• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ramsey Numbers

    2019-12-20 03:01:02suyaxin
    校園英語(yǔ)·上旬 2019年13期
    關(guān)鍵詞:簡(jiǎn)介

    su ya xin

    Ⅰ.Introduction

    Ramseys theorem is a foundational result in combinatorics. The first version of this result was proved by F. P. Ramsey. And the Ramsey theorem is a branch of is a branch of mathematics that studies the unavoidable regularity in large structures (the definition above came from Gould, Martin. “Ramsey Theory.” Ramsey Theory, 2010). Or in other words, complete disorder is impossible. A famous problem could be in any class of six or more people, there are at least three mutual friends or three mutual strangers if every pair of them are either friends or not friends . Which is provable by the Ramsey Theorem. And through the last century, Ramsey theorem developed significantly with more and more excellent Mathematician work input. Although the Ramsey theorem is keep developing, the Ramsey theorems abstract applications became more and more widely used during the past century.

    Ⅱ.Preliminaries

    Definition: A graph is a collection of vertices V and edges E, which are pairs of vertices.

    Definition: A simple graph is a graph that each edge connect two vertices and no loops occurs.

    Definition: A complete graph is a simple graph that each E has two vertices and we named it by the number of vertices kn.

    Definition: A proper c-colouring graph emphasis that each edge has its own color and no adjacent edges has same coloring.

    Definition: A clique of size n is a set of n vertices such that all pairs among them are edges. And a independent set means there are no edges between them.

    Definition: The Ramsey number R(s,t) is the minimum number n such

    that any graph on n vertices contains either an independent set of size s or a clique of size n().

    Definition: In mathematics, the pigeonhole principle states that if n items are put into m containers, then at least one container must contain more than one item. Then if an infinite number of items are put into finite containers, then one of the containers must fit infinite items.

    Ⅲ.Ramsey Theorem

    1.party problem. Proposition:There are six people at a party. We assume that for every pair of them, they are either friends or not friends (i.e. strangers). Prove that either there are three people all of whom are friends, or there are three people of whom no two are friends.

    Proof : As the graph shows, we have 6 people Julie, Alison, Edna, Barack, Camryn and David. We pick David as the person we are considering. Among the other 5 people,we suppose that David are friends with 3 people. Then we can divide into 2 situation. Situation 1: if two of David friends knows each other then they will be a group of 3 mutually friends. Situation 2: if Davids friends do not know each other, then this 3 people will be a group of 3 mutually strangers. If David do not know 3 people in the 6 people group, then there must be at least three that are strangers to David. Then we can divide into 2 situation. Situation 1: If any two of these are strangers, then together with Joe, they are a group of three mutually strangers. Situation 2: If none of them are strangers to each other, then they are a group of at least three mutual friends. So, through this proof above we can conclude that either there are three people all of whom are friends, or there are three people of whom no two are friends.

    As the graph shows below we use red line to represent strangers and use blue to represent friends.

    And through this section we can proof that for any monochromatic K3 no matter how you want to 2-color Kn, n=6 will be sufficient.

    2.Ramsey Theorem and Ramsey Number. From the last section we gained the information that n=6 will be sufficient for any monochromatic K3 no matter how you want to 2-color Kn. Then the question comes, what if we apply it to an monochromatic K6 graph, whats the number of n will make the graph sufficient and for how many coloring it might be working?

    Ramsey Theorem can be defined by following: For all c, m ≥2, there exists n

    m such that every c-coloring of Kn has a monochromatic Km.

    One of the division under Ramsey Theorem is Ramsey numbers. A Ramsey Number, R(m,n) = r, is the smallest size of a graph r such that every graph of that size has either a clique of size m or an independent set of size n. Like above we proof that R(3,3)=6 through the party example. And also R(a,b)=R(b,a). R(2,b)=b still applies and the proof was showned in the previous.

    Notation: Let a, b ≥ 2.Let R(a, b) denote the least number, if it exists, such

    that every 2-coloring of KR(a,b) has a RED Ka or a BLUE Kb. We abbreviate

    R(a, a) by R(a).

