparatively small lateral flows. Meanwhile, the negative pressure zone at the outlet tip indicates the existence of flow separation. On the trailing face of the long blade, large negative pressure zones are generated near the outlet tip indicating the existence of vortices.

    The calculation results of static pressure distribu-tion on the leading face and trailing face of the short blades are shown in Fig.6 and Fig.7.

    Fig.6 Static pressure on leading face of short blade

    Fig.7 Static pressure on trailing face of short blade

    Under small flow conditions, on the leading face of the short blade, the static pressure is evenly distri-buted from the inlet tip to the outlet tip, but there is barely a low pressure zone on the leading face. On the trailing face of the short blade, the pressure reducing amplitude from the inlet tip to the outlet tip increases.

    Under large flow conditions, on the leading face of short blade, a small low pressure zone is generated at the inlet tip indicating lateral flows in this area, and in the meantime a low pressure zone is generated at the outlet tip near the crown. On the trailing face of the short blade, the static pressure is evenly distributed. Only two small low pressure zones are generated at the outlet tip one near the crown and the other near the band indicating the generation of backflow.

    In short, the distribution of static pressure on the short blades is more uniform than that on the long blades. This means that the installation of splitter blades can help to make the static pressure distribution uniform. Meanwhile, the distribution of static pressure under small flow conditions is more uniform than those under large flow conditions, which indicates that cavitation tendency is increased under large flow conditions.

    4.2 Distribution of gas volume fractions on blade surface

    The calculation results of gas volume fractions distribution on the leading face and trailing face of the long blades are shown in Fig.8 and Fig.9.The distribution of gas volume fractions also indicates the cavitation degree. The larger the gas volume fraction is, the worse the cavitation degree will be.

    Under small flow conditions, on the leading face of the long blade, there are a few star-shaped cavitation bubbles at the inlet tip near the crown indicating flow separation in a small scope due to the impact of flow on the inlet tip, which is consistent with the results of the static pressure distribution; and there are star-shaped cavitation bubbles at the outlet tip near the crown indicating flow separation in the low pressure zone at the outlet tip. However their influence on the flow field is small due to their small gas volume fractions. On the trailing face of the long blade, there are a small amount of cavitation bubbles at the inlet tip indicating flow separate in this area; and there are a series of cavitation bubbles at the outlet tip near the band, which is consistent with the results of the static pressure distribution. However, cavitation will not occur because the pressure on the blade surface is larger than the cavitation pressure.

    Fig.9 Gas volume fractions on trailing face of long blade

    Under large flow conditions, there is hardly any cavitation bubbles on the leading face of the long blade, but there are a large number of linear bubbles on the trailing face of the long blade at the outlet tip. The gas volume fraction in some area near the band even reaches to 75%. This means that cavitation is serious in this area, which will have a serious impact on the operation of the unit.

    The calculation results of gas volume fractions distribution on the leading face and trailing face of the short blades are shown in Fig.10 and Fig.11.

    Under small flow conditions, on the leading face of the short blade, there are some star-shaped cavitation bubbles at the inlet tip near the crown, which indicates certain flow separation at the inlet tip due to flow impact. But their influence on the flow field is small due to small gas volume fractions. On the trailing face of the short blade, there are a few cavitation bubbles at the outlet tip near the band, but their influe-nce on the flow field is small, too.

    Fig.10 Gas volume fractions on leading face of short blade

    Under large flow conditions, on the leading face of the short blade, there are a few star-shaped cavitation bubbles at the outlet tip near the band, which indicates a small scale flow separation due to the flow impact on the inlet tip, but they will not lead to cavitation due to the small gas volume fractions. On the trailing face of the short blade, there are cavitation bubbles at the outlet tip near the band, and the gas volume fraction is only large in a small area.

    In short, the distribution of gas volume fractions on the short blades is more uniform than that on the long blades. There is hardly an area with particularly large gas volume fractions on the short blades, which proves the good cavitation performance by the instal-lation of splitter blades. At the same time, the distribution of gas volume fractions under small flow conditions is more uniform than that under large flow conditions. Under small flow conditions, the gas volume fractions are small, and so is their influence on the flow. Under large flow conditions, the gas volume fractions are large at the outlet tip near the band on the trailing face of the long blade, and cavitation is the worst in this area.

