• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Toxoplasma ROP16I/III ameliorated inflammatory bowel diseases via inducing M2 phenotype of macrophages

    2019-12-16 01:50:46YongWeiXuRuiXinXingWenHuiZhangLuLiYiWuJingHuCongWangQingLiLuoJiLongShenXiChen
    World Journal of Gastroenterology 2019年45期

    Yong-Wei Xu, Rui-Xin Xing, Wen-Hui Zhang, Lu Li, Yi Wu, Jing Hu, Cong Wang, Qing-Li Luo, Ji-Long Shen,Xi Chen

    Abstract BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic and non-specific inflammation of the intestinal mucosa and mainly includes ulcerative colitis and Crohn's disease.AIM To explore the beneficial effect of ToxoROP16I/III-induced M2 phynotype macrophages in homeostasis of IBDs through downregulation of M1 inflammatory cells.METHODS RAW264.7 macrophages stimulated by lipopolysaccharide (LPS) (M1 cells) were co-cultured with Caco-2 cells as an inflammatory model of IBD in vitro. The expression of ToxoROP16I/III was observed in RAW264.7 macrophages that were transfected with pEGFP-rop16I/III. The phenotypes of M2 and M1 macrophage cells were assessed by quantitative real-time reverse transcriptase polymerase chain reaction and the expression of tumor necrosis factor (TNF)-α, interleukin(IL)-1β, IL-6, transforming growth factor (TGF)-β1, IL-10, inducible nitric oxide synthase (iNOS), and arginase-1 (Arg-1) was detected. The expression of iNOS,Arg-1, signal transducer and activator of transcription 3 (Stat3), p-Stat3, Stat6, p-Stat6, programmed death ligand-2 (PD-L2), caspase-3, -8, and -9 was analyzed by Western blotting, and Griess assays were performed to detect nitric oxide (NO).TNF-α, IL-1β, IL-6, TGF-β1, and IL-10 expression in the supernatants was detected by enzyme-linked immunosorbent assay, and Caco-2 cell apoptosis was determined by flow cytometry after mixing M1 cells with M2 cells in a Caco-2 cell co-culture system.RESULTS M1 cells exhibited significantly increased production of iNOS, NO, TNF-α, IL-1β,and IL-6, while ToxoROP16I/III induced macrophage bias to M2 cells in vitro,showing increased expression of Arg-1, IL-10 and TGF-β1 and elevated production of p-Stat3 and p-Stat6. The mixed M1 and M2 cell culture induced by ToxoROP16I/III exhibited decreased production of NO and iNOS and upregulated expression of Arg-1 and PD-L2. Accordingly, Caco-2 cells became apoptotic, and apoptosis-associated proteins such as caspase-3, -8 and -9 were dampened during co-culture of M1 and M2 cells. Flow cytometry analysis showed that co-culture of M1 cells with Caco-2 cells facilitated the apoptosis of Caco-2 cells, but co-culture of M1 and M2 cells alleviated Caco-2 cell apoptosis.CONCLUSION ToxoROP16I/III-induced M2 macrophages inhibited apoptosis of Caco-2 cells caused by M1 macrophages. This finding may help gain a better understanding of the underlying mechanism and represent a promising therapeutic strategy for IBDs.

    Key words:Toxoplasma ROP16I/III; Caco-2; Inflammatory bowel disease; Immunity;Classically activated macrophages; Alternatively activated macrophages

