• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Functional Analysis of Three Rice Chloroplast Transit Peptides

    2019-12-26 03:31:10HeLeiChenGuangZhangSenQiuZhennanHuJiangZengDaliZhangGuanghengDongGuojunGaoZhenyuRenDeyongShenLanGuoLongbiaoQianQianZhuLi
    Rice Science 2019年1期

    He Lei, Chen Guang, Zhang Sen, Qiu Zhennan, Hu Jiang, Zeng Dali, Zhang Guangheng, Dong Guojun, Gao Zhenyu, Ren Deyong, Shen Lan, Guo Longbiao, Qian Qian, Zhu Li

    ?

    Functional Analysis of Three Rice Chloroplast Transit Peptides

    He Lei, Chen Guang, Zhang Sen, Qiu Zhennan, Hu Jiang, Zeng Dali, Zhang Guangheng, Dong Guojun, Gao Zhenyu, Ren Deyong, Shen Lan, Guo Longbiao, Qian Qian, Zhu Li

    ()

    Chloroplast transit peptides (CTPs) can be used to transport non-chloroplastic proteins into the chloroplasts. Here, we studied the CTPs of three rice (L.) chloroplast-localized proteins and found that their CTPs could be used to transport non-chloroplast-localized proteins into the chloroplasts. Fusion proteins lacking the CTP remained located in the cytoplasm. Furthermore, we constructed green fluorescent protein fusion vectors with the three CTPs and three non-chloroplast-localized proteins, Ghd10, MULTI-FLORET SPIKELET1 (MFS1), and SHORTENED UPPERMOST INTERNODE 1 (SUI1). After transforming these constructs into rice protoplasts, the fusion proteins all localized in the chloroplasts. Collectively, our results showed that these CTPs can transport non-chloroplast-localized proteins into the chloroplasts, and more importantly, these CTPs can be applied to engineer chloroplast metabolism.

    rice; chloroplast transit peptide; translocated function; subcellular location

    In addition to their essential roles in photosynthesis and CO2fixation, chloroplasts participate in the synthesis of chlorophyll, carotenoids, fatty acids, some amino acids, starch and proteins (Hanke and Mulo, 2013). The chloroplast genome encodes only around 100 proteins (Martin et al, 2002; Timmis et al, 2004; Tu et al, 2017), and therefore, a large number of proteins that function in the chloroplasts are synthesized in the cytoplasm (Leister, 2003; Sun et al, 2009), then transported into the chloroplast and processed into mature proteins. This transport is usually mediated by the chloroplast transit peptide (CTP) in the precursor sequence of the protein, a sequence that is post-translationally cleaved by stromal processing peptidase in the chloroplast stroma (Keegstra and Bauerle, 1988; von Heijne et al, 1989). Many studies have shown that CTPs mediate the transportation of precursor proteins into chloroplasts via interaction with certain translocators, such as Hsp70 (heat shock proteins 70) (Ivey and Bruce, 2000), Hsp90 (heat shock proteins 90) (Qbadou et al, 2006), FKBP (FK506 binding protein) (Fellerer et al, 2011), TIC (translocon at the inner membrane of chloroplasts) and TOC (translocon at the outer membrane of chloroplasts) complexes (Sun et al, 2011), which are located at the inner and outer envelopes of chloroplasts.

    CTPs mediate the transport of chloroplast proteins from the cytoplasm into the chloroplast and can be used to transport non-chloroplast proteins into the chloroplast. In 1985, van den Broeck et al (1985) successfully transported bacterial neomycin phosphor- transferase II (NPT-II) into tobacco chloroplasts by ligating a 58-amino acid transit peptide of the pea () Ribulose-1,5-bisphosphate carboxylase/ oxygenase (Rubisco) small subunit to the N-terminal of NPT-II. Exogenous disease and insect résistance genes are transformed to chloroplast by using chloroplast transit peptide, which enhances the ability of transgenic plants to resist diseases and insects. Li (2016) transported yeast acyl-δ 9 dehydrogenase into tobacco () chloroplasts by using a CTP fromRibulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit and found that the effect of this enzyme on fatty acid composition in the chloroplasts is stronger than that in the cytoplasm.

    The CTP of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inis fused to the EPSPS ofand transformed into maize (), which showed that the CTP plays an important role in glyphosate resistance conferred by EPSPS. When the chloroplast transit peptide is absent, althoughis still highly expressed, the plant possess no glyphosate resistance (Zhao et al, 2013). Li et al (2013) fused the Rubisco CTP from rice with-glucuronidase (GUS) and transformed it into rice, and found that the rice plants with Rubisco CTP increases GUS protein expression levels for about 4.2-fold, compared to the plants without CTP.

    Accumulating evidence showed that bioengineering technologies are important to solve the world food problem by improving the photosynthesis, stress resistance and yield traits of crop (Long et al, 2006; Zhang, 2007; Li et al, 2013; Zhao et al, 2013; Shen et al, 2017). For the biotechnology process, exogenous proteins often need to be effectively introduced into chloroplasts, so it is very important for CTP to work well (Shen et al, 2017). Although many studies have been done to research the function of chloroplast transit peptides in plants, most of the related studies in CTP use the Rubisco small subunit transit peptide for chloroplastic transportation (von Heijne et al, 1989; Wong et al, 1992; Leister, 2003; Kim et al, 2010; Fellerer et al, 2011; Sun et al, 2011; Li et al, 2013; Zhao et al, 2013). Therefore, more diverse transit peptides are required for genetic engineering, especiallyfor metabolic engineering (Wong et al, 1992; Kim et al, 2010; Li et al, 2013).

    Recently, we isolated and identified a rice albino mutant,, which is sensitive to heat stress. The results of map-based cloning showed thatencodes a putative FLN2 (fructokinase-like protein 2) protein. Further protein homology analysis suggested that the rice genome contains genes encoding two FLN isoforms, FLN1 (LOC_Os01g63220) and FLN2/HSA1 (LOC_Os03g40550) (Qiu et al, 2018). Using yeast two-hybrid assays, we showed that OsFLN1 and HSA1/OsFLN2 interacted with OsTRXz (thioredoxin protein z), andandmutant alleles, created via Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), were associated with a severe albino phenotype and seedling lethality. Our results showed that FLN1 and HSA1 interact with TRXz (LOC_Os08g29110) to regulate chloroplast biogenesis and plant growth (He et al, 2018). In this study, we used bioinformatics to predict the CTP sequence of TRXz, FLN1 and HSA1. To verify the accuracy of our predicted CTPs, we observed the subcellular localization of the three proteins without their CTPs. Then, we investigated the function of CTP from FLN1, HSA1 and TRXz, and demonstrated that this CTP could localize a non-chloroplast protein into the chloroplast. The discovery of the sequence and function of these CTPs provided insight into plant stress responses and a potentially useful tool for chloroplast metabolic engineering.

