• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bridgman Growth and Spectral Properties of Nd3+∶YCa4O(BO3)3 Single Crystal

    2019-12-23 08:07:36-,-,n,,-
    人工晶體學(xué)報 2019年11期

    -, -, n, , -

    (State Key Laboratory Base of Novel Functional Materials & Preparation Science, Key Laboratory of Photoelectric detection Materials & Devices of Zhejiang Province, Faculty of Materials Science & Chemical Engineering, Ningbo University, Ningbo 315211, China)

    Abstract:Nd3+-doped YCOB single crystal is a valuable self-double-frequency optical material applied in laser modulation technique. Nd3+∶YCOB polycrystalline powder was initially synthesized by solid-state reaction at elevated temperature. High purity Nd3+∶YCOB crystal grain was prepared from the polycrystalline powder by zone melting process. A series of transparent Nd3+∶YCOB single crystals, with 1mol%, 2mol% and 5mol% nominal Nd3+ dopant concentration, had been grown by means of vertical Bridgman method with optimized conditions. The spectral properties of as-grown crystals were characterized by measuring the absorption spectra, fluorescence spectra and fluorescence lifetime. It shows that Nd3+∶YCOB crystal wafers exhibit a strong fluorescence emission centered at 1064 nm wavelength with a fluorescence lifetime of 157-162 μs upon photonic excitation with 808 nm infrared light.

    Key words:Nd3+∶YCOB; crystal growth; bridgman method; spectral property

    1 Introduction

    The oxyborate crystal YCa4O(BO3)3(abb. YCOB) was discovered as an excellent nonlinear optical material in twenty years ago[1-4]. YCOB single crystal had been investigated to exhibit a series of superior performances such adequate birefringence, high nonlinear optical coefficient, high damage threshold as well as its nonhygroscopic[5-8]. The unique properties enable the oxyborate crystal a promising candidate for amplifications in high-power ultra-short laser pulse and near infrared laser[9-12]. The near infrared laser with wavelength of 1.064 μm, produced by Nd3+-activated single crystals such as Nd3+∶YAG and Nd3+∶YVO, have been using as dominant solid-state laser sources in the past decades. The ion Y3+in YCOB crystal lattice can be easily replaced and near infrared laser[9-12]. The near infrared laser with wavelength of 1.064 μm, produced by Nd3+-activated single crystals such as Nd3+∶YAG and Nd3+∶YVO, have been using as dominant solid-state laser sources in the past decades. The ion Y3+in YCOB crystal lattice can be easily replaced with other rare earth ions owing to their same electric valence and close ion radius. The previous literature reported Nd3+-activated laser crystal Nd3+∶YCOB by doping Nd3+ions into the matrix crystal lattice with an appropriate ratio. It has been verified that 0.532 μm green laser can be acquired from Nd3+∶YCOB single crystal by converting 1.064 μm fundamental laser due to the self-frequency-doubling effect[13-15].

    In recent years, our group has been devoting much efforts to explore the crystal growth technique so as to acquire large-size YCOB single crystals for high-power laser devices application[16-18]. Using the polycrystalline materials with stoichiometric composition, YCOB single crystals had been grown by means of the Czochralski or Bridgman method in the previous work. In this work, our group presents a two step preparation route to obtain high purity Nd3+∶YCOB crystal material for crystal growth. Nd3+∶YCOB polycrystalline powder was firstly synthesized by solid-state reaction at elevated temperature, and then the initially synthesized polycrystalline powder was subjected a vertical zone melting process so as to acquire high-purity Nd3+∶YCOB crystal grain. A series of transparent Nd3+∶YCOB single crystals with different dopant concentration had been grown by means of vertical Bridgman method. The spectral properties of as-grown crystals were characterized by measuring the absorption spectra, fluorescence spectra and fluorescence lifetime.

    2 Experimental

    2.1 Feed materials preparation

    The reagents of CaCO3(4N), H3BO3(4N), Y2O3(4N) and Nd2O3(4N) were used as the initial materials and Nd3+-doped YCOB polycrystalline powder were synthesized by solid-state reaction at elevated temperature. According to the stoichiometric molar ratio of 8CaCO3∶6H3BO3∶(1-x)Y2O3∶xNd2O3= 8∶6∶1-x∶x, wherex= 0.01, 0.02, 0.05, the complex powder was prepared by fully mixing the weighed reagents in a grinding miller. The complex powder was added with 1mol% excess H3BO3so as to compensate the volatilization of H3BO3in the sintering process. Nd3+∶YCOB polycrystalline powder was prepared via solid-state reaction by sintering the complex powder continuously at 1250 ℃ for 24 h. Nd3+∶YCOB polycrystalline charge obtained by the solid-state reaction was further subjected to the recrystallization process in a vertical zone melting furnace so as to prepare high purity crystal grain for Nd3+∶YCOB crystal growth.