    INTRODUCTION

    Inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD), is a chronic and non-specific gastrointestinal tract inflammatory disease characterized by an unexplained etiology and pathogenesis[1]. With changes in living conditions, the incidence of IBD is increasing, and the disease has gained growing attention due to its substantial impacts on patient quality of life[2]. The etiology of this disease remains unknown, and knowledge of the incidence and relevant risk factors,including environmental, genetic and immune factors and the gut microbiota, is increasingly emphasized worldwide[3]. The intestinal mucosal epithelium is an important immune organ in the body, and dendritic cells (DCs), and macrophages play pivotal roles in the immune responses of the intestinal mucosal epithelia to harmful substances produced upon intestinal epithelium damage induced by diet and cell ageing/death[4]. Immune cell activation and mediation of inflammation are complex processes[5]. In the body, the activation of inflammation occurs within a controllable range but can lead to systemic immune disorders when it falls outside this range. During the process of inflammation, macrophages play a central role in cell polarization and many different immunopathological phenomena. Under normal circumstances, the intestinal dynamic balance is strictly regulated by the mucosal immune environment[6]. However, once this important immunological homeostasis is destroyed, antigens can cause uncontrolled chronic intraluminal inflammation, which may contribute to immune disorders[7]. Some harmful macromolecular substances activate DCs and macrophages to induce the differentiation of T cells into proinflammatory Th1 and Th17 effector cells in IBD patients[8]. The proinflammatory cytokines, such as interleukin (IL)-2, IL-12, and interferon (IFN)-γ, produced by activated Th1 cells stimulate macrophages to secrete large amounts of other proinflammatory cytokines, including tumor necrosis factor (TNF)-α, IL-1β, and IL-6[2]. These cytokines can promote the proliferation of effector Th1 and Th17 cells and the release of chemokines, which attract more inflammatory cells to the site of inflammation to further amplify the proinflammatory immune response.

    Lipopolysaccharide (LPS) is an important proinflammatory substance in medical research because of its unique properties, and its use creates in vitro pathogenesis of inflammatory reactions caused by bacterial infection[9]. Macrophages have been identified as an important factor in the progression of tissue inflammation[10].Macrophages have two obvious hallmarks, plasticity and diversity[11], and activated macrophages have two main phenotypes: classically activated (M1) and alternatively activated (M2)[12,13]. Accumulating evidence has shown that macrophages with distinct phenotypes exert diverse effects on inflammation and tissue repair[14,15]. LPS and IFN-γ can activate M1 macrophages via the nuclear factor kappa-B (NF-κB) signalling pathway, producing the proinflammatory factors IL-1β, TNF-α, IL-6, IL-23, reactive oxygen species, nitric oxide (NO), and inducible nitric oxide synthase (iNOS)[16]. Thus,M1 macrophages lead to inflammation and are predominant in the early stage of inflammation[17]. The cytokines IL-4, IL-10, and IL-13 activate M2 macrophages that are capable of modulating the immune response[18].

    A series of reports indicated that helminths (parasitic worms) can induce type 2 immune intestinal inflammatory responses by promoting the expansion of protective bacterial communities that inhibit proinflammatory bacterial taxa[19]. Helminth exposure tends to inhibit IL-17 and IFN-γ production and promote IL-4, IL-10, and transform growth factor (TGF)-β release, induce CD4+ T cell Foxp3 expression (Treg)and generate regulatory macrophages, DCs, and B cells[20]. Helminth infection can induce the host to evoke a Th2 immune response that alternatively activates macrophages (M2)[21]. Helminths may subsequently skew the adaptive immune response towards Th2 and Treg responses, which are suggested to suppress the damaging Th1 and Th17 effector cells responsible for maintaining intestinal inflammation[22]. Thus, parasites and parasite-derived molecules likely have therapeutic potential in the prevention or control of immune-mediated illnesses.