    Facts: 1. For all a,b, R(a,b) = R(b,a).

    2. For b 2, R(2, b) = b: First, we show that R(2, b) ≤ b. Given any 2-

    coloring of Kb , we want a RED K2 or a BLUE Kb. Note that a RED K2 is just a RED edge. Hence EITHER there exists one RED edge (so you get a RED K2) OR all the edges are BLUE (so you get a BLUE Kb). Now we prove that R(2,b) = b. If b = 2, this is obvious. If b > 2, then the all-BLUE coloring of Kb1 has neither a RED K2 nor a BLUE Kb, hence R(2, b) b. Combining the

    two inequalities (R(2,b) ≥ bandR(2, b) ≥ b), wef indthatR(2, b) = b.

    3.R(3, 3) ≤ 6 (we proved in the section with 6 people in a party. ) We want to show that, for every n ≥2, R(n, n) exists. In this proof, we show something more: that for all a, b ≥ 2, R(a, b) exists. We do not really care about the case where a = b, but that case will help us get our result. This is a situation where

    proving more than you need is easier.

    The goal of this prove is to show that for every n ≥ 2, R(n, n) exists. In this proof, we show something more: that for all a, b ≥ 2, R(a, b) exists. We do not really care about the case where a= b, but that case will help us get our result.

    In this section we tried to proof this three theorem below theorem 1.1:(2, b) = b (we proved this earlier)

    theorem 1.2:For all a,b ≥ 3 If R(a ? 1, b) and R (a, b-1) existed, then

    R(a,b) exist and

    R(a, b) ≤ R(a ? 1, b) + R(a, b ? 1) (1)

    theorem 1.3: For all a,b ≥ 2,R(a,b) exists and R(a,b) ≤ 2a+b

    The proof of theorem 1.1, 1.2, 1.3 are included below, we closely follow the proof created by William Gasarch with slight modifications.

    Proof for theorem 1.2

    Assume R(a -1, b) and R(a, b -1) exist. Let n = R(a-1, b) + R(a, b-1) Let 2-co be a 2-coloring of Kn, and let x be a vertex. And the number of edges come out from x vertex can be represent by a function that R(a-1, b) + R(a, b-1)-1 Let Red be the number of red edges coming out of x, and let Be d be the number of blue edges coming out of x. So that

    Red + Bed = R(a ? 1, b) + R(a, b ? 1) ? 1

    hence, either

    Red ≥ R(a ? 1, b)

    or

    Bed ≥ R(a, b ? 1)

    To see this, suppose, by way of contradiction, that both inequalities are false.

    Then

    Red + Bed ≤ (a ? 1, b) ? 1 + R(a, b ? 1) ? 1

    = R(a ? 1, b) + R(a, b ? 1) ? 2

    < R(a ? 1, b) + R(a, b ? 1) ? 1.

    There are two cases:

    1. Case 1: Red ≥ R(a ? 1, b).LetU = y | 2 ? col(x, y) = RED U is of size Red≥ R(a ? 1, b).Consider the restriction of the coloring 2-col to the edges between vertices in U. Since | U |≥ R(a ? 1, b), this coloring has a RED Ka-1 or a BLUE Kb. Within Case 1, there are two cases:

    (a) There is a RED Ka-1. Recall that all of the edges in x, u | u ∈ U are

    RED, hence all the edges between elements of the set U∪xare RED so they

    form a RED Ka.

    (b) There is a BLUE Kb.

    2. Case

    Bed ≥ R(a, b ? 1). Similar to Case 1.

    Proof for Theorem 1.3

    To show that R(a, b) exists and R(a, b) ≤ 2a+b, we use induction on n=a+b. Since a,b≥ 2, the small value of a+b is 4. Thus n ≥4.

    Base Case

    n = 4. Since a + b = 4 and a, b ≥2, we must have a = b = 2. From part 1, we know that R(2, 2) exists and R(2, 2) = 2. Note that R(2,2)=2≤ 22+2 = 16

    Induction Hypothesis: For all a, b ≥ 2 such that a + b = n, R(a, b)

    exists and R(a, b) ≥2a+b.