    Materials and Methods

    Materials

    For protoplast isolation, Nipponbare (NPB,L.) seeds were sown on Murashige and Skoog (MS) medium (Murashige and Skoog, 1962) and cultured under 16 h light / 8 h dark photoperiods at 28 oC under illumination with 200 μmol/(m2?s). The p35S::GFP vector was obtained from our laboratory. The reagents for protoplast isolation and transformation were purchased from Sigma- Aldrich (Shanghai, China).

    Protein sequence analysis

    We selected three chloroplast proteins, FLN1, TRXz, and HSA1/FLN2 (He et al, 2018). To further clarify the function of the CTPs of these three proteins, we obtained their protein sequences from the Rice Genome Annotation Project Resource website (http://rice.plantbiology.msu.edu/) and used the TargetP website (http://www.cbs.dtu.dk/services/TargetP/) to predict the sequence of their CTPs.

    Construction of vectors

    The p35S::GFP vector was digested withI(Takara Biotech, Dalian, China) at 37 oC for 2 h in a 50 μL reaction, consisting of 5 μL of 10× H buffer, 10 μL p35S::GFP vector, 2 μLI, and 33 μL sterile water. The digested products were analyzed on 1% agarose gels. We used the Wizard SV Gel and PCR Clean-Up System (Promega Biotech, USA) to extract and purify the target fragment.

    To construct the p35S::CTPTRXz-GFP vector, we generated a DNA fragment encoding the N-terminal 56 amino acids of TRXz by PCR using p35S:: CTPTRXz-GFP primer (Table 1) from the NPB cDNA. The PCR procedure was as follows: Denaturation at 94oC for 4 min, followed by 32 cycles of 98 oC for 10 s, annealing at 55 oC for 30 s, extension at 68 oC for 30 s, and a final extension step at 68 oC for 10 min. The PCR products were analyzed on 2% agarose gels. We used the Wizard SV Gel and PCR Clean-Up System (Promega Biotech, USA) to extract and purify the target DNA fragment. The purified DNA fragment encoding the N-terminal 56 amino acids of TRXz was fused with the purified p35S::GFP fragment using a ClonExpress II One Step Cloning Kit (Vazyme Biotech, Nanjing, China) by homologous recombination.The ligation reaction was conducted for 30 min at 37 oC in a 20 μL reaction, consisting of 2 μL PCR product, 2 μL purified p35S::GFP fragment, 4 μL of 5× CEII buffer, 2 μL Exnase II and 10 μL sterile water. After transformation into(DH5α), the positive clones were identified by PCR using the s65t-1F (GAGGACAGGCTTCTTGAG) and s65tR (GGTGGTGCAGATGAACTT) primers and sent to Hangzhou Tsingke Biotech Company (Hangzhou, China) for sequencing verification using the s65t-1F and s65tR primers. The other CTP and GFP fusion protein vectors (p35S::CTPHSA1-GFP and p35S:: 36CTPFLN1-GFP) were constructed and verified as described above using primers listed in Table 1.

    To construct CTP-deleted proteins and GFP fusion vectors, we generated DNA fragments encoding deletion of CTP of TRXz and FLN1 by PCR using primers listed in Table 2 from NPB cDNA respectively. The PCR procedure, ligation reaction and positive clones verification was as above.

    To construct the p35S::CTPTRXz-Ghd10-GFP vector, we generated a DNA fragment encoding the N-terminal 56 amino acids of TRXz by PCR using p35S::CTPTRXz-Ghd10-GFP-1 primer (Table 3) from the NPB cDNA and generated the DNA fragment encoding Ghd10 by PCR using p35S::CTPTRXz-Ghd10- GFP-2 primer (Table 3) from the NPB cDNA. The PCR procedure was as above. The purified DNA fragments encoding the N-terminal 56 amino acids of TRXz and Ghd10 were fused with the purified p35S::GFP fragment using a ClonExpress MultiS One Step Cloning Kit (Vazyme Biotech, Nanjing, China) by homologous recombination. The ligation reaction was conducted for 30 min at 37 oC in a 20 μL reaction, consisting of 2 μL each PCR product, 4 μL purified p35S::GFP fragment, 4 μL of 5× CE MultiS buffer, 2 μL Exnase MultiS, and 6 μL sterile water. After transformation into(DH5α), the positive clones were identified by PCR and sequence verification using the s65t-1F and s65tR primers. The other vectors were constructed and verified as described above using primers listed in Table 3.

    Protoplast preparation

    Protoplasts were isolated from 2- to 3-week-old rice seedlings according to Wu et al (2016). Briefly, about 100 stems and sheaths of rice were cut into 0.5 mm pieces and digested in 15 mL enzyme solution (1.5% cellulase R-10, 0.75% macerozyme R-10, 0.6 mol/L mannitol, 10 mmol/L 2-(N-Morpholino)ethanesulfonic acid hydrate with pH 5.7, 10 mmol/L CaCl2, and 0.1% bovine serum albumin) for 6 h at 28 oC. After filtering through a piece of miracloth, protoplasts were pelleted by a 5-min centrifugation at 80 ×in a horizontal centrifuge and resuspended in 10 mL W5 solution (154 mmol/L NaCl, 125 mmol/L CaCl2, 5 mmol/L KCl, and 2 mmol/L MES with pH 5.7). After resting on ice for at least 30 min, protoplasts were spun down by another 1 min centrifugation at 100 ×and resuspendedinto 2 mL MMG solution (0.4 mol/L mannitol, 15 mmol/L MgCl2, and 4 mmol/L MES with pH 5.7). The protoplasts were counted using a hemocytometer under a microscope. The protoplasts were diluted into the optimal working concentration of 2 ×105cells/mL.

    Table 1. Nucleotide sequences used in construction of fusion vector with chloroplast transit peptides and GFP (greenfluorescentprotein).

    Table 2. Nucleotide sequences used in construction of GFP (greenfluorescentprotein) fusion vector for deletion of chloroplast transit peptide.

    Table 3. Nucleotide sequences used in construction of GFP fusion vector with non-chloroplast-localized gene and chloroplast transit peptide.

    GFP, Greenfluorescentprotein; CTP, Chloroplast transit peptide.