    Toxoplasma gondii (T. gondii) is an obligatory intracellular apicomplexan parasite that is capable of infecting a wide range of warm-blooded animals, and humans, and has a complex life cycle and pathogenic mechanism[18]. T. gondii can be divided into three archetypical genotypes: types I, II and III[23]. The virulence of T. gondii strains is closely related to the polymorphism of effector molecules carried by different genotypes[24]. Such effectors mainly include rhoptry proteins, dense granule proteins,micronemes, and pyramidal neurons[25]. Approximately 80% of all T. gondii isolates collected from animals and humans in China are of the Chinese 1 dominant genotype[26]that possesses the homology of ROP16 of type I and III [Toxoplasma ROP16I/III(ToxoROP16I/III)][27]. Melo MB demonstrated that ToxoROP16I/III, which harbours a tyrosine/serine kinase domain, can phosphorylate and activate the transcription factors signal transducer and activator of transcription 3 (Stat3) and Stat6[28], promote the polarization of M2 cells[29], reduce the production of IL-12 and enhance the synthesis of arginase-1 (Arg-1), IL-10, TGF-β1, and IL-13. This finding strongly suggests that the Toxoplasma-derived molecular effector ToxoROP16I/IIImight have potential in ameliorating bowel inflammation featuring type 1 dominant pathology by driving intestinal epithelial macrophages to M2 polarization. Our in vitro study showed that RAW264.7 macrophages could be biased to acquire an M2-like phenotype by transfecting lentivirus (Lv) carrying ToxoROP16I/III, and Caco-2 cell apoptosis and its associated proteins, such as caspase-3, -8, and -9, and were notably inhibited as shown by flow cytometry examination and analysis of the supernatants of M1 cells co-cultured with ToxoROP16I/III-induced macrophages. Thus, this study aims to identify how ToxoROP16I/III-induced M2 macrophages dampen the M1-mediated apoptosis of Caco-2 cells, which may provide a novel strategy for IBD immunotherapy with parasite-derived effector molecules.

    MATERIALS AND METHODS

    Reagents

    Foetal bovine serum (FBS) was obtained from Wisent (Montreal, QC, Canada).Dulbecco’s Modified Eagle’s Medium (DMEM), the Griess Reagent System for measuring nitrite, primary antibody dilution buffer were all purchased from Beyotime (Shanghai, China). Nitrocellulose membranes were provided by Millipore(Billerica, MA, United States). Specific signals were detected using an enhanced chemiluminescence (ECL) kit (Thermo Scientific Inc., Waltham, MA, United States).LPS was purchased from Sigma (St. Louis, MO, United States). The mouse monoclonal arginase-1 (Arg-1) antibody was purchased from Proteintech (Chicago,IL, United States). The rabbit monoclonal iNOS antibody was manufactured by Abcam (Cambridge, MA, United States), and the human monoclonal antibodies against caspase-3, -8, and -9 were purchased from Cell Signaling Technology (CST,Danvers, MA, United States). The rabbit monoclonal antibodies against Stat3, Stat6, p-Stat3, and p-Stat6 were obtained from eBioscience (San Diego CA, United States) and programmed death ligand-2 (PD-L2) was obtained from Santa Cruz Biotechnology(Dallas, TX, United States). An Annexin V-FITC/PI apoptosis detection kit was purchased from BD Biosciences (BD, San Diego, CA, United States). Enzyme-linked immunosorbent assay (ELISA) kits for TNF-α, IL-6, IL-10, TGF-β1, and IL-1β were obtained from CUnited StatesBIO (Wuhan, China). Primer synthesis was completed by Sangon Biotech (Shanghai, China). TRIzol reagent was purchased from Invitrogen Life Technologies (Carlsbad, CA, United States). The HRP-conjugated anti-rabbit and anti-mouse IgG secondary antibodies were purchased from Proteintech (Wuhan,China).

    Recombinant lentivirus plasmids

    The open reading frame encoding ToxoROP16I/III(2124 bp, ToxoDB.org) was amplified from the entire Wh3 tachyzoite RNA, inserted into the recombinant p-EGFP plasmid,and directionally cloned to create pEGFP-rop16I/III. The recombinant Lv vector (LvpEGFP-rop16I/III) contained penicillin/streptomycin resistance and a Flag tag (Gene Chem Co., Shanghai, China).

    Cell culture

    RAW264.7 macrophages and Caco-2 cells (human epithelial colorectal adenocarcinoma cells) were preserved in the laboratory. The macrophages and Caco-2 cells were cultured in Dulbecco's modified eagle medium (DMEM) supplemented with 10% FBS and penicillin-streptomycin solution. All cells were cultured at 37 °C with 5% CO2in a humidified atmosphere. The macrophage medium was changed every 1-2 d, and the Caco-2 cell culture medium was replaced every 2-3 d. When the cells became 80% to 90% confluent, they were passaged and frozen for storage. A cell normally resides in a spherical, detached and undifferentiated state, known as the initial cell state.th