    Inductive Step: Let a, b be such that a, b≥ 2 and a + b = n + 1. There are three cases: Case 1: a=2. By part 1, R(2,b)exists and R(2,b)=b. Since b≥

    2, we have b≥ 2b ≥ 4×2b = 22=2b = 22+b Hence R(2, b) ≥ 22+b .

    2. Case 2: b = 2. Follows from Case 1 and R(a,b) = R(b,a).

    3. Case3: a,b≥3. Since a,b≥ 3,we have a1≥ 2and b1≥ 2. Also, a+b = n+1, so (a1) + b = n and a+(b1) = n. By the induction hypothesis, R(a 1, b) and R(a, b 1) exist; moreover,

    R(a-1, b) ≤ 2(a?1)+b = 2a+b?1 R(a, b-1) ≤ 2a+(b?1) = 2a+b?1 From part 3, R(a, b) exists and

    R(a, b)≤ R(a ? 1, b) + R(a, b ? 1)Hence

    R(a,b) ≤ R(a ? 1, b) + R(a, b ? 1) ≤ 2a+b?1 + 2a+b?1 = 2 ? 2a+b?1 = 2a+b

    3. Values of Ramsey Number. Through the last section, we understand the definition and the bounds of the Ramsey number. But there is a difference between understanding the definition and actually approach to the actual value. Throughout years, people have discover Ramsey number using various Ways. The table below gives a general review of the value and the “inventors”

    Ⅲ. Application

    Although the Ramsey theorem seems to be not practical for use, actually Ram- sey theorem have a lot abstract application.

    · Density Ramsey Theory apply to Transversal Theory as a supplement theorem for the proof.

    · A Topological Ramsey space R(Topological Ramsey spaces are spaces which support infinite dimensional Ramsey theory similarly to the El- lentuck space ), by definition, is a space that satisfies an abstract version of the Ellentuck Theorem.

    · Research into the Tukey theory of ultrafilters also has made use of results from set theory, topology and Ramsey theory.

    · Design of packet switched networks—- Stephanie Boyles and Geoff Exoo (personal communication) have found an application of Ramsey theory in the design of a packet switched network, the Bell System signaling network.

    · The dimension of partial orders: A decision-making application– which helps to prove that: “There are interval orders of arbitrarily high dimension, which can be implies by the Ramsey theorem.”

    · Confusion graphs for noisy channels In communication theory, a noisy channel gives rise to a confusion graph, a graph whose vertices are elements of a transmission alphabet T and which has an edge between two letters of T if and only if, when sent over the channel, they can be received as the same letter. And the Ramsey theorem also can apply to this case.

    References:

    [1] Gasarch, William. “Ramseys Theorem on Graphs.” Cs.umd, www.cs.umd.edu/ gasarch/TOPICS/mathnotes/ramsey.pdf.

    【作者簡(jiǎn)介】suyaxin,roland park country school.