    Polyethylene glycol (PEG)-mediated transfection

    DNA transfection was carried out in a 2-mL round bottom microcentrifuge tube, in which 100 μL protoplasts (2 ×104cells) were mixed well with 20 μg (about 20 μL) constructs. Then, 120 μL PEG solution (40% PEG4000, 0.2 mol/L mannitol, and 0.1 mol/L CaCl2) was added to each tube, and transfection was initiated sequentially by a gentle tapping of the tube bottom 15 times. After a 15-min incubation at 28 oC, transfection was terminated in the same order by adding 1000 μL W5 solution and inverting the tube gently three times. The solution was centrifuged at 80 ×for 2 min, and the supernatant was discarded. Then, 2 mL W5 solution was added to gently resuspend the protoplast pellet, and protoplasts were cultured for 16–20 h in darkness to allow expression of the GFP fusion proteins. Before confocal microscopy, the transformed protoplasts were centrifuged at 80 ×for 2 min to remove most of the supernatant. GFP fluorescence was detected by a confocal laser- scanning microscopy (Olympus IX71, Tokyo, Japan).

    Results

    Prediction of CTP sequence of three rice proteins

    FLN1, HSA1 and TRXz localize in the chloroplast. To clarify the function of the CTPs of these three proteins, we predicted their CTP sequences with TargetP (http:// www.cbs.dtu.dk/services/TargetP/). Protein sequence analysis using TargetP suggested that the 36 amino acids of the FLN1 N-terminal region formed a CTP, whereas the 54 amino acids of the HSA1 N-terminal region, and the 56 amino acids of the TRXz N-terminal region formed a CTP, respectively (Fig. 1).

    N-terminal 56 amino acids of TRXz functions as a CTP

    In our previous study, we found that TRXz was located in the chloroplast (He et al, 2018). TargetP predicted that the N-terminal 56 amino acids of TRXz is the CTP (CTPTRXz). To verify this, we constructed the p35S::CTPTRXz-GFP vector containing a DNA fragment encoding the N-terminal 56 amino acids of TRXz (Fig. 2-A) and the p35S::ΔCTPTRXz-GFP vector containing a DNA fragment encoding 133 amino acids of TRXz that lacks the N-terminal 56 amino acids (ΔCTPTRXz) (Fig. 2-B). We transformed these two vectors into rice protoplasts and found that the ΔCTPTRXz-GFP fusion protein was located in the cytoplasm (Fig. 2-G), and the CTPTRXz-GFP fusion protein was located in the chloroplast (Fig. 2-H).

    To further investigate whether the CTP can transport non-chloroplast-localized proteins into the chloroplast, we selected three proteins: Ghd10 (LOC_Os10g28330), MFS1 (LOC_Os05g41760) and SUI1 (LOC_Os01g02890). SUI1 is located in the nuclear membrane and cell membrane (Zhu et al, 2011; Zhao et al, 2015), whereas Ghd10 and MFS1 are located in the nucleus (Hu et al, 2013; Ren et al, 2013). We constructed the p35S::CTPTRXz-Ghd10-GFP vector containing a DNA fragment encoding the N-terminal 56 amino acids of TRXz and a full-length DNA segment of Ghd10 (Fig. 2-C),p35S::CTPTRXz-MFS1- GFP containing a DNA fragment encoding the N-terminal 56 amino acids of TRXz and a full-length DNA segment of MFS1 (Fig. 2-D), and p35S::CTPTRXz- SUI1-GFP containing a DNA fragment encoding the N-terminal 56 amino acids of TRXz and a full-length DNA segment of SUI1 (Fig. 2-E). We introduced these vectors into rice protoplasts. Green fluorescence showed that all the three fusion proteins localized in the chloroplasts (Fig. 2-I to -K). These results suggested that the N-terminal 56 amino acids of TRXz comprise its CTP, which functions to guide the protein into the chloroplasts.

    Fig. 1.Structure and sequence of FLN1, HSA1 and TRXz.

    A, Abbreviated diagram of TRXz, HSA1 and FLN1 protein sequences. B, Amino acids sequences of the three proteins. Sequences of thechloroplast transit peptide (CTP) are shown in red bold type. The arrows indicate the putative cleavage site during chloroplast import based on the TargetP website. C, cDNA sequences encoding the three genes. Sequences of the three CTPs are shown in blue bold type.

    Fig. 2. Subcellular localization of TRXz and other proteins.

    A–E, Diagrams of vector construction; F, The free green fluorescent protein (GFP) protein as a control. G, The ΔCTPTRXzprotein localized to the cytoplasm. H, The only N-terminal 56 amino acids of the TRXz and GFP fusion protein localized to chloroplast. I–K, The CTPTrxz-Ghd10, CTPTrxz-MFS1 and CTPTrxz-SUI1 fusion proteins localized to the chloroplasts. All of the GFP fusion proteins carried a C-terminal GFP tag. In F–K, GFP fluorescence, chlorophyll autofluorescence, merged GFP and chlorophyll fluorescence, and bright-field images are shown. Bar = 5 μm.

    Fig. 3. Subcellular localization of HSA1 and other proteins.

    A–D, Diagrams of vector construction. E, The free green fluorescent protein (GFP) protein as a control. F, The only N-terminal 54 amino acids of the HSA1 and GFP fusion protein localized to chloroplast. G–I, The CTPHSA1-Ghd10, CTPHSA1-MFS1 and CTPHSA1-SUI1 fusion proteins localized to the chloroplasts. All of the GFP fusion proteins carried a C-terminal GFP tag. In E–I, GFPfluorescence, chlorophyll auto fluorescence, merged GFP and chlorophyll fluorescence, and bright-field images are shown. Bar = 5 μm.

    Fig. 4. Subcellular localization of FLN1 and other proteins.

    A–E, Diagrams of vector construction. F, The free green fluorescent protein (GFP) protein as a control. G, The Δ36CTPFLN1protein localized to the cytoplasm. H, The only N-terminal 36 amino acids of the FLN1 and GFP fusion protein localized to chloroplast. I–K, The 36CTPFLN1-Ghd10, 36CTPFLN1-MFS1, and 36CTPFLN1-SUI1 fusion proteins localized to the chloroplasts. All of the GFP fusion proteins carried a C-terminal GFP tag. In F–K, GFP fluorescence, chlorophyll auto fluorescence, merged GFP and chlorophyll autofluorescence, and bright-field images are shown. Bar = 5 μm.

    CTP of HSA1 can transport SUI1, Ghd10, and MSF1 into chloroplasts

    HSA1 localized in the chloroplasts and the ΔCTPHSA1-GFP fusion protein localized in the cytoplasm (Qiu et al, 2018). To determine whether the N-terminal 54 amino acids comprise its CTP, we constructed the p35S::CTPHSA1-GFP vector containing a DNA fragment encoding the N-terminal 54 amino acids of HSA1 (CTPHSA1, Fig. 3-A). We transformed the vector into rice protoplasts and found that the CTPHSA1-GFP fusion protein localized in the chloroplasts (Fig. 3-F).

