• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular Cloning,Characterization and Sequence Analysis of KCNQ4 in Large Odorous Frog,Odorrana graminea

    2019-12-27 01:23:48NingningLUZiwenGUZhuoCHENandXiaohongCHEN
    Asian Herpetological Research 2019年4期

    Ningning LU,Ziwen GU,Zhuo CHEN and Xiaohong CHEN

    College of Life Sciences, Henan Normal University, Xinxiang 453007,Henan,China

    Abstract Acoustic communication is essential for anuran survival and reproduction,and masking background noise can affect the effective acoustic communication.The larger odorous frog(Odorrana graminea)inhabits noise montane streams,and it has shown an ultrasound communication adaptation.However,the molecular mechanism underlying their ultrasonic hearing adaptation remains unknown.To characterize and investigate the molecular characteristics and evolution of the high-frequency hearing-sensitive gene(KCNQ4)in O.graminea,termed as OgKCNQ4,the rapid amplification of cDNA ends(RACE)was performed to amplify the cDNA of OgKCNQ4.Different bioinformatics analyses were used to investigate the molecular characteristics.Multiple nucleotide and amino acid sequence alignment were conducted,and phylogenies were reconstructed under the maximum likelihood and Bayesian approaches.The full-length cDNA of OgKCNQ4 was 2065 bp,and the open reading frame(ORF)was 2046 bp encoding for a putative protein with 681 amino acids.The relative molecular weight of OgKCNQ4 was 76.453 kD and the putative PI was 9.69.Secondary structure prediction analyses suggested 42.29% alpha helixes and 43.76% random coils in OgKCNQ4.Gene homology and Phylogenetic analyses revealed the closest relationship between OgKCNQ4 and KCNQ4 of Nanorana parkeri with 96.9% similarity and 95.0% identity.We first determined the full-length cDNA of OgKCNQ4 and the results here could provide foundations for further study on the evolution of KCNQ4 and its relationship to ultrasonic communication in amphibians.

    Keywords Odorrana graminea,KCNQ4,cDNA,bioinformatics analyses

    1.Introduction

    Acoustic communication plays an important role in the survival,reproduction and evolution of most animals,and masking background noise always affect the detection and discrimination among signals(Velezet al.,2013).In order to minimal masking background noise,some animals evolved ultrasonic communication,and researches on ultrasonic communication were mainly focused on mammals(e.g.,whales,dolphins,bats and rodents)(reviewed in Velezet al.,2013).Amphibians are significant in the evolutionary history of vertebrate due to their transition from water to land,and their hearing system underwent many important morphological and functional adaptations(Websteret al.,1992).The large odorous frog(Odorrana graminea)belongs to the family Ranidae and inhabits cold swift boulder-strewn,montane streams at elevations from about 450-1200 m throughout Southern China and Southeast Asia(Feiet al.,2009).Previous electrophysiological studies have shown that the calls of the large odorous frog contains ultrasonic components(≥20 kHz),and they have an ultrasonic communication adaptation to the intense,predominately low-frequency ambient noise from nearby streams and waterfalls(Shenet al.,2011).In addition,the other two torrential frogs(i.e.,O.tormotaandHuia Cavitympanum)were also shown to have ultrasonic communication adaptation(Fenget al.,2006;Archet al.,2008).However,the molecular mechanisms underlying their high-sensitive hearing adaptation is poorly documented to date.

    Many genes and signaling pathways are involved in acoustic communication,the voltage-gated potassium channel subfamily KQT member 4(KCNQ4)gene is significantly expressed in the inner ear and the central auditory pathway,and it encodes a potassium channel protein(Kharkovetset al.,2000).Interestingly,previous studies have suggested that theKCNQ4gene was associated with high-frequency hearing,and mutations ofKCNQ4gene in humans and mice could cause nonsyndromic DFNA2 hereditary deafness(Kubischet al.,1999;Kharkovetset al.,2006).In addition,previous molecular studies on bat echolocation revealed that theKCNQ4gene underwent parallel evolution in echolocating bats(Liuet al.,2011;Liuet al.,2012),suggesting the important role of KCNQ4 in high-frequency hearing.

    We want to determine whether the genetic variations ofKCNQ4in amphibians are associated with their highfrequency hearing based on the evolutionary analysis of amphibianKCNQ4genes.However,to date theKCNQ4gene were only identified and characterized in three amphibian species(e.g.,Nanorana parkeri,Xenopus laevisandXenopus tropicalis)based on the genomic sequencing.In the present study,we first determined and analyzed the full-length cDNA ofKCNQ4in one of the three high-frequency hearing frogs(O.graminea).The results here could provide foundations for further study on the evolution ofKCNQ4and its relationship to ultrasonic communication in amphibians.