    猜你喜歡
    簡(jiǎn)介
    No abuse of Audio—visual Media in Engineering surveying Teaching
    Short—term Memory Training in Business English Interpreting
    HowtoApplyEquityandInclusioninLanguageTeaching
    The Application of Authentic Listening Materials in EFL Classes
    Gender and Language Usages From a Socio—cultural Perspective
    Life of Foreign Students In China
    ChapteronTheRefugeeCrisis:AChancefortheEU
    Research on Guidance Mechanism of Public Opinion in Colleges and Universities in Micro Era
    Book review on “Educating Elites”
    Values of Medical Videos in Medical English Instruction
    老鸭窝网址在线观看| 男女午夜视频在线观看| 天天操日日干夜夜撸| 精品福利观看| 精品国产乱子伦一区二区三区| 首页视频小说图片口味搜索| 电影成人av| 国产成人精品无人区| 成人av一区二区三区在线看| 女人爽到高潮嗷嗷叫在线视频| 精品午夜福利视频在线观看一区| av网站免费在线观看视频| 国产在线观看jvid| 亚洲 欧美一区二区三区| 午夜老司机福利片| 午夜精品在线福利| 色精品久久人妻99蜜桃| 亚洲一码二码三码区别大吗| 天天躁狠狠躁夜夜躁狠狠躁| 黄色成人免费大全| 黑人操中国人逼视频| 国产精品乱码一区二三区的特点 | xxx96com| 久久久久视频综合| 在线观看日韩欧美| 啪啪无遮挡十八禁网站| 黑丝袜美女国产一区| 久久中文字幕一级| 在线视频色国产色| 悠悠久久av| 国产在视频线精品| 精品一区二区三区av网在线观看| 中出人妻视频一区二区| 亚洲国产中文字幕在线视频| 香蕉国产在线看| 色精品久久人妻99蜜桃| 最新的欧美精品一区二区| 亚洲一码二码三码区别大吗| 一边摸一边抽搐一进一小说 | 午夜老司机福利片| 亚洲精品中文字幕一二三四区| 国产三级黄色录像| 久久久精品免费免费高清| 国产99白浆流出| 97人妻天天添夜夜摸| 91精品国产国语对白视频| 高潮久久久久久久久久久不卡| 久久久久精品国产欧美久久久| 国产男女内射视频| 婷婷丁香在线五月| 大码成人一级视频| 欧美精品人与动牲交sv欧美| 午夜福利免费观看在线| 一本一本久久a久久精品综合妖精| 日本五十路高清| 国产精品乱码一区二三区的特点 | 成人特级黄色片久久久久久久| 久久国产亚洲av麻豆专区| 国产单亲对白刺激| 成人三级做爰电影| 久久久久国产一级毛片高清牌| 成人手机av| 精品福利永久在线观看| 满18在线观看网站| 国产精品一区二区在线观看99| 午夜福利欧美成人| 精品久久久久久,| 黄色成人免费大全| 成人影院久久| 欧美中文综合在线视频| 久久久精品国产亚洲av高清涩受| 在线观看免费午夜福利视频| 久久午夜亚洲精品久久| 久久性视频一级片| 日本wwww免费看| 母亲3免费完整高清在线观看| 大陆偷拍与自拍| 捣出白浆h1v1| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区| 国产不卡av网站在线观看| 国产男女超爽视频在线观看| 亚洲黑人精品在线| 90打野战视频偷拍视频| 国产午夜精品久久久久久| 99精品欧美一区二区三区四区| 五月开心婷婷网| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲一卡2卡3卡4卡5卡精品中文| 啪啪无遮挡十八禁网站| av超薄肉色丝袜交足视频| 