    We constructed the p35S::CTPHSA1-Ghd10-GFP vector containing a DNA fragment encoding the N-terminal 54 amino acids of HSA1 and a full-length DNA segment of Ghd10 (Fig. 3-B), p35S::CTPHSA1- MFS1-GFP containing a DNA fragment encoding the N-terminal 54 amino acids of HSA1 and a full-length DNA segment of MFS1 (Fig. 3-C), and p35S::CTPHSA1- SUI1-GFP containing a DNA fragment encoding the N-terminal 54 amino acids of HSA1 and a full-length DNA segment of SUI1 (Fig. 3-D). We introduced these vectors into rice protoplasts. Green fluorescence showed that all the three fusion proteins localized in the chloroplasts (Fig. 3-G to -I). Taken together, these results indicated that the N-terminal 54 amino acids of HSA1 comprise its CTP, which can transport other non-chloroplast proteins into the chloroplasts.

    N-terminal 36 amino acids of FLN1 are necessary for its transport into chloroplasts

    The HSA1/FLN2 homologous protein FLN1 localizes in the chloroplasts (Qiu et al, 2018). TargetP predicted that the N-terminal 36 amino acids comprise its CTP (36CTPFLN1). To verify this, we constructed the p35S:: 36CTPFLN1-GFP vector containing a DNA fragment encoding the N-terminal 36 amino acids of FLN1 (Fig. 4-A) and the p35S::Δ36CTPFLN1-GFP vector containing a DNA fragment encoding 495 amino acids of FLN1 that lacks the N-terminal 36 amino acids (Δ36CTPFLN1, Fig. 4-B). We transformed these two vectors into rice protoplasts and found that the Δ36CTPFLN1-GFP fusion protein localized in the cytoplasm (Fig. 4-G) and 36CTPFLN1-GFP fusion protein localized in the chloroplasts (Fig. 4-H).

    We constructed the p35S::36CTPFLN1-Ghd10-GFP vector containing a DNA fragment encoding the N-terminal 36 amino acids of FLN1 and a full-length DNA segment of Ghd10 (Fig. 4-C); p35S::36CTPFLN1- MFS1-GFP containing a DNA fragment encoding the N-terminal 36 amino acids of FLN1 and a full-length DNA segment of MFS1 (Fig. 4-D); and p35S:: 36CTPFLN1-SUI1-GFP containing a DNA fragment encoding the N terminal 36 amino acids of FLN1 and a full-length DNA segment of SUI1 (Fig. 4-E). We introduced these vectors into rice protoplasts. Green fluorescence showed that all the three fusion proteins localized in the chloroplasts (Fig. 4-I to -K). These results showed that the N terminal 36 amino acids of FLN1 are necessary for the transport of FLN1 into the chloroplasts and can also transport non-chloroplast proteins into the chloroplasts.

    Discussion

    Our results showed that the ΔCTPTRXz-GFP and Δ36CTPFLN1-GFP fusion proteins were not localized in the chloroplasts (Figs. 2-G and 4-G), whereas the GFP signals of CTPTRXz-GFP, CTPHSA1-GFP and 36CTPFLN1-GFP fusion proteins were observed to be concomitant with the chlorophyll autofluorescence (Figs. 2-H, 3-F and 4-H). These results suggested that the N-terminal 56 amino acids of TRXz, the N-terminal 54 amino acids of HSA1, and the N-terminal 36 amino acids of FLN1 are their respective CTPs. To further verify the function of these CTPs, we fused the CTPs with non-chloroplast proteins, SUI1, Ghd10 and MFS1, tagged with GFP. After transformation of these fusion proteins into rice protoplasts, the green fluorescence signal was found in the chloroplasts (Figs. 2-I to -K, 3-G to -I and 4-I to -K). These results indicated that these CTPs not only guide the chloroplast proteins to the chloroplasts, but also guide foreign proteins to the chloroplasts.

    The prediction of CTP sequences is based on the existing sequence information, which may contain errors.In this study, we found that after removing the 36 amino acids from the N-terminal of FLN1, the green fluorescence signal was not observed throughout the cytoplasm and cell membrane, but only in a small area of the cytoplasm (Fig. 4-G).We constructed GFP fusion vectors containing a DNA fragment encoding 481 or 442 amino acids of FLN1 that lacks the N-terminal 50 or 89 amino acids of FLN1 (Δ50CTPFLN1and Δ89CTPFLN1) p35S:: Δ50CTPFLN1-GFP and p35S::Δ89CTPFLN1-GFP (Fig. 5-A and -B). After transformation into rice protoplasts, we found that p35S::Δ50CTPFLN1-GFP vector still existed in a small region of the cytoplasm, while the fluorescence signal of the transformed p35S:: Δ89CTPFLN1-GFP vector filled the cytoplasm and cell membrane (Fig. 5-F and -G). Furthermore, we constructed two fusion vectors p35S::50CTPFLN1- SUI1-GFP and p35S::89CTPFLN1-SUI1-GFP,containing a DNA fragment encoding the N terminal 50 or 89 amino acids of FLN1 (Fig. 5-C and -D), and a full-length segment of SUI1 tagged with GFP and transformed them into rice protoplasts. The fusion proteins, containing the N-terminal 50 or 89 amino acids and SUI1-GFP, localized in the chloroplasts (Fig. 5-H and -I). These results suggest that N-terminal 89 amino acids of FLN1 comprise its CTP.

    Transferring foreign proteins into chloroplasts can change photosynthetic characteristics. Currently, the most commonly used approach is to guide the foreign protein into the chloroplasts by use of a CTP, which is typically fused to the N-terminus of the target protein. The Rubisco small subunit CTP is the most commonly used CTP for targeting foreign proteins into chloroplasts (Wong et al, 1992; Zhong et al, 2003; Kim et al, 2010). In this study, we reported three new CTPs in rice. Transient expression analysis in rice protoplasts demonstrated that these three CTPs can transport foreign proteins into the chloroplasts. These CTPs may be useful as targets for chloroplast metabolic engineering, particularly for crop plants.

    Acknowledgements

    The work was supported by the National Natural Science Foundation of China (Grant Nos. 31601284 and 31661143006), the Transgenic Plant Research and Commercialization Project of the Ministry of Agriculture of China (Grant No. 2016ZX08001003-002), Zhejiang Province Outstanding Youth Fund (Grant No. LR16C130001), and the Collaborative Innovation Project of the Chinese Academy of Agricultural Sciences (Grant No. Y2016XT05).