    2.2 Crystal growth

    Using the high purity crystal grain obtained by zone melting process, Nd3+∶YCOB single crystal was grown by vertical Bridgman process. A self-design vertical Bridgman furnace, installed with MoSi2bars as the heating elements, possess three temperature zones in the furnace chamber. i.e. high temperature zone, gradient zone and low temperature zone. A platinum crucible used in the crystal growth has a cylindrical chamber with a dimension of φ25-30×200-240 mm with a seed well of 8-10 mm in diameter at the conical bottom. The oriented crystal growth was performed by using a seed crystal with the crystallographic direction <010>installed in the seed well. 200-600 g crystal grain was charge into the crucible chamber after the seed crystal was installed in the seed well properly. After the crucible filled with crystal grain was sealed, it was placed in a suitable height in the vertical Bridgman furnace. In the crystal growth process, the temperature gradient of solid-liquid interface was adjusted at 30-40 ℃/cm under the controlled temperature of high temperature zone at 1570-1590 ℃. The crystal growth was performed through descending the crucibles at a rate of 0.3 mm/h or so, using an automatic lowering apparatus controlled with a computer. Once the growth process lasting for 10-15 d had been finished, the furnace chamber was cooled to ambient temperature at a rate of 30-60 ℃/h. As the crucible loading crystal was taken out from the alumina tube, a transparent Nd3+∶YCOB single crystal boule was obtained from the stripped crucible.

    2.3 Characterizations

    The crystallography phase of the polycrystalline powder and as-grown crystals were characterized using X-ray diffraction analysis, which was recorded in the 2θrange from 10° to 80° by using a Bruker D8 Focus diffractometer with Cu Kαradiation.A series of polished crystal wafers with 1.5 mm thickness were fabricated form as-grown crystal boules with different Nd3+dopant concentration. The absorption spectra of the crystal wafers were measured in the wavelength range from 400 nm to 1000 nm by a Lambda 35 UV/Vis spectrometer. The fluorescence spectra were measured under 808 nm photonic excitation by a French JY Triax 320 fluorescence spectrometer. The fluorescence decay time curve was measured by a British Scitec Model 300CD optical chopper with a pulse frequency of 20 Hz together with an Agilent's Infiniium 54833 D oscilloscope.

    3 Results and discussion

    3.1 Feed materials preparation

    It had been discovered that the high purity polycrystalline material with stoichometric composition was essential for Nd3+∶YCOB crystal growth with high optical humogeneity. However, the polycrystalline powder synthesized by solid-state reaction usually contains the impurity compositions such as CaO, B2O3and Y2O3due to the uncompleted synthetic reaction. Using the polycrystalline powder synthesized by solid-state reaction, as-grown crystal boule usually contains much inclusions which bring out serious optical scattering. Unfortunately, so far no wet-chemical synthesis route in aqueous solution could be used to synthesize the composite oxyborate compound YCa4O(BO3)3with stoichiometric composition. In this work, the high-purity polycrystalline material with the stoichiometric composition of NdxY1-xCa4O(BO3)3could be prepared by our proposed process.

    Firstly, Nd3+∶YCOB polycrystalline powder was synthesized from the initial reagents by the following solid-state reaction at elevated temperature. The complex powder was prepared basically according to the stoichiometric composition, while H3BO3was added with 1wt% excess so as to compensate for the volatilization in the sintering process. Nd3+∶YCOB polycrystalline materials were synthesized with a nominal Nd3+dopant concentration of 1mol%, 2mol% and 5mol%, where the doped ions Nd3+partially replace Y3+ions in the crystal lattice.

    xNd2O3+(1-x)Y2O3+8CaCO3+6H3BO3=2NdxY1-xCa4O(BO3)3+8CO2+9H2O

    Secondly, Nd3+∶YCOB polycrystalline powder obtained above was further subjected to the zone melting treatment, where the main impurities were expelled from the powder charge by the recrystallization process. In the zone melting process, the temperature around the solid-liquid interface was adjusted as high as -60 ℃/cm so as to remove the impurities effectively. Fig.1(a) shows the nearly transparent Nd3+∶YCOB crystal grain with high purity prepared by zone melting process.