    2.Materials and Methods

    2.1.Sample collection and ethics statementSamples ofO.gramineawere collected from the Huangshan mountain,Anhui province(30°04' N,118°08' E).Sampling was conducted according to all the ethical guidelines and legal requirements in China.The animaluse protocols of this study were approved by the Institutional Care and Ethics Committee of Henan Normal University.

    2.2.RNA isolation and cDNA synthesisTotal RNA was isolated from the brain tissue ofO.gramineausing RNeasy Mini Kit(QIAGEN,Germany)according to manufacturer's instructions.The RNA integrity was determined by electrophoresis on 1% agarose gel electrophoresis,and the concentrations were assessed spectrophotometrically by measuring their absorbance at 260 nm and 280 nm using NanoDrop 2000 spectrophotometer(Thermo Scientific,USA).The firststrand cDNAs were synthesized using the PrimeScriptTM II 1ST Strand cDNA Synthesis Kit(TaKaRa,Japan)according to the manufacturer's instructions,and then stored at-80°C for further use.

    2.3.Amplification and sequencing of OgKCNQ4 geneDegenerate primers of the intermediate fragments ofKCNQ4gene were first designed with Primer Premier 5.0(Premier Biosoft International,CA,USA)based on an alignment ofKCNQ4sequences fromN.parkeri,X.laevisandX.tropicalis,and then the 5'/3' RACE primers were designed according to the intermediate fragments of OgKCNQ4amplified.The primer information is shown in Table 1.We first amplified partial intermediate sequences of the conserved region.The cycling protocol was one cycle of 95°C for 5 min,35 cycles of 95°C for 30 s,55°C for 30 s,72°C for 40 s,followed by one cycle of 72°C for 10 min.The 5' and 3' RACE were then performed using a SMARTer RACE cDNA amplification kit and SMARTer RACE kit(TaKaRa)according to the manufacturer's instructions.The amplified PCR products were purified with a MiniBEST Agarose Gel DNA Extraction Kit(TaKaRa,Dalian,China),cloned into Pmd18-T vectors,and then sequenced in both directions using an ABI 3730automated genetic analyzer(Applied Biosystems)by Shanghai Sangon Biological Engineering Techonology and Service Co.,Ltd.Five to six repeated amplifications were conducted and sequenced to confirm its sequence.The same PCR primers were used for sequencing.The newlyKCNQ4sequence was deposited in GenBank under accession number:MK956830.

    Table 1 Primers used to amplify OgKCNQ4 in the present study.

    2.4.Sequence analysis of OgKCNQ4 and protein structure predictionThe chromatograms of each sequence were proofread and assembled with the program DNASTAR SeqMan v7.21(DNASTAR Inc.,Madison,WI,USA),and Basic Local Alignment Search Tool(BLAST)(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi)was also performed to confirm the sequence.The open reading frame(ORF)was determined using the program DNASTAR EditSeq(DNASTAR Inc.,Madison,WI,USA)based on the full-length cDNA sequence of the verifiedOgKCNQ4gene.The putative pI and molecular weight of the predicted OgKCNQ4 protein were estimated using the Online software Compute pI/Mw(http://web.Expasy.org/tool/pi_tool.html)(Gasteigeret al.,2005).The ProtScale(http://web.Expasy.org//protscale/)was used to estimate the hydrophilic and hydrophobic properties of OgKCNQ4.The transmembrane structure of OgKCNQ4 was analyzed by TMpred Server.The secondary structure of OgKCNQ4 protein was predicted with PORTER(http://distill.ucd.i.e./porter).Three-dimensional domain structure of OgKCNQ4 protein was predicted using the SWISS-MODEL Server(http://swissmodel.Expasy.Org/swissmod/SWISS-MODEL.html)(Schwedeet al.,2003).

    2.5.Evolutionary analysis of OgKCNQ4To reveal the evolutionary history ofOgKCNQ4gene,we searched and downloadedKCNQ4gene sequences of other thirteen vertebrate species from NCBI(http://www.ncbi.nlm.nih.gov/).The taxonomic and sequence information are shown in Table 2.All nucleotide sequences from the ORFs ofKCNQ4and their deduced amino acid sequences were first aligned separately using MUSCLE v3.8(Edgar,2004)implemented in MEGA v5.0(Tamuraet al.,2011)under default settings,and then manually adjusted with GeneDoc.The nucleotide sequence alignment was generated based on the protein sequence alignment.The similarity and identity of theOgKCNQ4withother vertebrate KCNQ4 genes was calculated using the MatGAT program with default parameters(Campanellaet al.,2003).The evolutionary relationship ofKCNQ4was determined using the Bayesian inference(BI)in MrBayes v3.1.2(Huelsenbeck and Ronquist,2001)and maximum likelihood(ML)algorithms in MetaPIGA v2.0(Helaers and Milinkovitch,2010)based on both of the nucleotide and amino acids alignment.Latimeria chalumnaewas utilized as outgroup for the phylogenetic analyses based on Anderson and Wiens(2017).Modeltest v3.7(Posada and Crandall,1998)was used to select the optimal nucleotide substitution models based on the Akaike Information Criterion(AIC),and the best-fit substitution model selected for mtDNA dataset is GTR+I+G model.Maximum likelihood analyses were conducted using MetaPIGA v2.0(Helaers and Milinkovitch,2010)with 1000 metaGA replicate searches.The Bayesian analyses were conducted with four(one cold and three heated)Metropolis-coupled Markov chain Monte Carlo iterations for twenty million generations with default heating values and trees were sampled every 1000 generation.The first 10% of trees were deleted as the‘‘burn-in'' stage and the remaining trees were used to generate the consensus treeand calculate Bayesian posterior probabilities(PP).The stationarity of the likelihood scores of sampled trees was determined using Tracer v1.4(Rambaut,2007).