    Fig. 5. Subcellular localization of other FLN1-related proteins.

    A–D,Diagrams of vector construction. E, The free green fluorescent protein (GFP) protein as a control. F, The Δ50CTPFLN1protein localized to the cytoplasm. G, The Δ89CTPFLN1protein localized to the cytoplasm. H and I, The 50CTPFLN1-SUI1 and 89CTPFLN1-SUI1 fusion proteins localized to the chloroplasts. All of the GFP fusion proteins carried a C-terminal GFP tag. In E–I, GFP fluorescence, chlorophyll autofluorescence, merged GFP and chlorophyll fluorescence, and bright-field images are shown. Bar = 5 μm.

    Fellerer C, Schweiger R, Sch?ngruber K, Soll J, Schwenkert S. 2011. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of., 4(6): 1133–1145.

    Hanke G, Mulo P. 2013. Plant type ferredoxins and ferredoxin- dependent metabolism., 36(6): 1071–1084.

    He L, Zhang S, Qiu Z N, Zhao J, Nie W D, Lin H Y, Zhu Z G, Zeng D L, Qian Q, Zhu L. 2018. FRUCTOKINASE-LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice., 60(2): 94–111.

    Hu S K, Dong G J, Xu J, Su Y, Shi Z Y, Ye W J, Li Y Y, Li G M, Zhang B, Hu J, Qian Q, Zeng D L, Guo L B. 2013. A point mutation in the zinc finger motif of RID1/EHD2/OsID1 protein leads to outstanding yield-related traits inrice variety Wuyunjing 7., 6(1): 24.

    Ivey III R A, Bruce B D. 2000.andinteraction of DnaK and a chloroplast transit peptide., 5(1): 62–71.

    Keegstra K, Bauerle C. 1988. Targeting of proteins into chloroplasts., 9(1): 15–19.

    Kim S, Lee D S, Choi I S, Ahn S J, Kim Y H, Bae H J. 2010.Rubisco small subunit transit peptide increases the accumulation ofendoglucanase Cel5A in chloroplasts of transgenic tobacco plants., 19(3): 489–497.

    Leister D. 2003. Chloroplast research in the genomic age., 19(1): 47–56.

    Li F. 2016. Transit peptide-mediated location of yeast acyl-δ9 desaturase in plastid leads to biosynthesis and accumulation of palmitoleic acid in tobacco leaf tissue. [Master thesis]. Jinzhong, China: Shanxi Agriculture University. (in Chinese with English abstract)

    Li X, Lin Z M, Chen Z J, Wang C H, Liu X, Wang F. 2013. Chloroplast targeting signal of a rice Rubisco activase gene enhances transgene expression., 28(2): 95–100. (in Chinese with English abstract)

    Long S P, Zhu X G, Naidu S L, Ort D R. 2006. Can improvement in photosynthesis increase crop yields?, 29(3): 315–330.

    Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. 2002. Evolutionary analysis of, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus., 99(19): 12246–12251.

    Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures., 15(3): 473–497.

    Qbadou S, Becker T, Mirus O, Ivo T, Soll J, Schleiff E. 2006. The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64., 25(9): 1836–1847.

    Qiu Z N, Kang S J, He L, Zhao J, Zhang S, Hu J, Zeng D L, Zhang G H, Dong G J, Gao Z Y, Ren D Y, Chen G, Guo L B, Qian Q, Zhu L. 2018. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice., 267: 168–179.

    Ren D Y, Li Y F, Zhao F M, Sang X C, Shi J Q, Wang N, Guo S, Ling Y H, Zhang C W, Yang Z L, He G H. 2013., which encodes an AP2/ERF protein, determines spikelet meristem fate and sterile lemma identity in rice., 162(2): 872–884.

    Shen B R, Zhu C H, Yao Z, Cui L L, Zhang J J, Yang C W, He Z H, Peng X X. 2017. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice., 7: 46231.

    Sun Q, Zybailov B, Majeran W, Friso G, Olinares P D B, van W K J. 2009. PPDB, the plant proteomics database at Cornell., 37: 969–974.

    Sun X W, Feng P Q, Xu X M, Guo H L, Ma J F, Chi W, Lin R C, Lu C M, Zhang L X. 2011. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus., 2(2): 477.

    Timmis J N, Ayliffe M A, Huang C Y, Martin W. 2004. Endosymbiotic gene transfer: Organelle genomes forge eukaryotic chromosomes., 5(2): 123–135.

    Tu Z J, Zou G X, Huang L C, Chen L, Dai L P, Gao Y H, Leng Y J, Zhu L, Zhang G H, Hu J, Ren D Y, Gao Z Y, Dong G J, Chen G, Guo L B, Qian Q, Zeng D L. 2017. Identification and fine mapping of pale green leafin rice., 31(5): 489–499. (in Chinese with English abstract)

    van den Broeck G, Timko M P, Kausch A P, Cashmore A R, van Montagu M, Herrera-Estrella L. 1985. Targeting of a foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase., 313: 358–363.

    von Heijne G, Steppuhn J, Herrmann R G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides., 180(3): 535–545.

    Wong E Y, Hironaka C M, Fischhoff D A. 1992.small subunit leader and transit peptide enhance the expression ofproteins in transgenic plants., 20(1): 81–93.

    Wu L W, Ren D Y, Hu S K, Li G M, Dong G J, Jiang L, Hu X M, Ye W J, Cui Y T, Zhu L, Hu J, Zhang G H, Gao Z Y, Zeng D L, Qian Q, Guo L B. 2016. Down-regulation of a nicotinate phosphoribosyltransferase gene,, leads to withered leaf tips., 171(2): 1085–1098.

    Zhang Q F. 2007. Strategies for developing green super rice., 104(42): 16402–16409.

    Zhao H M, Song W B, Lai J S. 2013. Cloning of sorghum bicolor chloroplast transit peptide (CTP) of 5-enolpyruvylshikimate- 3-phosphate synthase (EPSPS) and its functional validation in transgenic maize ()., 21(9): 1009–1018. (in Chinese with English abstract)

    Zhao J, Kang S J, Rao Y C, Qiu Z N, Jie X U, Jiang H U, Zhang G H, Zeng D L, Guo L B, Qian Q. 2015. Subcellular localization analysis of phosphatidylserine synthase () in tobacco mesophyll cells., 29(4): 343–349. (in Chinese with English abstract)

    Zhong H, Teymouri F, Chapman B, Maqbool S B, Sabzikar R, El-Maghraby Y, Dale B, Sticklen M B. 2003. The pea (L.) rbcS transit peptide directs thepolyhydroxybutyrate enzymes into the maize (L.) chloroplasts., 165(3): 455–462.