19禁男女啪啪无遮挡网站| 男女午夜视频在线观看| 建设人人有责人人尽责人人享有的| 精品国产超薄肉色丝袜足j| 国产亚洲精品久久久久久毛片 | 久久中文字幕一级| 亚洲精华国产精华精| 亚洲人成77777在线视频| 在线免费观看的www视频| 亚洲国产看品久久| 99热只有精品国产| 大香蕉久久网| 99国产精品一区二区蜜桃av | 黄片播放在线免费| 久久国产精品人妻蜜桃| av天堂久久9| svipshipincom国产片| 黄色丝袜av网址大全| 欧美成人免费av一区二区三区 | 淫妇啪啪啪对白视频| 人人澡人人妻人| 亚洲色图综合在线观看| 在线观看免费高清a一片| 黄色怎么调成土黄色| 看片在线看免费视频| 欧美久久黑人一区二区| 人妻丰满熟妇av一区二区三区 | 亚洲少妇的诱惑av| 亚洲精品久久成人aⅴ小说| 亚洲久久久国产精品| 美女高潮到喷水免费观看| 免费人成视频x8x8入口观看| 国产精品自产拍在线观看55亚洲 | 91精品国产国语对白视频| av免费在线观看网站| 涩涩av久久男人的天堂| 国产欧美亚洲国产| 亚洲国产精品一区二区三区在线| 99香蕉大伊视频| 久久热在线av| 国产精品电影一区二区三区 | 亚洲国产精品sss在线观看 | 99国产精品一区二区三区| 不卡av一区二区三区| 757午夜福利合集在线观看| 黄网站色视频无遮挡免费观看| 精品亚洲成国产av| 午夜视频精品福利| 乱人伦中国视频| tube8黄色片| 啦啦啦免费观看视频1| 美女午夜性视频免费| 精品人妻在线不人妻| 另类亚洲欧美激情| 在线免费观看的www视频| 亚洲熟妇熟女久久| 午夜福利在线免费观看网站| 香蕉丝袜av| 热99久久久久精品小说推荐| 一区二区日韩欧美中文字幕| 欧美黑人欧美精品刺激| 视频区欧美日本亚洲| 中文字幕另类日韩欧美亚洲嫩草| 69av精品久久久久久| 高清毛片免费观看视频网站 | 国产欧美日韩精品亚洲av| 亚洲人成77777在线视频| 色精品久久人妻99蜜桃| 色婷婷av一区二区三区视频| 十分钟在线观看高清视频www| 可以免费在线观看a视频的电影网站| 亚洲avbb在线观看| av一本久久久久| 国产精品免费大片| 最新美女视频免费是黄的| 免费观看精品视频网站| 好看av亚洲va欧美ⅴa在| 国产精品国产高清国产av | 亚洲一码二码三码区别大吗| 桃红色精品国产亚洲av| 亚洲人成电影免费在线| 久久草成人影院| 久久青草综合色| 天天躁日日躁夜夜躁夜夜| 又紧又爽又黄一区二区| 超碰97精品在线观看| 无遮挡黄片免费观看| 精品视频人人做人人爽| 亚洲欧美色中文字幕在线| 亚洲,欧美精品.| 国产欧美亚洲国产| 天天操日日干夜夜撸| 亚洲人成伊人成综合网2020| av网站在线播放免费| 精品一区二区三区四区五区乱码| 日韩一卡2卡3卡4卡2021年| 成人影院久久| av福利片在线| 亚洲av欧美aⅴ国产| 欧美日本中文国产一区发布| 欧美老熟妇乱子伦牲交| 欧美日本中文国产一区发布| 90打野战视频偷拍视频| 狠狠婷婷综合久久久久久88av| 亚洲av熟女| 高清毛片免费观看视频网站 | 国产主播在线观看一区二区| 1024香蕉在线观看| 亚洲第一青青草原| 美女高潮喷水抽搐中文字幕| 人人妻人人澡人人爽人人夜夜| 老鸭窝网址在线观看| 99热国产这里只有精品6| 黑人猛操日本美女一级片| 少妇猛男粗大的猛烈进出视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩黄片免| 精品人妻在线不人妻| 99在线人妻在线中文字幕 | 国产成人一区二区三区免费视频网站| 99精品久久久久人妻精品| 777米奇影视久久| 美女福利国产在线| 激情在线观看视频在线高清 | 欧美亚洲 丝袜 人妻 在线| 777米奇影视久久| 欧美精品av麻豆av| 亚洲欧美日韩高清在线视频| 757午夜福利合集在线观看| 国产高清视频在线播放一区| 乱人伦中国视频| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区综合在线观看| a在线观看视频网站| 首页视频小说图片口味搜索| 午夜免费鲁丝| 黄色成人免费大全| 涩涩av久久男人的天堂| 