    Transfection of RAW264.7 cells with recombinant lentivirus

    Establishment of sufficient cell growth before the start of the experiment was necessary. For the experiments, macrophages were seeded at a density of 2 × 106cells per cm2into 12-well plates, and cells in the LV-pEGFP-rop16I/III-infected group became outstretched and significantly differentiated within 8 h. After 24 h, the medium was changed according to the state of the cells. Within 24 to 48 h after infection, the cells began to emit fluorescence. Recombinant Lv plasmids harbouring the target vector or empty plasmid were stably transfected into macrophages to generate LV-rop16I/III-Mφ and LV-Mφ, respectively. Polybrene reagents were added to all of the transfected cells, according to the manufacturer’s instructions. Caco-2 cells were maintained in the same medium.

    LPS-induced macrophage polarization to M1 cells

    The day before the cells were treated, macrophages were cultured in 6-well plates at a density of 2 × 106cells/mL. After the cells adhered and no pseudopodia was observable, the cells were stimulated with 1.0 μg/mL LPS for 24 h. At the end of the culture period, the culture medium was collected for NO and cytokine assays. iNOS expression was determined by Western blotting and quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) analysis, while the TNF-α, IL-6,and IL-1β expression levels were evaluated with qRT-PCR and ELISA. All of the above proteins were detected according to the manufacturer’s instructions. The results are presented as the mean ± standard deviation of three replicates from one representative experiment.

    Cell co-culture system: gut inflammation of an IBD in vitro

    To construct an inflammatory of IBD in vitro, we used a co-culture system comprising macrophages and Caco-2 cells seeded in the same well of transwell diverticulum[30-32].The macrophages were divided into five groups: M0 cells (control RAW264.7), M1 cells, LV-Mφ, LV-rop16I/III-Mφ, and mixed M1 and M2 cells. The transwell plates were seeded with macrophage cells at a density of 2 × 106cells per well and subsequently activated by 1.0 μg/mL LPS (apical side) for 6 h. These M1 macrophages, serving as the inflammation group, were transferred to polycarbonate membranes with a pore size of 0.4 μm (Corning, Corning, NY, United States).

    For co-cultures with Caco-2 cells (basolateral), the cells were plated at a density of 5× 105cells. After 6 h, the M1 cell medium was replaced with fresh complete medium to avoid the effects of LPS on Caco-2 cells, and the Caco-2 cells co-cultures were then moved to transwell chambers for 24 h. Using the same method, M1 macrophages cocultured with M2 cells (upper side) were seeded in 6-well plates and then moved to transwell chambers containing Caco-2 cells.

    NO assay

    Macrophages, M1 cells, LV-Mφ, and LV-rop16I/III-Mφ cells were separately seeded in 6-well plates at 2 × 106cells per well. Macrophages and LV-rop16I/III-Mφ cells were separately seeded at 1 × 106cells per well and stimulated with 1.0 μg/mL LPS for 6 h.After 6 h, the medium was replaced with new complete medium. The M1 and M2 cell mixture was resuspended in 1 mL of common culture medium and cultured in 6-well plates at 37 °C and 5% CO2for 24 h. For the NO assay, culture medium (50 μL) was mixed with equal volumes (50 μL) of Griess reagent (I and II) in a 96-well plate and measured at an absorbance of 540 nm. A calibration standard curve was constructed,and the calculated concentration of nitrite dissolved in DMEM was calculated. All of the above experiments were performed according to the manufacturer’s instructions.