    Zhu L, Hu J, Zhu K M, Fang Y X, Gao Z Y, He Y H, Zhang G H, Guo L B, Zeng D L, Dong G J, Yan M X, Liu J, Qian Q. 2011. Identification and characterization of, a gene negatively regulating uppermost internode elongation in rice., 77: 475–487.

    26 May 2018;

    31 July 2018

    Zhu Li (zhuli05@caas.cn); Qian Qian (qianqian188@hotmail.com)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.12.001

    (Managing Editor: Wang Caihong)

    avwww免费| 成人无遮挡网站| 国内精品久久久久久久电影| 美女被艹到高潮喷水动态| av福利片在线观看| 欧美bdsm另类| 亚洲七黄色美女视频| 无人区码免费观看不卡| 午夜免费男女啪啪视频观看 | 69人妻影院| 成人av在线播放网站| 亚洲av电影不卡..在线观看| 日韩精品中文字幕看吧| 免费看a级黄色片| 国产亚洲欧美在线一区二区| tocl精华| 老熟妇仑乱视频hdxx| www.色视频.com| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 白带黄色成豆腐渣| 97人妻精品一区二区三区麻豆| 久久久国产精品麻豆| 午夜精品在线福利| 真实男女啪啪啪动态图| 亚洲精品在线美女| 日韩欧美三级三区| 久久久久国内视频| 日本三级黄在线观看| 伊人久久精品亚洲午夜| 国产野战对白在线观看| 欧美一区二区亚洲| 少妇的丰满在线观看| 国产亚洲精品av在线| ponron亚洲| 天堂动漫精品| 欧美日韩福利视频一区二区| 久久久精品大字幕| 亚洲中文字幕一区二区三区有码在线看| 精品国产三级普通话版| 夜夜爽天天搞| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2| 日韩欧美一区二区三区在线观看| 嫁个100分男人电影在线观看| 国产精品永久免费网站| 三级男女做爰猛烈吃奶摸视频| 少妇丰满av| 国产黄色小视频在线观看| 97超级碰碰碰精品色视频在线观看| av专区在线播放| 老汉色∧v一级毛片| 亚洲美女视频黄频| 午夜老司机福利剧场| 内地一区二区视频在线| 小说图片视频综合网站| 色综合亚洲欧美另类图片| 男女之事视频高清在线观看| 男女视频在线观看网站免费| 久久久国产精品麻豆| 亚洲 欧美 日韩 在线 免费| 亚洲专区中文字幕在线| 人人妻,人人澡人人爽秒播| av天堂在线播放| 日本 av在线| 免费高清视频大片| 欧美性猛交╳xxx乱大交人| 日韩欧美免费精品| 两个人视频免费观看高清| 美女cb高潮喷水在线观看| 日韩亚洲欧美综合| 色视频www国产| 欧美日韩亚洲国产一区二区在线观看| 欧美大码av| 真人做人爱边吃奶动态| 午夜免费男女啪啪视频观看 | 国产精品电影一区二区三区| 婷婷亚洲欧美| 中文字幕av成人在线电影| 国产乱人视频| 亚洲avbb在线观看| 日韩大尺度精品在线看网址| 亚洲成人免费电影在线观看| 亚洲美女视频黄频| 俄罗斯特黄特色一大片| 免费看十八禁软件| 蜜桃久久精品国产亚洲av| 91在线观看av| 日本黄大片高清| eeuss影院久久| 狠狠狠狠99中文字幕| 夜夜夜夜夜久久久久| 日韩欧美国产在线观看| 中文亚洲av片在线观看爽| 99久久精品热视频| 欧美zozozo另类| 色综合欧美亚洲国产小说| 国产午夜精品论理片| 午夜福利在线在线| 精品国产三级普通话版| 欧美激情在线99| 夜夜夜夜夜久久久久| 看片在线看免费视频| 91久久精品电影网| 日本精品一区二区三区蜜桃| 桃红色精品国产亚洲av| 级片在线观看| 又紧又爽又黄一区二区| 黄色女人牲交| 欧美成人一区二区免费高清观看| 中文字幕人妻熟人妻熟丝袜美 | 欧美黄色片欧美黄色片| 美女cb高潮喷水在线观看| 欧美中文综合在线视频| 无限看片的www在线观看| 在线观看av片永久免费下载| 变态另类丝袜制服| 欧美日韩福利视频一区二区| 日本一本二区三区精品| 少妇高潮的动态图| 国产真人三级小视频在线观看| av在线天堂中文字幕| 亚洲性夜色夜夜综合| 中文字幕精品亚洲无线码一区| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 精品国产美女av久久久久小说| 最近最新免费中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品亚洲精品国产色婷小说| 国产爱豆传媒在线观看| 五月玫瑰六月丁香| 久久天躁狠狠躁夜夜2o2o| 成人18禁在线播放| 人妻丰满熟妇av一区二区三区| 免费人成在线观看视频色| 动漫黄色视频在线观看| 精品国产美女av久久久久小说| 在线观看午夜福利视频| 国内久久婷婷六月综合欲色啪| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 噜噜噜噜噜久久久久久91| 在线观看免费午夜福利视频| 亚洲在线自拍视频| 一级黄色大片毛片| 亚洲激情在线av| 欧美xxxx黑人xx丫x性爽| 国产在视频线在精品| 精品福利观看| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品999在线| 久久久久久久久久黄片| 亚洲精品国产精品久久久不卡| 黄片大片在线免费观看| 国产精品 国内视频| 国内精品久久久久久久电影| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 男人和女人高潮做爰伦理| 欧美成人免费av一区二区三区| 美女被艹到高潮喷水动态| 熟女电影av网| 久久亚洲精品不卡| 日本a在线网址| 国产69精品久久久久777片| 亚洲国产欧美网| 麻豆久久精品国产亚洲av| 日韩欧美一区二区三区在线观看| 18禁在线播放成人免费| 亚洲人成电影免费在线| 中文字幕久久专区| 欧美日韩黄片免| 97超视频在线观看视频| 日本一二三区视频观看| 国产在线精品亚洲第一网站| ponron亚洲| 淫秽高清视频在线观看| 国产麻豆成人av免费视频| 看片在线看免费视频| 黄色日韩在线| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 