亚洲av美国av| 满18在线观看网站| 很黄的视频免费| 成人影院久久| 人妻丰满熟妇av一区二区三区 | 看免费av毛片| 一二三四在线观看免费中文在| 又紧又爽又黄一区二区| 精品国产超薄肉色丝袜足j| 一进一出抽搐gif免费好疼 | 91在线观看av| 欧美日韩黄片免| 国产午夜精品久久久久久| 亚洲av熟女| 亚洲av日韩在线播放| 免费看十八禁软件| 成人国语在线视频| 国产片内射在线| 午夜91福利影院| 超碰97精品在线观看| 国产高清激情床上av| 19禁男女啪啪无遮挡网站| 视频区欧美日本亚洲| 久久精品91无色码中文字幕| 亚洲人成电影观看| 亚洲人成电影免费在线| 欧美国产精品一级二级三级| 亚洲午夜理论影院| 久久婷婷成人综合色麻豆| 国产精品久久久av美女十八| 亚洲熟妇中文字幕五十中出 | 免费黄频网站在线观看国产| 人妻一区二区av| 亚洲一码二码三码区别大吗| 69精品国产乱码久久久| 制服人妻中文乱码| 99国产精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 日韩欧美一区视频在线观看| 99热只有精品国产| 亚洲国产欧美一区二区综合| 国产精品 欧美亚洲| 天天躁日日躁夜夜躁夜夜| 伊人久久大香线蕉亚洲五| 他把我摸到了高潮在线观看| 99国产精品免费福利视频| 久久久久久久精品吃奶| 很黄的视频免费| √禁漫天堂资源中文www| 精品一区二区三区av网在线观看| 热re99久久国产66热| 欧美精品亚洲一区二区| videos熟女内射| 在线天堂中文资源库| 高清毛片免费观看视频网站 | 亚洲国产精品sss在线观看 | 婷婷成人精品国产| 老司机靠b影院| 男女床上黄色一级片免费看| 人成视频在线观看免费观看| 欧美成人免费av一区二区三区 | 国产日韩欧美亚洲二区| 国产不卡av网站在线观看| 精品免费久久久久久久清纯 | 精品少妇一区二区三区视频日本电影| 精品一区二区三卡| 少妇裸体淫交视频免费看高清 | 精品少妇久久久久久888优播| 欧美不卡视频在线免费观看 | 自拍欧美九色日韩亚洲蝌蚪91| 国产日韩一区二区三区精品不卡| 亚洲色图综合在线观看| 侵犯人妻中文字幕一二三四区| 日韩精品免费视频一区二区三区| 免费女性裸体啪啪无遮挡网站| 首页视频小说图片口味搜索| 男男h啪啪无遮挡| 自线自在国产av| 亚洲精品粉嫩美女一区| av网站免费在线观看视频| aaaaa片日本免费| 国产精品电影一区二区三区 | 免费观看人在逋| 中出人妻视频一区二区| 好看av亚洲va欧美ⅴa在| 在线av久久热| 女人被狂操c到高潮| 操美女的视频在线观看| 丝袜美足系列| 国产在线一区二区三区精| 亚洲中文av在线| 婷婷丁香在线五月| 变态另类成人亚洲欧美熟女 | 成熟少妇高潮喷水视频| a级毛片黄视频| 亚洲国产毛片av蜜桃av| 国产成人精品在线电影| 国产成人av教育| 一区二区三区国产精品乱码| 国产野战对白在线观看| 最近最新中文字幕大全免费视频| 99热国产这里只有精品6| 人妻丰满熟妇av一区二区三区 | 老汉色∧v一级毛片| 十八禁高潮呻吟视频| 国产男女超爽视频在线观看| 无人区码免费观看不卡| 免费一级毛片在线播放高清视频 | 欧美日韩一级在线毛片| 91九色精品人成在线观看| 每晚都被弄得嗷嗷叫到高潮| 成人亚洲精品一区在线观看| 成人国语在线视频| 免费在线观看视频国产中文字幕亚洲| 国产精品影院久久| 一本一本久久a久久精品综合妖精| 麻豆国产av国片精品| 欧美性长视频在线观看| 一a级毛片在线观看| 在线观看免费午夜福利视频| 在线看a的网站| www.