    Table 2 Sequences used in the present study and results of homology analysis between OgKCNQ4 protein and 13 other vertebrates.

    3.Results

    3.1.Characterization of the cDNA sequence of OgKCNQ4The full-length cDNA ofOgKCNQ4was 2065 bp,including a 7 bp 5'-terminal untranslated region(UTR),a 12bp 3'-UTR,and a 2046 bp open reading frame(ORF)region.The ORF encodes a putative OgKCNQ4 protein with 681 amino acids(Figure 1).The estimated molecular weight and theoretical pI of the putative OgKCNQ4 protein were 76.453 kD and 9.69,respectively.The putative OgKCNQ4 protein consisted with 299 hydrophobic amino acids(A,I,L,F,W,V,M,P),382 polar amino acids(G,S,Y,C,T,N,Q,K,R,H,D,E),61 strongly acidic amino acids(D,E),and 90 strongly basic amino acids(K,R).

    Figure 1 Full-length open reading frame(ORF),deduced amino acid sequence and domain structure of OgKCNQ4.The six transmembrane structures are highlighted with red line under the related amino acids.The ion transport domain and potassium ion channel domain are highlighted by yellow and green boxes,respectively.

    Table 3 The proportion of secondary structure of OgKCNQ4 protein in O.graminea.

    As shown in Table 3,the secondary structures of OgKCNQ4 protein are mainly alpha helix(42.29%)and random coils(43.76%),whereas the proportion of Beta turn and extended strand structure is low(3.82%and 10.13%,respectively).Six transmembrane domains(each is composed of 19-25 amino acids)were identified within OgKCNQ4 protein,and the OgKCNQ4 protein also possessed the characteristic N-terminal ion transport functional domain(87-311)and the potassium ion channel functional domain(449-631)(Figure 1).The tertiary structure of putative OgKCNQ4 protein is mainly consisted of alpha helixes and random coils(Figure 2).

    Figure 2 Three-dimensional structure of OgKCNQ4.Backbone ribbon and the secondary structure topology are shown:alpha helixes are shown in green.Amino and carboxy terminal ends are indicated.

    3.2.Alignments and evolutionary analysis of OgKCNQ4As shown in Figure 3,the homology analysis of OgKCNQ4 protein sequence with other vertebrate KCNQ4s revealed strong conservation in the ion transport domain and the potassium ion channel domain.The OgKCNQ4 protein had the highest identity(95.0%)and similarity(96.9%)to the KCNQ4 protein inNanorana parkeri,and shared 67.3%-93.7% similarity and 59.7%-89.6% with the other vertebrate KCNQ4 homologues(Table 2).To explore the evolutionary relationship between theOgKCNQ4and other KCNQ4 genes,thirteen other representative vertebrate KCNQ4 sequences were used to construct the phylogenetic tree using MrBayes method withLatimeria chalumnaeas outgroup.The Bayesian and ML analyses of nucleotide and amino acids datasets produced smiliar topologies,and both Bayesian posterior probability(PP)and bootstrp support(BP)are repesented on the BI tree(Figure 4 and Figure S1).The monophyly of the tetrapods(i.e.,amphbians,reptiles,birds and mammals),and each of the four major groups were strongly supported(PP=1.0,BP=100).TheOgKCNQ4showed closest relationship withN.parkeri,and they together formed a sister-group relationship withXenopus tropicalis.However,the phylogenetic position of the representative bird was inconsistent between the amino acids dataset and nucleotide dataset(Figures 4 and S1).Representatives of birds and reptiles were grouped as the sister taxa to mammals with strong supports based on the analyses of the amino acids dataset,whereas the nucleotide analyses revealed a sister group relationship of bird with mammals(Figures 4 and S1).