亚洲国产中文字幕在线视频| 婷婷亚洲欧美| 美女黄网站色视频| 国产真实乱freesex| 久久久久久久久中文| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人精品中文字幕电影| 在线观看美女被高潮喷水网站 | 国产男靠女视频免费网站| 人人妻,人人澡人人爽秒播| 88av欧美| 99在线视频只有这里精品首页| 国产精品永久免费网站| 在线观看66精品国产| 最好的美女福利视频网| 欧美一区二区国产精品久久精品| 成年人黄色毛片网站| 尤物成人国产欧美一区二区三区| 欧美+日韩+精品| 国产精品综合久久久久久久免费| 色吧在线观看| 欧美成人性av电影在线观看| e午夜精品久久久久久久| 99热精品在线国产| 老汉色∧v一级毛片| 亚洲av免费在线观看| 90打野战视频偷拍视频| 最近在线观看免费完整版| 国产久久久一区二区三区| 在线国产一区二区在线| 一个人看的www免费观看视频| 草草在线视频免费看| 日本 欧美在线| 成人18禁在线播放| 在线视频色国产色| 一本久久中文字幕| 亚洲无线观看免费| 天堂动漫精品| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| 亚洲最大成人手机在线| h日本视频在线播放| 亚洲精品粉嫩美女一区| 国产aⅴ精品一区二区三区波| 午夜福利18| 国产精华一区二区三区| h日本视频在线播放| 露出奶头的视频| www.熟女人妻精品国产| 五月伊人婷婷丁香| e午夜精品久久久久久久| 精品一区二区三区视频在线观看免费| 丝袜美腿在线中文| 国产亚洲精品一区二区www| 精品乱码久久久久久99久播| 校园春色视频在线观看| 国内少妇人妻偷人精品xxx网站| 母亲3免费完整高清在线观看| 午夜免费男女啪啪视频观看 | 99久久精品一区二区三区| avwww免费| 精品无人区乱码1区二区| 亚洲成人免费电影在线观看| 欧美黑人巨大hd| 日日摸夜夜添夜夜添小说| 久久99热这里只有精品18| aaaaa片日本免费| 在线观看66精品国产| 19禁男女啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 日韩欧美精品v在线| 真人一进一出gif抽搐免费| 色老头精品视频在线观看| 国产精品三级大全| 久久人妻av系列| 3wmmmm亚洲av在线观看| 两人在一起打扑克的视频| 亚洲 欧美 日韩 在线 免费| 天天躁日日操中文字幕| 天天一区二区日本电影三级| 偷拍熟女少妇极品色| 夜夜躁狠狠躁天天躁| 欧美三级亚洲精品| 性色avwww在线观看| www.999成人在线观看| 欧美3d第一页| 91字幕亚洲| 美女cb高潮喷水在线观看| 色老头精品视频在线观看| 亚洲av电影在线进入| 久久久久久久亚洲中文字幕 | 亚洲aⅴ乱码一区二区在线播放| 麻豆一二三区av精品| 免费看a级黄色片| 免费观看的影片在线观看| 免费看光身美女| 90打野战视频偷拍视频| 国产激情偷乱视频一区二区| 五月玫瑰六月丁香| 黑人欧美特级aaaaaa片| 午夜免费观看网址| 久久久久精品国产欧美久久久| 国产成人系列免费观看| 欧美丝袜亚洲另类 | 黄色日韩在线| 69人妻影院| 欧美高清成人免费视频www| 国内揄拍国产精品人妻在线| 精品日产1卡2卡| 国产精品影院久久| 少妇人妻精品综合一区二区 | 亚洲成人精品中文字幕电影| 熟女人妻精品中文字幕| 久久久久久九九精品二区国产| 中亚洲国语对白在线视频| 久久精品国产亚洲av涩爱 | 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费 | 在线观看66精品国产| 狠狠狠狠99中文字幕| 18+在线观看网站| 亚洲精品美女久久久久99蜜臀| 国产高清videossex| eeuss影院久久| 日本黄色片子视频| 国产高潮美女av| 天天躁日日操中文字幕| h日本视频在线播放| 超碰av人人做人人爽久久 | 欧美黄色片欧美黄色片| 国产又黄又爽又无遮挡在线| 一进一出好大好爽视频| 级片在线观看| 午夜免费观看网址| 一本精品99久久精品77| 国产精品,欧美在线| 亚洲男人的天堂狠狠| 一级a爱片免费观看的视频| 在线看三级毛片| 欧美三级亚洲精品| 午夜精品在线福利| 麻豆久久精品国产亚洲av| 久久精品91无色码中文字幕| 黄色日韩在线| 一边摸一边抽搐一进一小说| 久久国产精品影院| 性色avwww在线观看| 国产精品98久久久久久宅男小说| 嫩草影院入口| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久 | 日韩中文字幕欧美一区二区| 午夜福利视频1000在线观看| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| 亚洲精品乱码久久久v下载方式 | 国产久久久一区二区三区| 欧美在线黄色| 亚洲第一欧美日韩一区二区三区| 男人舔奶头视频| 99国产精品一区二区蜜桃av| 欧美高清成人免费视频www| 有码 亚洲区| 欧美一级毛片孕妇| 国产爱豆传媒在线观看| 18禁黄网站禁片午夜丰满| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 不卡一级毛片| 久久久色成人| 白带黄色成豆腐渣| 一区二区三区免费毛片| 欧美日韩综合久久久久久 | av中文乱码字幕在线| 51国产日韩欧美| 日本免费一区二区三区高清不卡| 18禁黄网站禁片午夜丰满| 老熟妇仑乱视频hdxx| 99在线视频只有这里精品首页| 不卡一级毛片| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 欧美成狂野欧美在线观看| 欧美三级亚洲精品| 别揉我奶头~嗯~啊~动态视频| 午夜福利在线观看免费完整高清在 | 日韩欧美 国产精品| 一本一本综合久久| 全区人妻精品视频| 久久午夜亚洲精品久久| 国产高潮美女av| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 51国产日韩欧美| 97碰自拍视频| 白带黄色成豆腐渣| 淫秽高清视频在线观看| 久久人妻av系列| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 日日干狠狠操夜夜爽| 欧美+日韩+精品| 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 婷婷精品国产亚洲av在线| 亚洲av电影在线进入| 午夜精品一区二区三区免费看| 久久中文看片网| 亚洲第一欧美日韩一区二区三区| 亚洲专区中文字幕在线| 国产成人影院久久av| 婷婷亚洲欧美| 欧美性感艳星| 久久久精品大字幕| 亚洲美女视频黄频| 成人亚洲精品av一区二区| 少妇人妻一区二区三区视频| 一级作爱视频免费观看| 熟女电影av网| 午夜福利在线观看吧| 日韩精品中文字幕看吧| 国产精品精品国产色婷婷| 成人精品一区二区免费| 哪里可以看免费的av片| 99久国产av精品| 国产精品1区2区在线观看.