    5 Conclusions

    The cavitation flow in a Francis turbine with splitter blades were numerically simulated to obtain the distributions of static pressure and gas volume fractions on the blade surface.

    1) The distributions of static pressure and gas vo-lume fractions are the most uniform on the short blades under small flow conditions and the least uniform on the long blades under large flow conditions.

    2) Low pressure zones exist at the outlet tip on both sides of the long blades under small and large flow conditions, especially on the trailing face. Flow separation and vortices are generated in these areas. By comparison, low pressure zones only exist at the outlet tip on both sides of the short blades under large flow conditions, and the areas of the low pressure zones are smaller than those on the long blades.

    3) As a result of impact, flow separation will occur at the inlet and outlet tips of both the long and short blades under small flow conditions. Cavitation bubbles will form at these areas, but their influence on the flow field is small due to their small gas volume fractions. Under large flow conditions, cavitation bubbles will only form at the outlet tips of the long and short blades. Although the amount of cavitation bubbles seems to be larger on the short blades, but their influence on the flow field is small due to their small gas volume fractions. However, the gas volume fractions at the outlet tip on the trailing face of the long blade are large (even reaching to 75%). Cavitation is the worst only in this area.

    4) Compared with conventional Francis turbines of the same type, the cavitation performance of the Francis turbines with splitter blades is much better.