    4.Discussion

    To date,althoughKCNQ4genes have cloned and sequenced in many vertebrates(reviewed at NCBI:http://www.ncbi.nlm.nih.gov/),full-length cDNA sequences were available only in three amphibians(i.e.,N.parkeri,X.laevisandX.tropicalis)(Hellstenet al.,2010;Sunet al.,2015).In the present study,we first cloned and characterized the full-length cDNA ofOgKCNQ4in one of the three high-frequency hearing frogs(O.graminea)(Fenget al.,2006;Archet al.,2008;Shenet al.,2011).Comparison of the deduced amino acid sequence with those of other amphibians and mouse showed that these secondary structural features of OgKCNQ4 inO.gramineawere similar to those previously reported vertebrate(Kubischet al.,1999;Kharkovetset al.,2006;Heidenreichet al.,2012).The six transmembrane domains,the two characteristic ion transport domain and potassium ion channel domain in OgKCNQ4 predicted protein were also found in humans,mouse and other mammals(Kubischet al.,1999;Kharkovetset al.,2006;Xuet al.,2013).

    Figure 3 Multiple alignments of the deduced amino acid sequences of OgKCNQ4 with other 13 representative KCNQ4 sequences.Similar amino acids are highlighted by gray boxes.The positions of the ion transport domain and potassium ion channel domain are indicated.

    KCNQ4 were shown to play important roles in the basolateral K+conductance,which contributes to the modulation of electrical excitation and the removal of intracellular K+from the hair cells(Kubischet al.,1999).Mutations in KCNQ4 were found to be associated with an autosomal dominant progressive hearing loss in humans(DFNA2)(Kubischet al.,1999).Hearing and acoustic communication is important for land vertebrates,and many genes involved in the sound signal transduction were conserved and under purifying selection(Liuet al.,2011;Shenet al.,2012).The strong conservatism in the ion transport domain and the potassium ion channel domain between OgKCNQ4 and other vertebrate KCNQ4 proteins found in the present study further suggested the important function of KCNQ4 protein among vertebrates(Kubischet al.,1999;Kharkovetset al.,2006).In addition,the phylogenetic tree of KCNQ4 from representative vertebrate species shows that the OgKCNQ4 was nested within amphibian,and relationships among the higher taxonomic level based on the amino acids dataset were in general accordance with the taxonomy of Anderson and Wiens(2017).

    TheKCNQ4were shown to exclusively express in the outer hair cells in mouse cochlea(Kubischet al.,1999),whereas Kharkovetset al.(2000)found the KCNQ4 was also expressed in the mouse auditory system(inner ear and brain).Whether the KCNQ4 is expressed in the brain of other animals is still unclear.Interestingly,we cloned and characterized the KCNQ4 gene from the brain tissue of theO.graminea,which further suggesting the important role ofKCNQ4in the maturation of the auditory function.Whether adaptive evolution occurred onKCNQ4in amphibians and its relationship to the high-frequency hearing in amphibians should be further investigated with more amphibianKCNQ4characterized.In conclusion,the present study first characterized theOgKCNQ4in one of the three high-frequency hearing amphibians,and the results here could also provide foundations for further study on the evolution ofKCNQ4and its relationship to ultrasonic communication in amphibians.

    Figure 4 Phylogenetic relationship of OgKCNQ4 with other 13 representative vertebrate KCNQ4 constructed based on amino acid sequences by MrBayes method.Integers associated with branches are bootstrap support values for ML inference whereas values of 1 or less are Bayesian posterior probabilities.Representative members are delimited by vertical lines to the right of the tree.

    AcknowledgementsWe thank Yuxiao HE and Zhen LI for the sample collection in the field.This research was supported by the National Natural Science Foundation of China to ZC(Grants U1404306 and 31601848),XHC(Grant 31572245,31372164 and 31872220),the Project funded by China Postdoctoral Science Foundation to ZC(2016M600580),the Excellent Young Scholars Fund of HNNU to ZC(YQ201706),and the Young Backbone Teachers Fund of HNNU to ZC.

    Appendix

    Figure S1 Phylogenetic relationship of OgKCNQ4 with other 13 representative vertebrate KCNQ4 constructed based on nucleotide sequences by MrBayes method.Integers associated with branches are bootstrap support values for ML inference whereas values of 1 or less are Bayesian posterior probabilities.Representative members are delimited by vertical lines to the right of the tree.