| 51午夜福利影视在线观看| 国产v大片淫在线免费观看| av中文乱码字幕在线| 成人性生交大片免费视频hd| 亚洲精品一卡2卡三卡4卡5卡| 黄色视频,在线免费观看| 在线国产一区二区在线| 19禁男女啪啪无遮挡网站| 色尼玛亚洲综合影院| 国产乱人视频| 中亚洲国语对白在线视频| 欧美+日韩+精品| 国产三级黄色录像| 久久久精品大字幕| 欧美黑人欧美精品刺激| 国产精品亚洲美女久久久| 午夜福利欧美成人| 亚洲人成电影免费在线| 夜夜看夜夜爽夜夜摸| 免费人成视频x8x8入口观看| 久久精品国产亚洲av涩爱 | 九色国产91popny在线| 国产一区二区在线观看日韩 | 久久精品亚洲精品国产色婷小说| 哪里可以看免费的av片| 亚洲第一电影网av| 亚洲成人精品中文字幕电影| 欧美日韩福利视频一区二区| 日本成人三级电影网站| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 变态另类丝袜制服| 国产综合懂色| 少妇丰满av| 亚洲精品456在线播放app | 久久国产精品人妻蜜桃| 久久亚洲精品不卡| 国产成人欧美在线观看| 国产精品久久久久久精品电影| 亚洲人成网站高清观看| 午夜福利免费观看在线| 欧美精品啪啪一区二区三区| 俺也久久电影网| 日韩欧美 国产精品| 亚洲成a人片在线一区二区| 国产一区二区在线观看日韩 | 一a级毛片在线观看| 成人18禁在线播放| 国产国拍精品亚洲av在线观看 | 天堂动漫精品| 男人和女人高潮做爰伦理| or卡值多少钱| 成人欧美大片| 亚洲熟妇中文字幕五十中出| 黑人欧美特级aaaaaa片| 美女黄网站色视频| 最新美女视频免费是黄的| 一区福利在线观看| 人妻久久中文字幕网| 在线观看av片永久免费下载| 精品一区二区三区视频在线 | 亚洲无线在线观看| 免费观看精品视频网站| 国产精品久久久人人做人人爽| 欧美国产日韩亚洲一区| 色噜噜av男人的天堂激情| 老司机午夜福利在线观看视频| 国产午夜精品久久久久久一区二区三区 | 亚洲av免费在线观看| 欧美成人免费av一区二区三区| 免费看a级黄色片| 三级毛片av免费| 国产高潮美女av| 在线观看日韩欧美| ponron亚洲| 51国产日韩欧美| 男人舔奶头视频| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 给我免费播放毛片高清在线观看| 在线观看66精品国产| 午夜福利在线观看吧| 亚洲va日本ⅴa欧美va伊人久久| 免费观看人在逋| 18+在线观看网站| 国产成人福利小说| 看片在线看免费视频| 亚洲精品国产精品久久久不卡| 一级毛片女人18水好多| 最新中文字幕久久久久| 欧美一级毛片孕妇| 少妇丰满av| 国产av一区在线观看免费| 久久中文看片网| 日本一本二区三区精品| 亚洲av免费在线观看| 亚洲av成人精品一区久久| 最新中文字幕久久久久| 中出人妻视频一区二区| 国产真人三级小视频在线观看| 欧美极品一区二区三区四区| 亚洲成人中文字幕在线播放| 99久国产av精品| 3wmmmm亚洲av在线观看| 国产成人啪精品午夜网站| 热99在线观看视频| 精品人妻一区二区三区麻豆 | 久久婷婷人人爽人人干人人爱| 国产v大片淫在线免费观看| av国产免费在线观看| 少妇的丰满在线观看| 搡老岳熟女国产| 精品久久久久久成人av| 黄色女人牲交| 精品久久久久久久久久免费视频| 国产成年人精品一区二区| 久久久久久久亚洲中文字幕 | 综合色av麻豆| 一级毛片女人18水好多| 国产一区二区亚洲精品在线观看| 小蜜桃在线观看免费完整版高清| 欧美日韩中文字幕国产精品一区二区三区| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 内射极品少妇av片p| 欧美zozozo另类| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| 精品福利观看| 18禁裸乳无遮挡免费网站照片| 国产极品精品免费视频能看的| 成年人黄色毛片网站| 免费av不卡在线播放| 日本一二三区视频观看| 亚洲成人久久性| 在线观看日韩欧美| 亚洲精品在线观看二区| 特大巨黑吊av在线直播| 午夜免费观看网址| 可以在线观看毛片的网站| 高清日韩中文字幕在线| 午夜精品一区二区三区免费看| 丰满乱子伦码专区| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 久久久久免费精品人妻一区二区| 亚洲国产精品成人综合色| 久久香蕉精品热| 久久午夜亚洲精品久久| 伊人久久大香线蕉亚洲五| 十八禁人妻一区二区| 999久久久精品免费观看国产| 1024手机看黄色片| 国产三级中文精品| 欧美黑人巨大hd| 中文亚洲av片在线观看爽| 亚洲欧美日韩高清专用| 国产爱豆传媒在线观看| 桃色一区二区三区在线观看| 精华霜和精华液先用哪个| 亚洲人成网站在线播| 99久久精品热视频| 亚洲人成网站高清观看| 亚洲熟妇熟女久久| 窝窝影院91人妻| 综合色av麻豆| 日本熟妇午夜| 成人无遮挡网站| 国产精品综合久久久久久久免费| 国内精品久久久久久久电影| 午夜免费成人在线视频| 99久久综合精品五月天人人| 国产蜜桃级精品一区二区三区| 国产色爽女视频免费观看| 女生性感内裤真人,穿戴方法视频| 欧美日本视频| 69av精品久久久久久| 久久精品91蜜桃| 少妇人妻精品综合一区二区 | 老司机福利观看| 国产精品,欧美在线| 99久久精品一区二区三区| 黄色视频,在线免费观看| 一级毛片高清免费大全| 免费电影在线观看免费观看| 国产色爽女视频免费观看| 亚洲av日韩精品久久久久久密| 国产 一区 欧美 日韩| 中文字幕人成人乱码亚洲影| 国产av一区在线观看免费| 国产欧美日韩精品亚洲av| 欧美日本视频| 啪啪无遮挡十八禁网站| 国产一级毛片七仙女欲春2| 女警被强在线播放| 一级a爱片免费观看的视频| 午夜久久久久精精品| 长腿黑丝高跟| 无限看片的www在线观看| 亚洲精品久久国产高清桃花| 麻豆久久精品国产亚洲av| 成年免费大片在线观看| avwww免费| 国内精品久久久久精免费| 久久久精品欧美日韩精品| 国产黄片美女视频|