    Fig.1 (a)The crystal grain prepared by zone melting process; (b)Nd3+∶YCOB single crystal grown by vertical Bridgman process

    3.2 Crystal growth

    Using the crystal grain prepared with crystallization process, Nd3+∶YCOB single crystal was grown by vertical Bridgman process as described above. In vertical Bridgman process, the furnace chamber was controlled at the temperature range at 1570-1590 ℃ in the high temperature zone, which was 60-80 ℃ higher than the melting point of the oxyborate crystal. The oriented crystal growth along <010> crystallographic direction was executed by using a seed crystal installed in the crucible bottom. After the furnace chamber was heated to the controlled temperature, the seeding operation was performed by adjusting the crucible to a suitable height so that only the upper part was melted together with the melts in the crucible chamber. Considering the oxyborate crystal materials possesses a higher melts viscosity, an appropriate crystallization rate was performed with a slower crucible descending rate of 0.3 mm/h or so. If the crystallization rate was carried out with too fast crucible descending rate, as-grown crystal exhibited some optical scattering caused from the inclusion inside the crystal medium. The platinum crucible charged with crystal grain was sealed so as to avoid the melt volatilization in the crystal growth.

    3.3 Crystallographic characterizations

    Fig.2 XRD patterns of (a) polycrystalline powder synthesized by solid-state reaction; (b)crystal grain prepared by zone melting process; (c) Nd3+∶ YCOB single crystal grown by vertical Bridgman process

    Fig.1(b) shows Nd3+∶YCOB crystal sample with dimension ofφ25×30 mm obtained by vertical Bridgman process described above. The cylindrical crystal sample with light purple color exhibits an excellent optical transmission. The single crystal was examined to be free of optical scattering inside by a He-Ne laser beam. Based on X-ray diffraction rocking curve measured with (010) oriented crystal wafer, the crystallization quality of the single crystal was proved to be desirable by the fact that the crystal wafer exhibited a FWHM value less 50 arc sec. Fig.2 presents X-ray powder diffraction patterns of the three samples, i.e. Nd3+∶YCOB polycrystalline powder, the purified crystal grain and as-grown single crystal. The crystal grain and single crystal have been verified to be the compound of ReCa4O(BO3)3with monoclinic structure as the diffraction peaks of XRD pattern accords with the standard data of JCPDF-50-0403. However, XRD pattern of the polycrystalline powder shows many minor diffraction peaks, which indicates a small amount of oxide compositions such as CaO, B2O3and Y2O3remained in the polycrystalline powder.

    3.4 Spectral properties

    Fig.3 shows the absorption spectra measured in the wavelength range of 400 nm to 1000 nm for Nd3+∶YCOB crystal wafers doped with different Nd3+concentrations. The typical absorptions peaks exhibited in the absorption spectra prove that Nd3+ions have been doped into the crystal lattice. It can be seen that the absorption peaks intensity increases evidently as Nd3+dopant concentration increases from 1mol% to 5mol%. The absorption spectra present five strong absorption peaks in the range of 400-1000 nm, which are located around 520 nm, 580 nm, 740 nm, 800 nm and 860 nm, respectively. These absorption peaks can be attributed to Nd3+ion characteristic transitions from the ground state to the excited states of4I9/2→4G9/2+4G7/2,4I9/2→2G7/2+4G5/2,4I9/2→4S3/2+4F7/2,4I9/2→2H9/2+4F5/2and4I9/2→4F3/2. Since Nd3+ion possess a rich energy level structure with narrow energy levels gaps, the absorption peaks appear to be somewhat overlapped.

    Fig.3 Absorption spectra of Nd3+∶YCOB crystal with different Nd3+dopant concentration