    少妇精品久久久久久久| 国产探花极品一区二区| 久久女婷五月综合色啪小说| 久久韩国三级中文字幕| 国产精品 国内视频| 老司机亚洲免费影院| 91午夜精品亚洲一区二区三区| 在线观看一区二区三区激情| 免费高清在线观看日韩| 成人国产av品久久久| 少妇被粗大猛烈的视频| 亚洲精品美女久久av网站| 18禁观看日本| 妹子高潮喷水视频| 视频中文字幕在线观看| 搡女人真爽免费视频火全软件| 国产男女超爽视频在线观看| 高清在线视频一区二区三区| 精品卡一卡二卡四卡免费| 男女国产视频网站| 制服丝袜香蕉在线| 日韩成人伦理影院| 免费看av在线观看网站| 欧美人与性动交α欧美软件 | 91成人精品电影| 18在线观看网站| 国产精品久久久久久精品古装| 99久久综合免费| 欧美另类一区| 伊人亚洲综合成人网| h视频一区二区三区| 一本久久精品| 啦啦啦中文免费视频观看日本| 国产一区二区三区av在线| 看免费成人av毛片| 精品一区二区三卡| 黄网站色视频无遮挡免费观看| 9191精品国产免费久久| 国产欧美另类精品又又久久亚洲欧美| 日本与韩国留学比较| 久久久久久久久久久免费av| 久久97久久精品| 99视频精品全部免费 在线| 蜜桃在线观看..| 九九爱精品视频在线观看| 少妇熟女欧美另类| 久久99热这里只频精品6学生| 久久久精品94久久精品| 少妇人妻 视频| 欧美精品人与动牲交sv欧美| 国产精品.久久久| tube8黄色片| a级毛色黄片| 久久人人爽人人片av| 久久午夜福利片| 91久久精品国产一区二区三区| 亚洲伊人久久精品综合| 视频在线观看一区二区三区| 国产精品一区二区在线观看99| 五月开心婷婷网| 国产又爽黄色视频| 国产深夜福利视频在线观看| 国产精品蜜桃在线观看| 麻豆乱淫一区二区| 亚洲av综合色区一区| 亚洲图色成人| 女性被躁到高潮视频| 久久 成人 亚洲| 伊人亚洲综合成人网| 国产日韩欧美在线精品| 嫩草影院入口| 久久午夜综合久久蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级专区第一集| 免费观看av网站的网址| 欧美人与性动交α欧美精品济南到 | 免费不卡的大黄色大毛片视频在线观看| 最黄视频免费看| 日韩精品有码人妻一区| 久久精品人人爽人人爽视色| 在线观看免费视频网站a站| 国产乱来视频区| 在现免费观看毛片| 在线观看美女被高潮喷水网站| 精品午夜福利在线看| 桃花免费在线播放| av福利片在线| 女人精品久久久久毛片| 最黄视频免费看| 日产精品乱码卡一卡2卡三| 精品国产乱码久久久久久小说| 日韩av在线免费看完整版不卡| 母亲3免费完整高清在线观看 | 亚洲精品第二区| 咕卡用的链子| 欧美国产精品va在线观看不卡| 丝袜美足系列| 高清不卡的av网站| 毛片一级片免费看久久久久| 国产 精品1| 精品国产国语对白av| 久久人人爽人人片av| 香蕉精品网在线| 国产在线一区二区三区精| 国产又爽黄色视频| 在线观看一区二区三区激情| 18禁动态无遮挡网站| 18禁观看日本| 亚洲美女搞黄在线观看| 国产精品一二三区在线看| 欧美3d第一页| 亚洲欧洲精品一区二区精品久久久 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 9色porny在线观看| 夫妻午夜视频| 高清av免费在线| av片东京热男人的天堂| 久久久国产一区二区| 极品人妻少妇av视频| 一级a做视频免费观看| 国产精品女同一区二区软件| 欧美少妇被猛烈插入视频| 国产精品免费大片| 十分钟在线观看高清视频www| 精品国产一区二区久久| 日本与韩国留学比较| 国产有黄有色有爽视频| 五月开心婷婷网| 肉色欧美久久久久久久蜜桃| 91午夜精品亚洲一区二区三区| 午夜福利在线观看免费完整高清在| 亚洲国产精品一区二区三区在线| 欧美日韩视频精品一区| 国产一区二区三区av在线| 女人久久www免费人成看片| 宅男免费午夜| 国产成人一区二区在线| 久久久久精品人妻al黑| 97超碰精品成人国产| 国产成人一区二区在线| 亚洲国产欧美日韩在线播放| 侵犯人妻中文字幕一二三四区| 麻豆乱淫一区二区| 美女主播在线视频| 久久久久视频综合| 97在线视频观看| 少妇的逼好多水| 性色avwww在线观看| 精品一区二区三区视频在线| videossex国产| 午夜福利视频精品| 亚洲av电影在线观看一区二区三区| 国产精品国产三级国产av玫瑰| av福利片在线| 中国国产av一级| 91精品伊人久久大香线蕉| 18禁在线无遮挡免费观看视频| 国产精品久久久久久av不卡| 