    Western blotting analysis

    Macrophages, M1 cells, LV-Mφ, LV-rop16I/III-Mφ, and mixed M1 and M2 cells were cultured in complete DMEM, and total protein was extracted after LPS stimulation for 6 h. The five groups listed above were also co-cultured with Caco-2 cells in transwell chambers. Then, the protein concentration was measured using a BCA protein assay kit (Beyotime, Shanghai, China). According to the assay results, the proteins were separated by standard 10% and 12% SDS polyacrylamide gel electrophoresis. Briefly,the proteins were electrotransferred onto nitrocellulose membranes, which were blocked with skim milk powder, washed with TBST 3 times for 10 min each,incubated with the corresponding primary antibodies, a horseradish peroxideconjugated secondary antibody and detected using an ECL kit. For detecting protein expression in all groups, the M1 marker iNOS (1:500), and the M2 marker Arg-1(1:1500) were used. Expression of the apoptotic proteins caspase-3 (1:2000), -8 (1:1500),and -9 (1:1500) was detected in all groups co-cultured with Caco-2 cells for 24 h.Importantly, LV-rop16I/III-Mφ cells exhibited anti-inflammatory factor protection by producing p-Stat3 (1:1500) and p-Stat6 (1:2000) via the activation of Stat3 (1:1000) and Stat6 (1:1000) signalling. Expression of the target proteins was normalized to that of the internal control mouse housekeeping gene encoding beta-actin (β-actin) (1:4000).HRP-conjugated anti-rabbit and anti-mouse (1:1000-10000) IgG served as the secondary antibodies.

    mRNA extraction and qRT-PCR

    Total RNA was extracted from the five groups of cells using TRIzol reagent. The ratio of absorbance at 260 nm and 280 nm was used to assess RNA purity. RNase-free,DNase-treated total RNA was reverse transcribed into cDNA using AMV reverse transcriptase. Real-time RT-PCR was performed with the Light Cycler 480 SYBR Green I Kit (Roche Diagnostics GmbH, Mannheim, Germany) using the gene-specific primers listed in Table 1. All of the experiments were performed following the manufacturer’s instructions. All amplification reactions were performed on a Light Cycler? 480 Instrument with an initial holding step (95 °C for 5 min) and 50 threestep PCR cycles (95 °C for 15 s, 60 °C for 15 s, 72 °C for 30 s). β-Actin was used as the normalization control for the evaluation of quantitative RT-PCR. Relative gene expression levels were determined using the 2-ΔΔCtmethod with Light Cycler 480 software (Roche, version 1.5.0).

    ELISA

    The five groups of cells were separately seeded in 6-well plates (2 × 106cells per well)and co-cultured with Caco-2 cells in 1 mL of complete culture medium on the apical and basolateral sides at 37 °C and 5% CO2for 24 h, and the cell supernatants were then collected. The inflammatory cytokines TNF-α, IL-1β, IL-6, IL-10, and TGF-β1were analyzed by ELISA in accordance with the manufacturer’s instructions. The absorbance was measured at 450 nm on an ELISA plate reader.

    Table 1 The primers used for quantitative real-time reverse transcriptase polymerase chain reaction

    Flow cytometry assay

    After co-culture for 24 h, basolateral Caco-2 cells were collected and analyzed for apoptosis. The cells were washed once with cold PBS, and trypsin-EDTA solution was added to each culture group, followed by digestion using complete medium. All cells were washed three times and resuspended in binding buffer. Next, a blank tube containing neither FITC nor PI, a tube containing only 5 μL of Annexin V-FITC and a tube containing only 5 μL of PI were arranged separately. Other tubes contained 5 μL of Annexin V-FITC, 5 μL of PI and the resuspended cells. The cells were subsequently incubated for 15 min at room temperature in the dark and then analyzed by flow cytometry within 1 h. All of the above experiments were performed according to the manufacturer’s instructions.

    Statistical analysis

    All data are presented as the mean ± standard error of the mean (SEM). All experiments were replicated three times with similar results, and analysis was performed using GraphPad Prism software version 5.00 (GraphPad Software, San Diego, CA, United States). Comparison of the same parameters in multiple datasets or more than two groups was done using one-way analysis of variance with statistical significance at P < 0.05.

    RESULTS

    Macrophages stably transfected with LV-rop16I/III

    LV-rop16I/IIIstably transfected macrophages were polarized to M2-like phenotype macrophages. Cells expressing recombinant pEGFP-Lv produced green fluorescence(Figure 1A). We detected the transfection of LV-rop16I/III-Mφ relative to LV-Mφ by Western blotting. The results showed that LV-rop16I/IIIwas successfully transferred into macrophages (Figure 1B and C).