熟女人妻精品国产| 美女视频免费永久观看网站| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 麻豆乱淫一区二区| 精品久久久久久久毛片微露脸| 色婷婷av一区二区三区视频| 国产精品免费视频内射| 亚洲九九香蕉| 欧美精品av麻豆av| 91字幕亚洲| 交换朋友夫妻互换小说| 人妻久久中文字幕网| 侵犯人妻中文字幕一二三四区| 女人久久www免费人成看片| 色尼玛亚洲综合影院| 国产亚洲精品第一综合不卡| 亚洲人成电影观看| 成年人午夜在线观看视频| 亚洲人成77777在线视频| 看免费av毛片| 成年动漫av网址| 久久精品亚洲av国产电影网| 一本综合久久免费| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 美女国产高潮福利片在线看| 中文字幕人妻丝袜一区二区| 国产成人免费观看mmmm| 亚洲熟女毛片儿| 99国产综合亚洲精品| 国产精品欧美亚洲77777| 97人妻天天添夜夜摸| 黄色女人牲交| 三级毛片av免费| 99久久99久久久精品蜜桃| 亚洲美女黄片视频| 51午夜福利影视在线观看| 欧洲精品卡2卡3卡4卡5卡区| 国产99白浆流出| 视频区欧美日本亚洲| 18禁裸乳无遮挡动漫免费视频| 无限看片的www在线观看| 午夜免费成人在线视频| 亚洲av日韩在线播放| 正在播放国产对白刺激| 国产精品久久久久久精品古装| 成人免费观看视频高清| 国产成人欧美在线观看 | 国产不卡一卡二| 欧美精品一区二区免费开放| 中文字幕av电影在线播放| 亚洲国产看品久久| 欧美不卡视频在线免费观看 | 国产精品久久电影中文字幕 | av电影中文网址| 亚洲欧美色中文字幕在线| 国产精品久久久久久人妻精品电影| 美女 人体艺术 gogo| 99久久综合精品五月天人人| 欧美久久黑人一区二区| 欧美激情久久久久久爽电影 | 国产日韩欧美亚洲二区| 99re6热这里在线精品视频| 亚洲国产精品一区二区三区在线| 亚洲欧美激情综合另类| 精品午夜福利视频在线观看一区| 最新美女视频免费是黄的| av电影中文网址| 一进一出抽搐gif免费好疼 | 搡老熟女国产l中国老女人| 亚洲欧美精品综合一区二区三区| 久久国产精品男人的天堂亚洲| 国产亚洲精品久久久久5区| 国产亚洲精品久久久久5区| 无人区码免费观看不卡| 好看av亚洲va欧美ⅴa在| 国产精品免费一区二区三区在线 | 国产乱人伦免费视频| 午夜福利视频在线观看免费| 18在线观看网站| 在线国产一区二区在线| 欧美黑人精品巨大| 成人黄色视频免费在线看| 中文字幕精品免费在线观看视频| 19禁男女啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 黑人巨大精品欧美一区二区蜜桃| 少妇裸体淫交视频免费看高清 | 国产视频一区二区在线看| 99精品欧美一区二区三区四区| 欧美在线黄色| 黑人欧美特级aaaaaa片| 久久久精品区二区三区| 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 国产精品久久久久久精品古装| 国产欧美亚洲国产| 国产精品永久免费网站| 女同久久另类99精品国产91| 性色av乱码一区二区三区2| 丰满人妻熟妇乱又伦精品不卡| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 国产精品永久免费网站| 丝袜在线中文字幕| 大型av网站在线播放| 精品国内亚洲2022精品成人 | 色在线成人网| 1024视频免费在线观看| 美女福利国产在线| 另类亚洲欧美激情| 性少妇av在线| 亚洲熟女毛片儿| 99精国产麻豆久久婷婷| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三区在线| 亚洲av第一区精品v没综合| 我的亚洲天堂| 国产不卡一卡二| 最近最新免费中文字幕在线| 中文字幕av电影在线播放| av欧美777| 99久久精品国产亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 极品教师在线免费播放| 国产精品一区二区免费欧美| 女人被躁到高潮嗷嗷叫费观| 亚洲一码二码三码区别大吗| 怎么达到女性高潮| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 中文亚洲av片在线观看爽 | 亚洲精品国产色婷婷电影| 久久人人97超碰香蕉20202| 色精品久久人妻99蜜桃| 搡老熟女国产l中国老女人| 中文字幕人妻丝袜一区二区| 国产97色在线日韩免费| 在线观看免费视频日本深夜| 在线天堂中文资源库| 