亚洲高清免费不卡视频| 人妻人人澡人人爽人人| 9热在线视频观看99| 在线观看国产h片| 久久综合国产亚洲精品| 下体分泌物呈黄色| 久久精品久久久久久久性| 国产成人午夜福利电影在线观看| 日日撸夜夜添| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 99久久中文字幕三级久久日本| 亚洲精品乱久久久久久| 国产成人精品在线电影| 欧美3d第一页| 另类精品久久| 在线亚洲精品国产二区图片欧美| 国产成人欧美| 久久久久久久国产电影| 国产精品国产三级国产专区5o| 日本欧美视频一区| 国产淫语在线视频| 精品人妻在线不人妻| 亚洲国产精品999| 黑丝袜美女国产一区| 黑丝袜美女国产一区| 国产精品无大码| 国产精品欧美亚洲77777| 青青草视频在线视频观看| 亚洲欧美日韩卡通动漫| videossex国产| 老司机影院成人| 黑人巨大精品欧美一区二区蜜桃 | 色网站视频免费| 肉色欧美久久久久久久蜜桃| 亚洲国产精品专区欧美| 又粗又硬又长又爽又黄的视频| 国产精品一区二区在线不卡| 男男h啪啪无遮挡| 9191精品国产免费久久| 建设人人有责人人尽责人人享有的| 久久久久久久亚洲中文字幕| 国产一区有黄有色的免费视频| 蜜桃国产av成人99| 日韩精品免费视频一区二区三区 | 国产精品久久久久久久电影| 男人操女人黄网站| 日本av免费视频播放| 亚洲av欧美aⅴ国产| 黄色配什么色好看| 色网站视频免费| 99视频精品全部免费 在线| 大话2 男鬼变身卡| 99热国产这里只有精品6| 制服诱惑二区| 日韩三级伦理在线观看| 一级a做视频免费观看| 综合色丁香网| 9热在线视频观看99| 狠狠精品人妻久久久久久综合| 99久久人妻综合| 久久精品aⅴ一区二区三区四区 | 亚洲人与动物交配视频| 妹子高潮喷水视频| 亚洲美女搞黄在线观看| 80岁老熟妇乱子伦牲交| 亚洲成人av在线免费| 国产熟女欧美一区二区| 国产黄频视频在线观看| 久久精品国产自在天天线| 国产精品免费大片| 亚洲婷婷狠狠爱综合网| 免费黄色在线免费观看| 狠狠精品人妻久久久久久综合| 伦精品一区二区三区| 女性生殖器流出的白浆| 最近最新中文字幕大全免费视频 | 精品国产一区二区三区久久久樱花| 亚洲中文av在线| 你懂的网址亚洲精品在线观看| 国产极品粉嫩免费观看在线| 日韩av免费高清视频| 亚洲国产精品成人久久小说| 欧美精品亚洲一区二区| 国产亚洲av片在线观看秒播厂| 久久精品aⅴ一区二区三区四区 | 亚洲av综合色区一区| 国产乱人偷精品视频| 亚洲成av片中文字幕在线观看 | 18禁动态无遮挡网站| 少妇精品久久久久久久| 午夜视频国产福利| 欧美xxⅹ黑人| 菩萨蛮人人尽说江南好唐韦庄| 亚洲内射少妇av| 黄色怎么调成土黄色| 夜夜骑夜夜射夜夜干| 一级黄片播放器| 亚洲三级黄色毛片| 波野结衣二区三区在线| 国产免费福利视频在线观看| freevideosex欧美| 丝袜人妻中文字幕| 精品国产乱码久久久久久小说| 亚洲国产欧美在线一区| 免费av中文字幕在线| 亚洲国产精品成人久久小说| 国产亚洲精品第一综合不卡 | 桃花免费在线播放| xxxhd国产人妻xxx| 狂野欧美激情性bbbbbb| 丁香六月天网| 精品少妇黑人巨大在线播放| 亚洲精品久久久久久婷婷小说| 黄片播放在线免费| 内地一区二区视频在线| 久久久久久久久久成人| 婷婷色麻豆天堂久久| 国产亚洲最大av| 一二三四在线观看免费中文在 | 久久久久久久久久人人人人人人| av片东京热男人的天堂| av卡一久久| 亚洲国产最新在线播放| 精品99又大又爽又粗少妇毛片| 国产一区二区激情短视频 | 有码 亚洲区| 国产1区2区3区精品| 乱码一卡2卡4卡精品| 高清黄色对白视频在线免费看| 色哟哟·www| 嫩草影院入口| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 国产av精品麻豆| 久久精品久久久久久噜噜老黄| 亚洲欧洲精品一区二区精品久久久 | 九色亚洲精品在线播放| 尾随美女入室| 午夜av观看不卡| 男女边吃奶边做爰视频| 午夜福利影视在线免费观看| 午夜精品国产一区二区电影| 亚洲欧美成人精品一区二区| 亚洲av国产av综合av卡| 精品午夜福利在线看| 国内精品宾馆在线| 99久久人妻综合| 国产精品一区二区在线观看99| 亚洲欧洲国产日韩| 五月玫瑰六月丁香| 亚洲精品日本国产第一区| 国产亚洲av片在线观看秒播厂| 精品福利永久在线观看| 亚洲成国产人片在线观看| 一级毛片电影观看| 91精品伊人久久大香线蕉| 