    As the absorption spectra of Nd3+∶YCOB crystal exhibits a strong absorption peak around 800 nm, the fluorescence spectra were measured with an infrared laser centered at 808 nm as the excitation source. Fig.4 shows the fluorescence spectra measured in the range of 850-1500 nm for Nd3+∶YCOB crystal wafers with different Nd3+dopant concentration. There are three distinct fluorescence emission peaks located at 890 nm, 1064 nm and 1323 nm, which are attributed to the transition of4F3/2→4I9/2,4F3/2→4I11/2and4F3/2→4I13/2, respectively. It can be seen that the fluorescence intensity increases evidently as Nd3+dopant concentration increases from 1mol% to 5mol%. Under the photonic excitation with an infrared laser centered at 808 nm, the strong fluorescence output with a central wavelength of 1064 nm can be acquired by the transition of4F3/2→4I11/2. The energy level diagram of Nd3+ion showed in Fig.5 exhibits the transition process for 1064 nm strong fluorescence emission. As Nd3+∶YCOB crystal is pumped by 808 nm photonic excitation, the active ions Nd3+on the ground state4I9/2absorb the pump light and jump to the excited state of4F3/2and2H9/2. Once passing very quickly the non-radiative transition to the metastable state4F3/2, the active ions on4F3/2state falls to the lower level4I11/2and then returns to the ground state4I9/2via the non-radiative transition. Under 808 nm infrared photonic excitation, the fluorescence decay curves of 1064 nm emission were also measured. Fig.6 shows the fluorescence decay curves of Nd3+∶YCOB crystal wafers with 1mol%, 2mol% and 5mol% dopant concentration. According to the fitted fluorescence decay curves, the fluorescence lifetime of Nd3+∶YCOB crystals are determined to be 157-162 μs.

    Fig.4 Fluorescence spectra of Nd3+∶YCOB crystal with different Nd3+dopant concentration under 808 nm photonic excitation

    Fig.5 Energy level diagram of Nd3+ ion doped in crystal lattice

    Fig.6 Fluorescence decay curves of 1064 nm emission for Nd3+∶YCOB crystal with different concentration under 808 nm photonic excitation

    4 Conclusion

    High purity Nd3+-doped YCOB crystal grain was prepared by zone melting process from the polycrystalline powder initially synthesized by solid-state reaction. Using the purified crystal grain, Nd3+∶YCOB single crystals with nominal Nd3+dopant concentration of 1mol%, 2mol% and 5mol% had been grown by means of vertical Bridgman method with optimized conditions. X-ray powder diffraction analysis proves that Nd3+ions have been doped into the crystal lattice and the absorption spectra exhibits the typical absorption peaks corresponding Nd3+ions. Upon photonic excitation with 808 nm infrared light, Nd3+∶YCOB single crystals produce a strong fluorescence emission centered at 1064 nm wavelength with a fluorescence lifetime of 157-162 μs. The intensities of absorption peaks and the fluorescence emissions increase evidently with the increasing Nd3+dopant concentration in 1mol%-5mol% doping range in this work.