    LPS polarized RAW264.7 cells to the M1-like phenotype

    To explore the optimal time for stimulation of macrophages with 1.0 μg/mL LPS, cells were seeded in 6-well plates at 2 × 106cells per well, and iNOS expression was detected at different time points over 24 h. The appropriate time point for cell and supernatant collection and detection was determined 6 h after LPS stimulation, when iNOS expression was detectable (Figure 2). We subsequently analyzed the relative mRNA expression of M1-like phenotype treated macrophages by qRT-PCR. IL-6(Figure 3A), IL-1β (Figure 3B), TNF-α (Figure 3C), and iNOS (Figure 3D) expression levels were markedly increased by LPS stimulation relative to normal macrophages.We measured the secretion of proinflammatory cytokines into cell supernatants by ELISA and found that the expression levels of IL-6 (Figure 3E), IL-1β (Figure 3F), and TNF-α (Figure 3G) were consistent with the relative mRNA results. In addition, the NO concentration (Figure 3H) and the iNOS (Figure 4F, H) protein expression were also significantly increased in the M1 inflammatory cell population relative to that in the other groups. No significant differences in any of the inflammatory cytokines

    Figure 1 Stable transfection of RAW264.7 cells with LV-rop16I/III recombinant lentivirus.

    Figure 1 stated above were found in the Lv- Mφ and Lv-rop16I/III-Mφ cells.

    M2-like phenotype driven by LV-rop16I/III-Mφ

    Compared with LV-Mφ cells, LV-rop16I/III-Mφ cells induced the M2-like phenotype in macrophages, which expressed high levels of activated (phosphorylated) Stat3 and Stat6 based on the detection of p-Stat3 (Figure 4A and B) and p-Stat6 (Figure 4A and 4C) by Western blotting. In addition, the protein expression levels of PD-L2 (Figure 4D and E) and Arg-1 (Figure 4F and G), which serve as M2-like phenotype markers,were increased, as determined by Western blotting. qRT-PCR was used to detect the mRNA expression of IL-10 (Figure 5A), TGF-β1 (Figure 5B), and Arg-1 (Figure 5C) in LV-rop16I/III-Mφ cells, and expression levels were significantly increased compared with that in LV-Mφ cells. The expression levels of IL-10 (Figure 5D) and TGF-β1(Figure 5E) were also sharply increased in stably transfected LV-rop16I/III-Mφ cell supernatants relative to LV-Mφ cell supernatants, as determined by ELISA, which was in accordance with the mRNA expression results.

    M1 macrophages induced the apoptosis of Caco-2 cells in co-culture

    Figure 2 Lipopolysaccharide polarized to M1 cells.

    LPS was used to polarize macrophages to the M1-like phenotype to produce the proinflammatory cytokines TNF-α, IL-6, and IL-1β, which could pass through 0.4-μm pore-size polycarbonate membranes. The LPS-stimulated macrophages were then cocultured with Caco-2 cells. The results showed that the protein expression of caspase-3 (Figure 6A and B), caspase-8 (Figure 6A and 6C), and caspase-9 (Figure 6A and 6D)was remarkably increased. Furthermore, the expression of apoptotic proteins in Caco-2 cells was significantly increased compared with that in normal macrophages, as determined by Western blotting. No significant difference in the expression of apoptotic proteins was noted between Lv-Mφ and LV-rop16I/III-Mφ cells. These results are in agreement with those from the flow cytometry assay (Figure 7). M1 macrophage-induced Caco-2 cell apoptosis was observed and compared with that observed during co-culture with Lv-Mφ and LV-rop16I/III-Mφ cells.