    后天国语完整版免费观看| 男的添女的下面高潮视频| 亚洲精品久久久久久婷婷小说| 中国美女看黄片| 大话2 男鬼变身卡| 性色av一级| 国产av国产精品国产| 亚洲精品乱久久久久久| 两人在一起打扑克的视频| 2018国产大陆天天弄谢| 日日夜夜操网爽| 女人爽到高潮嗷嗷叫在线视频| 日韩一区二区三区影片| 亚洲 国产 在线| 亚洲精品一区蜜桃| 男女无遮挡免费网站观看| 亚洲精品美女久久久久99蜜臀 | 51午夜福利影视在线观看| 亚洲成av片中文字幕在线观看| 国产又色又爽无遮挡免| 在线精品无人区一区二区三| 精品久久久久久久毛片微露脸 | 午夜免费男女啪啪视频观看| 一二三四社区在线视频社区8| 亚洲av电影在线进入| 肉色欧美久久久久久久蜜桃| 电影成人av| 亚洲天堂av无毛| av片东京热男人的天堂| √禁漫天堂资源中文www| 黄色a级毛片大全视频| 国产免费视频播放在线视频| 一区福利在线观看| 亚洲专区中文字幕在线| 最黄视频免费看| 欧美xxⅹ黑人| 国产免费现黄频在线看| 99香蕉大伊视频| 91老司机精品| 18禁观看日本| 色网站视频免费| 国产成人一区二区三区免费视频网站 | 欧美日韩亚洲高清精品| 久久毛片免费看一区二区三区| 99国产精品一区二区蜜桃av | 人人妻人人爽人人添夜夜欢视频| 后天国语完整版免费观看| 成人影院久久| 国产成人欧美| 波野结衣二区三区在线| 亚洲精品乱久久久久久| 少妇 在线观看| 精品人妻在线不人妻| 高清黄色对白视频在线免费看| 爱豆传媒免费全集在线观看| 欧美精品啪啪一区二区三区 | 美女脱内裤让男人舔精品视频| 美女主播在线视频| 99久久99久久久精品蜜桃| 欧美+亚洲+日韩+国产| 国产三级黄色录像| 性少妇av在线| 精品国产国语对白av| 午夜精品国产一区二区电影| 国产三级黄色录像| 可以免费在线观看a视频的电影网站| av不卡在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 日韩av不卡免费在线播放| 亚洲国产中文字幕在线视频| 国产亚洲一区二区精品| 美女高潮到喷水免费观看| 国产国语露脸激情在线看| 久久国产亚洲av麻豆专区| 午夜精品国产一区二区电影| 性色av乱码一区二区三区2| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 免费少妇av软件| 亚洲av日韩在线播放| xxx大片免费视频| 色婷婷久久久亚洲欧美| 国产主播在线观看一区二区 | 国产一级毛片在线| 啦啦啦 在线观看视频| 后天国语完整版免费观看| 国精品久久久久久国模美| 美女视频免费永久观看网站| 91麻豆精品激情在线观看国产 | 脱女人内裤的视频| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 久久人人爽av亚洲精品天堂| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| av福利片在线| 成年人午夜在线观看视频| 久久精品熟女亚洲av麻豆精品| 18禁黄网站禁片午夜丰满| av国产久精品久网站免费入址| 狠狠精品人妻久久久久久综合| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区| 国语对白做爰xxxⅹ性视频网站| 日韩制服丝袜自拍偷拍| 成在线人永久免费视频| 国产精品欧美亚洲77777| 国产精品免费视频内射| 19禁男女啪啪无遮挡网站| 黄色片一级片一级黄色片| 丝袜美足系列| 涩涩av久久男人的天堂| 男女边摸边吃奶| 亚洲国产精品一区三区| 亚洲熟女毛片儿| av在线app专区| 黄频高清免费视频| 制服人妻中文乱码| 久久精品国产a三级三级三级| 中文字幕另类日韩欧美亚洲嫩草| 国产精品欧美亚洲77777| 久久久精品区二区三区| 久久女婷五月综合色啪小说| 爱豆传媒免费全集在线观看| 一级a爱视频在线免费观看| 80岁老熟妇乱子伦牲交| 操出白浆在线播放| 免费在线观看日本一区| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 香蕉国产在线看| 电影成人av| 一边亲一边摸免费视频| 国产日韩一区二区三区精品不卡| 一区二区三区乱码不卡18| 一级毛片我不卡| 成年人午夜在线观看视频| 国产深夜福利视频在线观看| 亚洲国产精品999| 大话2 男鬼变身卡| 欧美成狂野欧美在线观看| 成年女人毛片免费观看观看9 | 欧美国产精品一级二级三级| 大片免费播放器 马上看| 免费看av在线观看网站| 精品人妻在线不人妻| 在线看a的网站| 国产成人一区二区三区免费视频网站 | 青春草亚洲视频在线观看| 久热爱精品视频在线9| 午夜免费成人在线视频| 亚洲精品一二三| 久久国产精品大桥未久av| 亚洲人成电影免费在线| 亚洲精品国产av成人精品| 精品视频人人做人人爽| 国产极品粉嫩免费观看在线| 一边摸一边抽搐一进一出视频| 午夜免费男女啪啪视频观看| 国产精品成人在线| 国产精品久久久久成人av| 午夜免费观看性视频| 91国产中文字幕| 国产av国产精品国产| 天天躁狠狠躁夜夜躁狠狠躁| 嫁个100分男人电影在线观看 | 亚洲国产精品一区二区三区在线| 黄色a级毛片大全视频| 十八禁高潮呻吟视频| 满18在线观看网站| 久久国产亚洲av麻豆专区| 久久国产精品男人的天堂亚洲| 国产黄频视频在线观看| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产 | 最近手机中文字幕大全| a级片在线免费高清观看视频| 亚洲人成电影免费在线| 97精品久久久久久久久久精品| www.999成人在线观看| 日本vs欧美在线观看视频| 亚洲国产精品成人久久小说| 中文字幕人妻丝袜一区二区| 日韩中文字幕视频在线看片| 欧美成人精品欧美一级黄| 国产精品av久久久久免费| 夫妻午夜视频| 精品亚洲乱码少妇综合久久| 麻豆av在线久日| 久久青草综合色| 波多野结衣av一区二区av| 视频在线观看一区二区三区| 好男人视频免费观看在线| 国产精品香港三级国产av潘金莲 | 国产亚洲精品第一综合不卡| 成人手机av| 色播在线永久视频| 国产xxxxx性猛交| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 国产真人三级小视频在线观看| 午夜av观看不卡| 国语对白做爰xxxⅹ性视频网站| 亚洲精品一二三| 99热网站在线观看| 在线观看www视频免费| 国产av精品麻豆| 国产片内射在线| 国产高清视频在线播放一区 | 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 别揉我奶头~嗯~啊~动态视频 | 国产精品久久久人人做人人爽| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区国产| 精品久久久久久久毛片微露脸 | 精品国产国语对白av| 午夜免费男女啪啪视频观看| 色综合欧美亚洲国产小说| 午夜视频精品福利| 亚洲一区二区三区欧美精品| av电影中文网址| 人人妻人人爽人人添夜夜欢视频| 777米奇影视久久| 国产亚洲一区二区精品| 一级片免费观看大全| 欧美大码av| 欧美+亚洲+日韩+国产| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲,欧美精品.| 国产成人一区二区三区免费视频网站 | 少妇被粗大的猛进出69影院| 久久精品久久久久久噜噜老黄| 国产精品一区二区精品视频观看| 国产av精品麻豆| 欧美日韩视频高清一区二区三区二| 国产野战对白在线观看| 国产成人一区二区三区免费视频网站 | 另类亚洲欧美激情| 狂野欧美激情性xxxx| 日韩中文字幕欧美一区二区 | 麻豆乱淫一区二区| 国产av精品麻豆| 久久久久久久精品精品| 欧美变态另类bdsm刘玥| 久久久久视频综合| 97在线人人人人妻| 69精品国产乱码久久久| 亚洲欧美一区二区三区国产| 大型av网站在线播放| 亚洲成人手机| 亚洲第一青青草原| 日本猛色少妇xxxxx猛交久久| 国产在线一区二区三区精| 这个男人来自地球电影免费观看| 丝袜脚勾引网站| 国产高清不卡午夜福利| 脱女人内裤的视频| 亚洲成av片中文字幕在线观看| 高清av免费在线| 久久久久久久大尺度免费视频| 精品福利永久在线观看| 热re99久久国产66热| 欧美激情 高清一区二区三区| xxx大片免费视频| 亚洲 国产 在线| 国产黄频视频在线观看| 亚洲欧美日韩另类电影网站| 最近最新中文字幕大全免费视频 | 久久99一区二区三区| 国产成人精品久久二区二区免费| 欧美激情极品国产一区二区三区| 青春草亚洲视频在线观看| 精品国产一区二区三区四区第35| e午夜精品久久久久久久| 亚洲精品国产区一区二| 男女边摸边吃奶| 欧美人与性动交α欧美软件| 国产熟女欧美一区二区| 日日摸夜夜添夜夜爱| 国产精品国产av在线观看| 精品欧美一区二区三区在线| 人人妻,人人澡人人爽秒播 | 热re99久久精品国产66热6| 亚洲七黄色美女视频| 国产成人免费无遮挡视频| av视频免费观看在线观看| 日本一区二区免费在线视频| 美女视频免费永久观看网站| 日本av免费视频播放| 少妇 在线观看| 男女免费视频国产| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 91老司机精品| 午夜免费男女啪啪视频观看| www.