    联通29元200g的流量卡| 国产精品美女特级片免费视频播放器| 青春草视频在线免费观看| 九九在线视频观看精品| 国产私拍福利视频在线观看| 国产亚洲精品久久久com| 日本三级黄在线观看| 国产免费男女视频| 欧美+亚洲+日韩+国产| 国产精品一区二区三区四区久久| 精品欧美国产一区二区三| 级片在线观看| 熟女电影av网| 国产亚洲91精品色在线| 乱系列少妇在线播放| 国内精品久久久久精免费| 女同久久另类99精品国产91| 99久久精品热视频| 高清毛片免费观看视频网站| 国产色婷婷99| 久久久久久九九精品二区国产| 免费不卡的大黄色大毛片视频在线观看 | 干丝袜人妻中文字幕| 99热精品在线国产| 日韩精品青青久久久久久| 欧美精品国产亚洲| 热99re8久久精品国产| 国产av麻豆久久久久久久| 永久网站在线| 国产成人福利小说| 日韩 亚洲 欧美在线| 免费观看精品视频网站| 久久精品人妻少妇| 九九热线精品视视频播放| 别揉我奶头~嗯~啊~动态视频| 国产 一区 欧美 日韩| 在线a可以看的网站| 搡女人真爽免费视频火全软件 | 真人做人爱边吃奶动态| 日本与韩国留学比较| 亚洲精品国产成人久久av| 国产黄色视频一区二区在线观看 | 亚洲不卡免费看| 久久久久国产网址| 男女做爰动态图高潮gif福利片| 99国产精品一区二区蜜桃av| 国产综合懂色| 精品一区二区三区视频在线观看免费| 国产亚洲91精品色在线| 最近的中文字幕免费完整| 天堂av国产一区二区熟女人妻| 国产高清视频在线播放一区| 国产精品爽爽va在线观看网站| 国产中年淑女户外野战色| 美女内射精品一级片tv| 高清毛片免费看| 国语自产精品视频在线第100页| 精品国产三级普通话版| 久久久久国内视频| 亚洲丝袜综合中文字幕| av在线观看视频网站免费| 亚洲最大成人av| 99热6这里只有精品| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 亚洲国产欧洲综合997久久,| 久久久国产成人免费| 亚洲在线观看片| 成年女人看的毛片在线观看| 成年女人永久免费观看视频| 熟女人妻精品中文字幕| 搞女人的毛片| 99久久精品热视频| 国内精品宾馆在线| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 国产成人影院久久av| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 亚洲av免费在线观看| 亚洲欧美日韩高清专用| 国产亚洲精品综合一区在线观看| 婷婷色综合大香蕉| 亚洲精品国产av成人精品 | 淫秽高清视频在线观看| 成人二区视频| 亚洲av五月六月丁香网| 亚洲综合色惰| 在线免费十八禁| 小蜜桃在线观看免费完整版高清| 日韩中字成人| 给我免费播放毛片高清在线观看| 日韩在线高清观看一区二区三区| 村上凉子中文字幕在线| 日韩高清综合在线| 精品国内亚洲2022精品成人| 天天躁夜夜躁狠狠久久av| a级毛片免费高清观看在线播放| 久久人人爽人人片av| 国产精品不卡视频一区二区| 最新中文字幕久久久久| 久久久色成人| 久久精品国产亚洲av涩爱 | 亚洲婷婷狠狠爱综合网| 联通29元200g的流量卡| 亚洲国产精品sss在线观看| 日日摸夜夜添夜夜爱| 亚洲国产精品久久男人天堂| 国产高清视频在线播放一区| 日本爱情动作片www.在线观看 | 99在线人妻在线中文字幕| 国产美女午夜福利| 久久久久国产精品人妻aⅴ院| 九九久久精品国产亚洲av麻豆| 日韩欧美精品免费久久| 波多野结衣巨乳人妻| 亚洲精品在线观看二区| 日日摸夜夜添夜夜爱| 日韩欧美国产在线观看| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 观看免费一级毛片| av天堂在线播放| 日韩成人av中文字幕在线观看 | 十八禁网站免费在线| 51国产日韩欧美| 尾随美女入室| 久久婷婷人人爽人人干人人爱| 久久国内精品自在自线图片| 中文资源天堂在线| 国产精品一及| 热99re8久久精品国产| 伦精品一区二区三区| 男人舔女人下体高潮全视频| 成人无遮挡网站| 99热精品在线国产| 久久精品国产自在天天线| 性色avwww在线观看| 欧美最黄视频在线播放免费| 最新中文字幕久久久久| 亚洲成人久久爱视频| 伦精品一区二区三区| 久久久成人免费电影| 1024手机看黄色片| 在线播放无遮挡| 在线观看一区二区三区| 可以在线观看的亚洲视频| 国产免费男女视频| 国产av不卡久久| aaaaa片日本免费| 