    LV-rop16I/III-Mφ induced downregulation of M1 inflammatory cytokines

    iNOS protein expression was evident after 6 h of LPS stimulation, and LV-rop16I/IIIMφ induced the polarization of macrophages to M2 cells. The medium was then removed, and M1 cells were mixed with M2 cells. Analysis of the relative mRNA expression in the M1 and M2 cell suspension by qRT-PCR showed that expression of the proinflammatory factors IL-6 (Figure 3A), IL-1β (Figure 3B) and TNF-α (Figure 3C) was remarkably downregulated in consistence with the ELISA results, and simultaneously, production of iNOS (Figure 3D) and NO (Figure 3H) was dampened compared with that in M1 cells. The caspase-3 (Figure 6A and B), caspase-8 (Figure 6A and C), and caspase-9 (Figure 6A and D) expression was markedly decreased,additionally, iNOS (Figure 8A and B) protein expression was reduced, Arg-1 (Figure 8A and C) and PD-L2 (Figure 8D and E) protein expression was stabilized, in the mixed M1 and M2 cell population compared with that in M1 cells, as determined by Western blotting. These results are consistent with those obtained from the flow cytometry assay (Figure 7). The co-culture of M1 cells with Caco-2 cells resulted in notably increased Caco-2 cell apoptosis and the expression of associated proteins relative to naive RAW264.7 macrophages. However, when M2 cells were added to the M1 suspension in the Caco-2 cell co-culture, Caco-2 cell apoptosis was remarkably ameliorated relative to M1 cells alone in co-culture (Figure 7A and B).

    DISCUSSION

    Previous investigations and our studies have demonstrated that helminth and helminth-derived products have the ability to suppress the development of IBD,mainly by downregulating Th1 and Th17 responses[33,34]. T. gondii, an intracellular parasite, has a diverse genetic structure. Type Chinese 1 (ToxoDB#9) is the dominant genotype in China according to recent investigations in both animals and human[26,35].Interestingly, recent studies have revealed that the rhoptry protein ROP16, secreted by type I/III Toxoplasma (ToxoROP16I/III) as a kinase, directly phosphorylates the Stat3/Stat6 transcription factors by bypassing the requirement for exogenous IL-4 and IL-13 and subverts host cytokine expression profiling during the early stage of innate immunity. ToxoROP16I/III-induced macrophages have features that resemble those of alternatively activated macrophages, termed M2 cells[24,36]. M2 cells are enriched during Th2 inflammation, such as that occurring during worm infections and asthma,because these immune responses are associated with IL-4 and IL-13 production,eosinophilia, and mucous production driven by Th2-polarized CD4 + T cell responses[37]. Additionally, M2 cells highly express arginase-1, TGF-β1, and IL-10,which have irreplaceable roles in suppressing excessive immune responses,particularly the Th1-dominant response. Thus, we assumed that the parasite-derived effector ToxoROP16I/IIImight have potential in ameliorating IBD (such as CD)pathology through downregulating the excessive Th1 and Th17 responses involved in the modulation of experimental pathogenesis of IBD in vitro. The present study aimed to investigate the therapeutic potential of ToxoROP16I/IIIas a new strategy in IBD immunotherapy.

    Figure 3 The proinflammatory cytokines produced by M1, and mixed M1 and M2 cells.

    Known intestinal mucosal immune abnormalities, mucosal barrier defects, chronic infection, genetic and microbiota environments, and other factors have been associated with the pathogenesis of IBD[3]. In healthy intestinal mucosa, innate and adaptive immunity mechanisms control low-grade inflammation[38,39]. The intestinal microbiota is crucial for maintaining homeostasis of the intestinal tract and mucosa.When the balance or proportion of microbes is broken, or the bacteria become senescent and apoptotic, pyrolytic or macromolecular substances induce epithelial cell damage and produce innate immune and inflammatory reactions that drive the polarization of intestinal giant cells into M1 inflammatory cells and prompt the differentiation of original Th cells into Th1 cells.

    The pathogenic basis underlying both CD and UC may be the dysregulation of normal immune responses in the intestinal mucosa[7]. In the local intestinal mucosal environment, secreted cytokines can activate macrophages, DCs, and neutrophils upon T cell activation[40]. In particular, Th1-dominant responses are thought to drive the pathogenesis of CD, while UC is driven by Th2 responses[41]. Activated macrophages are known to play a pivotal role in inducing the subsequent type 1 or type 2 response in adaptive immunity, which may extensively downregulate inflammatory reactions. Thus, immunomodulation may become a novel strategy of immunotherapy for the treatment of IBD.