啦啦啦啦在线视频资源| 在线观看人妻少妇| 国产av码专区亚洲av| 男女边吃奶边做爰视频| a 毛片基地| 涩涩av久久男人的天堂| 90打野战视频偷拍视频| 亚洲色图 男人天堂 中文字幕 | 建设人人有责人人尽责人人享有的| 少妇的逼水好多| 国产免费一级a男人的天堂| 亚洲精品视频女| 极品人妻少妇av视频| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频| 亚洲国产精品专区欧美| 一本大道久久a久久精品| av在线老鸭窝| 欧美最新免费一区二区三区| av福利片在线| 久久综合国产亚洲精品| 在线亚洲精品国产二区图片欧美| 国产成人精品久久久久久| av一本久久久久| 亚洲国产最新在线播放| 欧美日韩亚洲高清精品| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 少妇的逼好多水| 99热这里只有是精品在线观看| 日韩欧美一区视频在线观看| 色94色欧美一区二区| 我的女老师完整版在线观看| 五月天丁香电影| 人妻 亚洲 视频| 2022亚洲国产成人精品| 一级片'在线观看视频| 一边亲一边摸免费视频| 热re99久久精品国产66热6| 免费观看在线日韩| 免费大片18禁| 51国产日韩欧美| 国产精品麻豆人妻色哟哟久久| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 国产成人a∨麻豆精品| h视频一区二区三区| 国产精品无大码| 日韩成人av中文字幕在线观看| 青春草国产在线视频| 久久狼人影院| 丝袜人妻中文字幕| 成人漫画全彩无遮挡| 久久人人97超碰香蕉20202| 国产女主播在线喷水免费视频网站| 久久青草综合色| 日本91视频免费播放| 老司机影院毛片| av又黄又爽大尺度在线免费看| 热99国产精品久久久久久7| 国产精品人妻久久久久久| 少妇精品久久久久久久| 免费女性裸体啪啪无遮挡网站| 精品第一国产精品| 久久久a久久爽久久v久久| 伦理电影大哥的女人| 一本色道久久久久久精品综合| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av天美| 久久久久久久久久久免费av| 伦精品一区二区三区| 国产日韩一区二区三区精品不卡| www日本在线高清视频| 久久久欧美国产精品| 伊人亚洲综合成人网| 久久99热这里只频精品6学生| 亚洲国产毛片av蜜桃av| 九九在线视频观看精品| 我的女老师完整版在线观看| 国产精品久久久久成人av| 一级爰片在线观看| 日本与韩国留学比较| 美女内射精品一级片tv| 国产xxxxx性猛交| 久久久久精品久久久久真实原创| 热99国产精品久久久久久7| 男女无遮挡免费网站观看| 22中文网久久字幕| 国产精品免费大片| 精品一区二区三区视频在线| 国产毛片在线视频| 精品午夜福利在线看| 中文天堂在线官网| 成人黄色视频免费在线看| 黄色怎么调成土黄色| 日韩电影二区| 国产精品秋霞免费鲁丝片| 在线免费观看不下载黄p国产| 在线观看人妻少妇| 日本色播在线视频| 精品一区二区三区视频在线| 免费人成在线观看视频色| 日韩人妻精品一区2区三区| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 成人国产av品久久久| 国产伦理片在线播放av一区| 国产国语露脸激情在线看| 国产亚洲精品久久久com| av黄色大香蕉| 色网站视频免费| 狂野欧美激情性xxxx在线观看| 97在线人人人人妻| 99视频精品全部免费 在线| 一级毛片电影观看| 亚洲精品456在线播放app| 亚洲性久久影院| 一级毛片电影观看| 欧美变态另类bdsm刘玥| 母亲3免费完整高清在线观看 | 国产成人免费无遮挡视频| 女的被弄到高潮叫床怎么办| 大话2 男鬼变身卡| 毛片一级片免费看久久久久| 亚洲性久久影院| 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区蜜桃 | 日日摸夜夜添夜夜爱| 国产成人精品一,二区| 大香蕉久久成人网| 午夜福利影视在线免费观看| 亚洲性久久影院| 最近最新中文字幕免费大全7| 天天躁夜夜躁狠狠躁躁| 国精品久久久久久国模美| 五月伊人婷婷丁香| 国产黄色视频一区二区在线观看| av.