久久久久国产精品人妻aⅴ院| 我的女老师完整版在线观看| 午夜激情福利司机影院| 女同久久另类99精品国产91| 超碰av人人做人人爽久久| 亚洲图色成人| 99国产极品粉嫩在线观看| 日日干狠狠操夜夜爽| 观看免费一级毛片| 亚洲国产精品sss在线观看| 日韩高清综合在线| 成人永久免费在线观看视频| 国产精品一区二区三区四区久久| 人妻久久中文字幕网| 亚洲第一区二区三区不卡| 噜噜噜噜噜久久久久久91| 精品午夜福利视频在线观看一区| 久久久久久九九精品二区国产| 日本免费a在线| 在线播放国产精品三级| 蜜臀久久99精品久久宅男| av卡一久久| 欧美最黄视频在线播放免费| 精品国产三级普通话版| 麻豆乱淫一区二区| 永久网站在线| 国产成人a∨麻豆精品| 久久久久久久亚洲中文字幕| 国产不卡一卡二| 在现免费观看毛片| 伦理电影大哥的女人| 亚洲自偷自拍三级| 老司机福利观看| 国产午夜福利久久久久久| av在线天堂中文字幕| 免费黄网站久久成人精品| 亚洲中文字幕一区二区三区有码在线看| 听说在线观看完整版免费高清| 久久精品国产亚洲av天美| 国产精品综合久久久久久久免费| 色播亚洲综合网| 免费观看精品视频网站| 日韩制服骚丝袜av| 久久99热6这里只有精品| 亚洲成人av在线免费| 九九热线精品视视频播放| 内地一区二区视频在线| 亚洲精品在线观看二区| 国产精品嫩草影院av在线观看| 成人永久免费在线观看视频| 色哟哟·www| 欧美3d第一页| 日韩欧美 国产精品| 嫩草影院新地址| 久久久久久久亚洲中文字幕| 成人国产麻豆网| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 床上黄色一级片| 午夜精品国产一区二区电影 | 少妇被粗大猛烈的视频| 一级黄片播放器| av福利片在线观看| 日本a在线网址| 日韩欧美国产在线观看| 久久精品国产自在天天线| 人妻少妇偷人精品九色| 亚洲国产高清在线一区二区三| 国产精品女同一区二区软件| 真人做人爱边吃奶动态| 亚洲自偷自拍三级| 久久精品国产鲁丝片午夜精品| 亚洲精品亚洲一区二区| 久久国内精品自在自线图片| 人人妻人人澡人人爽人人夜夜 | 欧美最黄视频在线播放免费| av免费在线看不卡| 国产精品久久电影中文字幕| 深夜a级毛片| 最近在线观看免费完整版| 久久久久国产精品人妻aⅴ院| 亚洲精品粉嫩美女一区| 国产在视频线在精品| 午夜影院日韩av| 久久国内精品自在自线图片| 亚洲专区国产一区二区| 成人午夜高清在线视频| 国产成人一区二区在线| 久久久久久大精品| 亚洲在线观看片| 在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 身体一侧抽搐| 春色校园在线视频观看| 网址你懂的国产日韩在线| 中文字幕熟女人妻在线| 青春草视频在线免费观看| 午夜a级毛片| 韩国av在线不卡| 插逼视频在线观看| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 亚洲精品粉嫩美女一区| 国内久久婷婷六月综合欲色啪| 最好的美女福利视频网| 欧美色视频一区免费| 日韩精品中文字幕看吧| 色综合站精品国产| 国产精品电影一区二区三区| 国产精品免费一区二区三区在线| 别揉我奶头 嗯啊视频| 国产精品福利在线免费观看| 国产真实乱freesex| 成人亚洲欧美一区二区av| 一级毛片久久久久久久久女| 97超碰精品成人国产| 免费不卡的大黄色大毛片视频在线观看 | 在线观看av片永久免费下载| 男人的好看免费观看在线视频| 看免费成人av毛片| 国产精品女同一区二区软件| 少妇的逼水好多| 97超视频在线观看视频| 久久精品国产鲁丝片午夜精品| 亚洲乱码一区二区免费版| 国产片特级美女逼逼视频| 成人亚洲欧美一区二区av| 精品免费久久久久久久清纯| 亚洲无线观看免费| 嫩草影院精品99| 久久久精品大字幕| 亚州av有码| 日本在线视频免费播放| 国产 一区精品| 最近的中文字幕免费完整| 成年女人看的毛片在线观看| 亚洲精品国产av成人精品 | 麻豆成人午夜福利视频| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 日韩在线高清观看一区二区三区| 91久久精品国产一区二区三区| 精品久久久久久久久久久久久| av国产免费在线观看| 99热全是精品| 欧美+亚洲+日韩+国产| 久久午夜亚洲精品久久| 又黄又爽又免费观看的视频| 岛国在线免费视频观看| 久久久久久久久久成人| 色综合站精品国产| 