国产精品 欧美亚洲| 亚洲精品在线观看二区| 久久精品成人免费网站| 色综合婷婷激情| 91麻豆精品激情在线观看国产 | 99国产精品一区二区蜜桃av | 99精品欧美一区二区三区四区| aaaaa片日本免费| 国产精品免费视频内射| 女性生殖器流出的白浆| svipshipincom国产片| 国产亚洲精品第一综合不卡| 国产av又大| 欧美日韩av久久| 黄色视频,在线免费观看| xxxhd国产人妻xxx| 在线观看免费视频网站a站| 久久久精品国产亚洲av高清涩受| 国产精品免费视频内射| 91成年电影在线观看| 成人影院久久| 一区二区日韩欧美中文字幕| www.精华液| 无遮挡黄片免费观看| 视频区图区小说| 欧美成人午夜精品| 国内毛片毛片毛片毛片毛片| 黄色怎么调成土黄色| 少妇被粗大的猛进出69影院| 亚洲免费av在线视频| 国产高清视频在线播放一区| 国产黄色免费在线视频| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女 | 人妻久久中文字幕网| 欧美 日韩 精品 国产| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久久毛片 | 午夜激情av网站| 狠狠婷婷综合久久久久久88av| 人妻丰满熟妇av一区二区三区 | 国内毛片毛片毛片毛片毛片| 免费观看精品视频网站| 丰满的人妻完整版| 欧美一级毛片孕妇| 涩涩av久久男人的天堂| 一区在线观看完整版| 九色亚洲精品在线播放| av网站免费在线观看视频| 久久久久国产精品人妻aⅴ院 | 一级毛片女人18水好多| 精品亚洲成国产av| 波多野结衣一区麻豆| 欧美人与性动交α欧美软件| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| 精品人妻在线不人妻| 首页视频小说图片口味搜索| 欧美日韩亚洲高清精品| 久久久久国内视频| 又黄又粗又硬又大视频| 美女高潮喷水抽搐中文字幕| 人人妻人人澡人人看| 免费日韩欧美在线观看| 午夜福利乱码中文字幕| 在线观看免费日韩欧美大片| 中文字幕高清在线视频| 免费少妇av软件| 亚洲五月婷婷丁香| 免费日韩欧美在线观看| 免费在线观看完整版高清| 18禁裸乳无遮挡动漫免费视频| 亚洲中文日韩欧美视频| 久久精品国产a三级三级三级| 人成视频在线观看免费观看| 我的亚洲天堂| 可以免费在线观看a视频的电影网站| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕| 午夜两性在线视频| 亚洲人成电影观看| 日韩中文字幕欧美一区二区| 欧美精品人与动牲交sv欧美| 欧美激情久久久久久爽电影 | 久久 成人 亚洲| 99热只有精品国产| 脱女人内裤的视频| 日本黄色日本黄色录像| 人妻丰满熟妇av一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 国产精品1区2区在线观看. | 可以免费在线观看a视频的电影网站| 91成人精品电影| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 夜夜夜夜夜久久久久| 精品亚洲成国产av| 最新在线观看一区二区三区| 新久久久久国产一级毛片| 两人在一起打扑克的视频| 极品少妇高潮喷水抽搐| 国产成人免费观看mmmm| 午夜影院日韩av| 久久久久视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 成人国语在线视频| 亚洲国产毛片av蜜桃av| 中文字幕色久视频| 欧美在线黄色| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 国产片内射在线| 美女高潮喷水抽搐中文字幕| 人妻丰满熟妇av一区二区三区 | 麻豆国产av国片精品| 久久精品国产a三级三级三级| 亚洲人成伊人成综合网2020| 欧美av亚洲av综合av国产av| 欧美另类亚洲清纯唯美| 国产精品国产av在线观看| 成人影院久久| 啦啦啦 在线观看视频| 欧美日韩国产mv在线观看视频| 极品教师在线免费播放|