熟女人妻精品国产| 青春草视频在线免费观看| 桃花免费在线播放| 久久精品国产a三级三级三级| 波多野结衣一区麻豆| 亚洲欧美精品综合一区二区三区| 老鸭窝网址在线观看| av电影中文网址| 国产成人精品在线电影| 99久久综合免费| 男女床上黄色一级片免费看| 伦理电影免费视频| 成人午夜精彩视频在线观看| 美女扒开内裤让男人捅视频| 少妇精品久久久久久久| 久久久久久亚洲精品国产蜜桃av| 亚洲伊人色综图| 免费观看a级毛片全部| 亚洲成人免费电影在线观看 | 好男人电影高清在线观看| 国产精品一国产av| 啦啦啦啦在线视频资源| 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 99久久99久久久精品蜜桃| 大香蕉久久网| 亚洲,一卡二卡三卡| 亚洲成av片中文字幕在线观看| 国产精品一区二区在线不卡| 国产欧美日韩一区二区三 | 久久 成人 亚洲| 91精品三级在线观看| 亚洲精品国产色婷婷电影| 精品一区二区三卡| 啦啦啦在线观看免费高清www| 精品人妻1区二区| 久久久精品国产亚洲av高清涩受| av天堂在线播放| 日本av免费视频播放| 黄网站色视频无遮挡免费观看| 亚洲av欧美aⅴ国产| 亚洲自偷自拍图片 自拍| 成人亚洲精品一区在线观看| 亚洲情色 制服丝袜| 考比视频在线观看| 男女高潮啪啪啪动态图| 少妇被粗大的猛进出69影院| 一级毛片电影观看| 少妇被粗大的猛进出69影院| 久久影院123| 午夜免费观看性视频| 国产男女内射视频| 精品一品国产午夜福利视频| 国产片内射在线| 两个人免费观看高清视频| 中文精品一卡2卡3卡4更新| 搡老岳熟女国产| 国产97色在线日韩免费| 国产日韩欧美在线精品| 欧美中文综合在线视频| 午夜免费观看性视频| 国产精品三级大全| 国产一卡二卡三卡精品| 久久影院123| 久久亚洲国产成人精品v| 丰满人妻熟妇乱又伦精品不卡| 欧美97在线视频| 久久久国产一区二区| 国产日韩欧美在线精品| 午夜久久久在线观看| 精品一区二区三卡| 激情五月婷婷亚洲| 免费看不卡的av| 丰满人妻熟妇乱又伦精品不卡| 赤兔流量卡办理| √禁漫天堂资源中文www| 精品人妻在线不人妻| 久久久精品94久久精品| h视频一区二区三区| av网站在线播放免费| 国产精品久久久av美女十八| 成人三级做爰电影| 久久狼人影院| 多毛熟女@视频| 成年动漫av网址| 一级片'在线观看视频| 亚洲第一av免费看| www.熟女人妻精品国产| 欧美人与善性xxx| 人人澡人人妻人| 深夜精品福利| 精品少妇久久久久久888优播| 亚洲av美国av| xxxhd国产人妻xxx| 亚洲av电影在线进入| 咕卡用的链子| cao死你这个sao货| 亚洲熟女毛片儿| 制服诱惑二区| 99久久人妻综合| 十分钟在线观看高清视频www| 涩涩av久久男人的天堂| 日韩av免费高清视频| 考比视频在线观看| 精品一区二区三区av网在线观看 | 亚洲av成人不卡在线观看播放网 | 亚洲欧美清纯卡通| 国产成人精品久久二区二区91| 久久久久网色| 久久天躁狠狠躁夜夜2o2o | 国产成人一区二区三区免费视频网站 | 国产男女超爽视频在线观看| 热99国产精品久久久久久7| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 久久免费观看电影| 国产精品久久久久久精品古装| 中文欧美无线码| 超碰97精品在线观看| 中文字幕人妻熟女乱码| 亚洲av在线观看美女高潮| 一本色道久久久久久精品综合| 国产成人系列免费观看| 亚洲欧洲日产国产| 国产精品二区激情视频| 色播在线永久视频| 国产福利在线免费观看视频| 亚洲欧美激情在线| bbb黄色大片| 国产在线一区二区三区精| 国产成人欧美在线观看 | 男女边吃奶边做爰视频| 亚洲成av片中文字幕在线观看| 国产成人免费无遮挡视频| 美女脱内裤让男人舔精品视频| 99国产精品一区二区三区| 久久精品国产a三级三级三级| e午夜精品久久久久久久| 国产免费又黄又爽又色| 国产精品一区二区在线不卡| 国产在线免费精品| 一本综合久久免费| 男女边摸边吃奶| 国产精品久久久久久精品古装| 又大又黄又爽视频免费| 日本欧美视频一区| 一边亲一边摸免费视频| 在线精品无人区一区二区三| 丰满少妇做爰视频| 久久免费观看电影| 女人被躁到高潮嗷嗷叫费观| 首页视频小说图片口味搜索 | 国产av国产精品国产| 最近中文字幕2019免费版| 午夜福利影视在线免费观看| 亚洲精品自拍成人| 