赤兔流量卡办理| 免费高清视频大片| 天堂网av新在线| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av天美| 一级a爱片免费观看的视频| 99热6这里只有精品| 成人av一区二区三区在线看| 免费观看的影片在线观看| 人人妻人人澡人人爽人人夜夜 | 日韩成人伦理影院| 亚洲性夜色夜夜综合| 美女被艹到高潮喷水动态| 日本精品一区二区三区蜜桃| 精品久久久噜噜| 我的女老师完整版在线观看| 久久人妻av系列| 成人国产麻豆网| 特大巨黑吊av在线直播| 久久精品国产自在天天线| 国产单亲对白刺激| 美女免费视频网站| 亚洲av不卡在线观看| 亚洲成人精品中文字幕电影| 久久精品国产99精品国产亚洲性色| 久久久午夜欧美精品| 国产精品美女特级片免费视频播放器| 日韩人妻高清精品专区| 熟女人妻精品中文字幕| 又粗又爽又猛毛片免费看| 别揉我奶头~嗯~啊~动态视频| 久久精品91蜜桃| 久久午夜福利片| 少妇高潮的动态图| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 嫩草影院入口| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 国产精品国产高清国产av| 一夜夜www| 亚洲性久久影院| 激情 狠狠 欧美| 国产伦精品一区二区三区四那| 亚洲18禁久久av| 国产高清三级在线| 天堂动漫精品| 国产av麻豆久久久久久久| 少妇的逼好多水| 日韩大尺度精品在线看网址| 深夜精品福利| 黄色欧美视频在线观看| 国产男人的电影天堂91| 国产精品电影一区二区三区| 亚洲无线在线观看| 搡老熟女国产l中国老女人| 露出奶头的视频| 午夜免费男女啪啪视频观看 | 日韩国内少妇激情av| 观看美女的网站| 熟妇人妻久久中文字幕3abv| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产成人a∨麻豆精品| 三级经典国产精品| 成人无遮挡网站| 精品不卡国产一区二区三区| 亚洲av免费高清在线观看| 99视频精品全部免费 在线| 日韩高清综合在线| 身体一侧抽搐| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 久久草成人影院| 美女免费视频网站| 亚洲美女搞黄在线观看 | 国产aⅴ精品一区二区三区波| 99久久中文字幕三级久久日本| 国产综合懂色| 国产av不卡久久| 亚洲丝袜综合中文字幕| 舔av片在线| 91在线观看av| 一区二区三区四区激情视频 | 久久99热这里只有精品18| 成人二区视频| 久久亚洲精品不卡| 国产 一区 欧美 日韩| 亚洲av免费在线观看| 黄色欧美视频在线观看| 国产成人福利小说| 色5月婷婷丁香| 久久久久久久精品精品| 亚洲av二区三区四区| 亚洲成人手机| 免费观看在线日韩| 日韩 亚洲 欧美在线| 汤姆久久久久久久影院中文字幕| 免费看日本二区| 精华霜和精华液先用哪个| 国产91av在线免费观看| 丰满人妻一区二区三区视频av| 成人美女网站在线观看视频| 久久久精品94久久精品| 亚洲在久久综合| 啦啦啦视频在线资源免费观看| 色94色欧美一区二区| 一区二区三区乱码不卡18| 中文字幕人妻丝袜制服| 国产美女午夜福利| 欧美日韩在线观看h| 亚洲av不卡在线观看| 日本wwww免费看| 丝袜喷水一区| 有码 亚洲区| 亚洲精品一二三| 精品少妇久久久久久888优播| 国产精品.久久久| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 亚洲精品成人av观看孕妇| 黄片无遮挡物在线观看| 成年av动漫网址| 七月丁香在线播放| 成人综合一区亚洲| 亚洲国产精品一区三区| 性高湖久久久久久久久免费观看| 午夜福利影视在线免费观看| 我的老师免费观看完整版| 少妇 在线观看| 如日韩欧美国产精品一区二区三区 | 欧美精品亚洲一区二区| 深夜a级毛片| 欧美成人午夜免费资源| 国产男人的电影天堂91| 在线播放无遮挡| 91在线精品国自产拍蜜月| 老司机影院毛片| 色婷婷久久久亚洲欧美| 免费人妻精品一区二区三区视频| 内地一区二区视频在线| 欧美精品国产亚洲| 久久av网站| 91精品国产国语对白视频| 熟女电影av网| 97精品久久久久久久久久精品| 午夜av观看不卡| 老熟女久久久| 有码 亚洲区| 亚洲无线观看免费| 亚洲婷婷狠狠爱综合网| 日韩欧美 国产精品| 丰满饥渴人妻一区二区三| 久久精品久久久久久噜噜老黄| 中文在线观看免费www的网站| 国产男女内射视频| 一个人看视频在线观看www免费| 18禁在线无遮挡免费观看视频| 欧美三级亚洲精品| 久久精品夜色国产| 国产极品粉嫩免费观看在线 | 亚洲性久久影院| 卡戴珊不雅视频在线播放| av.