在线天堂| 日韩伦理黄色片| 18禁在线无遮挡免费观看视频| 久久这里有精品视频免费| 婷婷色综合大香蕉| 精品少妇内射三级| 秋霞伦理黄片| 日韩制服骚丝袜av| 99热全是精品| 看十八女毛片水多多多| 精品久久国产蜜桃| 少妇 在线观看| 欧美最新免费一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲欧美色中文字幕在线| 五月伊人婷婷丁香| 色婷婷久久久亚洲欧美| tube8黄色片| videosex国产| 国产成人精品婷婷| 男人舔女人的私密视频| 中文欧美无线码| 亚洲四区av| 欧美日本中文国产一区发布| 免费不卡的大黄色大毛片视频在线观看| 婷婷成人精品国产| 午夜福利在线观看免费完整高清在| 国产成人a∨麻豆精品| 亚洲精品久久成人aⅴ小说| 美女国产视频在线观看| 日韩制服丝袜自拍偷拍| 91午夜精品亚洲一区二区三区| 国产在视频线精品| 女性生殖器流出的白浆| 久久久国产一区二区| 中文字幕免费在线视频6| 美女大奶头黄色视频| 国产精品熟女久久久久浪| 国产男女超爽视频在线观看| 美女福利国产在线| 日日啪夜夜爽| 日产精品乱码卡一卡2卡三| 国产精品久久久久成人av| 久久国产精品男人的天堂亚洲 | 丰满饥渴人妻一区二区三| 成人毛片a级毛片在线播放| 国产亚洲精品久久久com| 免费av不卡在线播放| 欧美国产精品一级二级三级| 国产精品久久久av美女十八| 最新中文字幕久久久久| 日韩一区二区三区影片| 色网站视频免费| 国产av国产精品国产| 久久毛片免费看一区二区三区| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 日韩不卡一区二区三区视频在线| 青春草国产在线视频| a级毛片在线看网站| 国产精品久久久久成人av| 九九在线视频观看精品| 免费观看无遮挡的男女| 精品人妻熟女毛片av久久网站| 黑人欧美特级aaaaaa片| 成年动漫av网址| 黑人高潮一二区| 乱码一卡2卡4卡精品| 视频区图区小说| 黄色 视频免费看| 婷婷色麻豆天堂久久| 久久国内精品自在自线图片| 色5月婷婷丁香| 久久久久人妻精品一区果冻| 日韩精品免费视频一区二区三区 | 午夜91福利影院| 亚洲精品美女久久av网站| 欧美性感艳星| 日韩一区二区视频免费看| 国产精品人妻久久久影院| 久久精品熟女亚洲av麻豆精品| 国产国拍精品亚洲av在线观看| av在线老鸭窝| 亚洲av福利一区| 丝袜喷水一区| 黑人高潮一二区| 午夜影院在线不卡| 精品久久国产蜜桃| 少妇被粗大的猛进出69影院 | 国产综合精华液| 亚洲精品美女久久久久99蜜臀 | 一二三四中文在线观看免费高清| 蜜桃在线观看..| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品| 亚洲美女视频黄频| 欧美日韩av久久| 母亲3免费完整高清在线观看 | 男女高潮啪啪啪动态图| 少妇被粗大的猛进出69影院 | 久久国内精品自在自线图片| 国产男女超爽视频在线观看| 毛片一级片免费看久久久久| 欧美日本中文国产一区发布| 国产综合精华液| 亚洲精品久久成人aⅴ小说| av又黄又爽大尺度在线免费看| 伊人久久国产一区二区| 美女国产视频在线观看| 一个人免费看片子| 草草在线视频免费看| 亚洲少妇的诱惑av| 精品国产乱码久久久久久小说| 黄色 视频免费看| 国产一区二区在线观看日韩| 99热6这里只有精品| 丝袜人妻中文字幕| 韩国av在线不卡| 国产永久视频网站| 欧美xxxx性猛交bbbb| 超色免费av| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 韩国av在线不卡| 中文欧美无线码| 韩国av在线不卡| 蜜臀久久99精品久久宅男| 国产乱来视频区| 亚洲熟女精品中文字幕| 免费黄网站久久成人精品| 桃花免费在线播放| 亚洲精品一区蜜桃| 99久久中文字幕三级久久日本| 老熟女久久久| 人人妻人人澡人人看| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 久久久久国产网址| av电影中文网址| av网站免费在线观看视频| 韩国av在线不卡| 视频区图区小说| 精品亚洲乱码少妇综合久久| 高清av免费在线| 国产av一区二区精品久久| 国产精品欧美亚洲77777| 久久久欧美国产精品| 国产精品女同一区二区软件| 亚洲国产日韩一区二区| 在线观看免费高清a一片| 99精国产麻豆久久婷婷| 精品久久国产蜜桃| 国产又色又爽无遮挡免| 黄片播放在线免费| 久久久久精品人妻al黑| 国产成人免费无遮挡视频| 免费av不卡在线播放| 18禁在线无遮挡免费观看视频| 欧美日韩一区二区视频在线观看视频在线| 2021少妇久久久久久久久久久| 日本免费在线观看一区| 国产精品久久久久成人av| 天天躁夜夜躁狠狠久久av|