狠狠精品人妻久久久久久综合| 最新在线观看一区二区三区 | 老司机午夜十八禁免费视频| 欧美在线黄色| 搡老乐熟女国产| 亚洲男人天堂网一区| 亚洲中文日韩欧美视频| 51午夜福利影视在线观看| 一级黄色大片毛片| 69精品国产乱码久久久| 国产一区有黄有色的免费视频| 一级毛片电影观看| 美女高潮到喷水免费观看| 无限看片的www在线观看| 交换朋友夫妻互换小说| 国产一级毛片在线| 一本色道久久久久久精品综合| 国产av一区二区精品久久| 久久久久久久久免费视频了| 婷婷色av中文字幕| 日韩大片免费观看网站| 亚洲精品一二三| 午夜福利视频精品| 久久精品国产亚洲av高清一级| 麻豆乱淫一区二区| 亚洲国产av影院在线观看| 天天影视国产精品| 国产视频首页在线观看| 色94色欧美一区二区| 99国产精品一区二区三区| 最新的欧美精品一区二区| 国产爽快片一区二区三区| 91麻豆av在线| 在线精品无人区一区二区三| 亚洲精品国产av成人精品| 久久精品成人免费网站| 韩国精品一区二区三区| 国产亚洲午夜精品一区二区久久| 人人妻人人爽人人添夜夜欢视频| 国产成人精品久久二区二区免费| 久久久久久久久久久久大奶| 美女视频免费永久观看网站| 中文字幕色久视频| 国产不卡av网站在线观看| 日日夜夜操网爽| 国产成人精品久久久久久| 丰满饥渴人妻一区二区三| 黄色片一级片一级黄色片| 美女中出高潮动态图| 自拍欧美九色日韩亚洲蝌蚪91| 一本一本久久a久久精品综合妖精| 精品卡一卡二卡四卡免费| 国产福利在线免费观看视频| 美女视频免费永久观看网站| 国产精品人妻久久久影院| 蜜桃在线观看..| 亚洲av片天天在线观看| 中国美女看黄片| 韩国精品一区二区三区| 免费av中文字幕在线| 国产一区二区三区综合在线观看| 一本大道久久a久久精品| 亚洲精品日韩在线中文字幕| 亚洲 国产 在线| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| av不卡在线播放| 午夜av观看不卡| 午夜影院在线不卡| 精品少妇久久久久久888优播| 狠狠婷婷综合久久久久久88av| 一区二区三区激情视频| 日韩制服骚丝袜av| 成人午夜精彩视频在线观看| 亚洲成人手机| 又大又爽又粗| videos熟女内射| 亚洲av电影在线观看一区二区三区| 90打野战视频偷拍视频| 精品少妇一区二区三区视频日本电影| 极品人妻少妇av视频| 亚洲视频免费观看视频| 午夜福利视频精品| 视频在线观看一区二区三区| av在线app专区| 亚洲国产精品一区三区| 少妇裸体淫交视频免费看高清 | 青春草视频在线免费观看| 国产av国产精品国产| 交换朋友夫妻互换小说| 伊人久久大香线蕉亚洲五| 美女扒开内裤让男人捅视频| 看十八女毛片水多多多| 亚洲欧美日韩另类电影网站| 国产成人免费观看mmmm| 熟女av电影| 无限看片的www在线观看| 制服诱惑二区| 久久狼人影院| 亚洲中文日韩欧美视频| 汤姆久久久久久久影院中文字幕| 亚洲国产精品国产精品| 亚洲情色 制服丝袜| 日本a在线网址| 亚洲精品国产区一区二| 久久久国产一区二区| 看十八女毛片水多多多| 国产视频一区二区在线看| 色婷婷av一区二区三区视频| 欧美黄色片欧美黄色片| 老司机亚洲免费影院| 免费在线观看黄色视频的| 国产精品香港三级国产av潘金莲 | 交换朋友夫妻互换小说| 亚洲图色成人| 两个人看的免费小视频| 肉色欧美久久久久久久蜜桃| 悠悠久久av| 多毛熟女@视频| 99精国产麻豆久久婷婷| 亚洲精品国产区一区二| 国产成人啪精品午夜网站| 亚洲人成77777在线视频| 久久久久国产精品人妻一区二区| 亚洲国产av影院在线观看| 人妻一区二区av| 成年人午夜在线观看视频| 亚洲av成人精品一二三区| 久久亚洲国产成人精品v| 老司机亚洲免费影院| 亚洲欧美成人综合另类久久久| kizo精华| 婷婷色综合www| 99精品久久久久人妻精品| 少妇被粗大的猛进出69影院| 夜夜骑夜夜射夜夜干| 亚洲熟女精品中文字幕| 精品人妻在线不人妻| 午夜福利影视在线免费观看| 美女主播在线视频| 国产欧美日韩一区二区三 | 亚洲av综合色区一区| 国产男人的电影天堂91| 国产成人精品在线电影| 久久久久久免费高清国产稀缺| 久久久久国产一级毛片高清牌| 性高湖久久久久久久久免费观看| 亚洲熟女毛片儿| 午夜激情久久久久久久| 女性生殖器流出的白浆| 一区二区三区激情视频| 美女扒开内裤让男人捅视频| 大陆偷拍与自拍| 欧美日韩黄片免| 黑人猛操日本美女一级片| 国产亚洲精品久久久久5区| 成年av动漫网址| 国产精品一区二区免费欧美 | 久久午夜综合久久蜜桃| 久久99一区二区三区| 精品人妻1区二区|