在线天堂| 少妇 在线观看| 美女主播在线视频| 欧美日韩av久久| 最新的欧美精品一区二区| 在线亚洲精品国产二区图片欧美 | 亚洲欧美清纯卡通| 交换朋友夫妻互换小说| 91精品国产九色| 99久久中文字幕三级久久日本| 久久狼人影院| 91在线精品国自产拍蜜月| 全区人妻精品视频| 国产日韩欧美视频二区| 日韩制服骚丝袜av| a级一级毛片免费在线观看| 在线观看美女被高潮喷水网站| 成人亚洲精品一区在线观看| 简卡轻食公司| 婷婷色综合大香蕉| 久久国产精品男人的天堂亚洲 | 国产亚洲欧美精品永久| 99国产精品免费福利视频| 一级毛片我不卡| 亚洲精品乱码久久久久久按摩| 久久久久久久大尺度免费视频| 亚洲精品乱久久久久久| 午夜福利,免费看| 成人无遮挡网站| 久久免费观看电影| 在线亚洲精品国产二区图片欧美 | 曰老女人黄片| 五月伊人婷婷丁香| 精品一区二区三卡| 久久精品久久精品一区二区三区| 永久网站在线| 一级av片app| 免费不卡的大黄色大毛片视频在线观看| 18+在线观看网站| 嫩草影院入口| 亚洲精品视频女| 免费黄网站久久成人精品| 少妇的逼好多水| 免费看光身美女| 2021少妇久久久久久久久久久| 在线观看免费日韩欧美大片 | 肉色欧美久久久久久久蜜桃| 国产日韩欧美视频二区| 国产成人免费观看mmmm| 中文资源天堂在线| 最近手机中文字幕大全| 久久99蜜桃精品久久| videos熟女内射| 久久影院123| av天堂中文字幕网| 免费在线观看成人毛片| 亚洲av.av天堂| 欧美高清成人免费视频www| 毛片一级片免费看久久久久| av.在线天堂| 妹子高潮喷水视频| 大码成人一级视频| 亚洲欧美日韩东京热| 国产精品熟女久久久久浪| 亚洲熟女精品中文字幕| 亚洲av成人精品一区久久| 欧美日韩视频高清一区二区三区二| 人体艺术视频欧美日本| 麻豆乱淫一区二区| 我的女老师完整版在线观看| 麻豆成人av视频| 国内精品宾馆在线| 69精品国产乱码久久久| h视频一区二区三区| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 久久精品国产亚洲av天美| 91久久精品国产一区二区三区| 夫妻性生交免费视频一级片| 麻豆乱淫一区二区| 丰满人妻一区二区三区视频av| 伦精品一区二区三区| 国内精品宾馆在线| 国产一区二区在线观看日韩| 国产伦精品一区二区三区四那| 国产成人a∨麻豆精品| 日韩av在线免费看完整版不卡| 久久久久久久久久久丰满| av天堂久久9| 一级毛片黄色毛片免费观看视频| 国产亚洲一区二区精品| 亚洲自偷自拍三级| 黄色一级大片看看| 97精品久久久久久久久久精品| 亚洲综合色惰| 欧美+日韩+精品| 五月天丁香电影| 久久久久精品久久久久真实原创| 国产精品国产av在线观看| 国模一区二区三区四区视频| av播播在线观看一区| 免费少妇av软件| 久久 成人 亚洲| 午夜日本视频在线| 一个人免费看片子| 日本av手机在线免费观看| 边亲边吃奶的免费视频| 老熟女久久久| 国产精品女同一区二区软件| 男女免费视频国产| 特大巨黑吊av在线直播| 99热网站在线观看| 亚洲精华国产精华液的使用体验| 我要看黄色一级片免费的| 美女主播在线视频| 国产午夜精品一二区理论片| 国产在视频线精品| 久久国产乱子免费精品| 日韩欧美一区视频在线观看 | a级毛片在线看网站| 极品少妇高潮喷水抽搐| 日韩成人av中文字幕在线观看| 欧美精品一区二区大全| 高清在线视频一区二区三区| 视频中文字幕在线观看| 伊人亚洲综合成人网| 又爽又黄a免费视频| 色视频在线一区二区三区| av网站免费在线观看视频| av线在线观看网站| 久久综合国产亚洲精品| 91久久精品电影网| 中文字幕人妻熟人妻熟丝袜美| 嫩草影院新地址| 一区二区三区精品91| 国产色爽女视频免费观看| 久久6这里有精品| 最新的欧美精品一区二区| 国产日韩欧美在线精品| av卡一久久| 欧美精品一区二区免费开放| 在线观看免费视频网站a站| 午夜老司机福利剧场| 亚洲熟女精品中文字幕| 欧美变态另类bdsm刘玥| 亚洲精品国产av成人精品| 国产一区二区在线观看日韩| 日韩在线高清观看一区二区三区| 色婷婷久久久亚洲欧美| 菩萨蛮人人尽说江南好唐韦庄| 国产探花极品一区二区|