    Bacterial moieties, such as LPS and the Th1 cytokine IFN-γ, polarize macrophages towards the M1-like phenotype and promote the expression of numerous proinflammatory mediators. Therefore, we used the LPS-induced polarization of macrophages to M1 cells to activate the classical pathway and induce a Th1 immune response. The results paralleled those obtained from the ELISA cytokine assay with supernatants, Western blotting with cell protein and qRT-PCR. TNF-α, IL-6, and IL-1β proinflammatory cytokine production was remarkably increased. In contrast, M2 macrophages are associated with responses to anti-inflammatory reactions and tissue remodelling, as they express resistin-like-α (also known as Fizz1), Arg-1, chitinase 3,IL-10, and CD206[42-45].

    Several earlier studies suggested that this co-culture model could imitate gut inflammation as seen in an IBD intestine in vitro. Tanoue et al[46]reported that established a gut inflammation in vitro model using intestinal epithelial cell line, Caco-2 cells and LPS stimulated-RAW264.7 cells. Kujawska et al[47], Wu et al[48], and Singh et al[49]and more experimental studies have used RAW264.7/Caco-2 to establish in vitro intestinal inflammation. According to previous research, we used LPS stimulated-RAW264.7 cells co-cultured with Caco-2 cells to establish an inflammatory of IBD in vitro.

    Our data suggested that LPS induced the activation of NF-κB in macrophage cells and promoted the generation of proinflammatory M1 cells, in which iNOS, TNF-α, IL-1β, and IL-6 gene expression levels increased, while co-culture with Caco-2 cells in transwell plates increased the expression of the apoptotic proteins caspase-3, caspase-8, and caspase-9. In contrast, ROP16I/III-transfected macrophages showed phosphorylation and activation of the Stat3/Stat6 transcription factors and a distinctive profile of Arg-1, IL-10, and TGF-β1 expression that was consistent with the reported M2-like phenotype. These macrophages were mixed with M1 inflammatory cells, leading to the downregulation of inflammatory cytokines in M1 cells.

    Figure 4 Western blotting analysis for the detection of M1 and M2 cell signatures.

    M1 and M2 macrophages can be converted into each other in certain microenvironments, and the transformation of macrophages into different phenotypes regulates the initiation, development and cessation of inflammatory diseases[12,43]. In mixed M1 and M2 cell culture, expression of the proinflammatory cytokines TNF-α, IL-6, and IL-1β was remarkably downregulated when tested by qRT-PCR and ELISA. These cells were then co-cultured with Caco-2 cells, and the expression of apoptotic proteins decreased compared to that in M1 cells when detected by Western blotting and flow cytometry. M2 macrophages downregulated the expression of the inflammatory cytokines produced by M1 cells and hence inhibited the apoptosis of Caco-2 cells.

    In this study, we presented additional evidence that the virulence-associated effector ToxoROP16I/IIImay induce the skewing of mouse M2 phenotype macrophages, altering cytokine profiles and prompting the differentiation of Th2 cells. Anti-inflammatory cytokines secreted by Th2 cells, such as TGF-β1, IL-4, IL-10,and IL-13, are involved in the humoural immune response, and the balance between Th1 and Th2 cells determines the balance between proinflammatory and antiinflammatory cytokines. In an ongoing study, novel in vivo approaches are being used to gain further insight into the potential role of ToxoROP16I/IIIfor IBD treatment.

    Taken together, the experimental results presented herein demonstrated that the expression of NO, iNOS, TNF-α, IL-1β, and IL-6 by M1 cells, which generally accelerate the inflammatory process in IBD pathogenesis. Persistent secretion of the anti-inflammatory cytokines IL-10 and TGF-β1 by M2 cells in the local microenvironment can help maintain physiological status by downregulating the generation of proinflammatory factors, resulting in the alleviation of mucosal epithelium pathology in IBD, which may provide a novel strategy for IBD immunotherapy with parasite-derived effector molecules.

    Figure 5 Cytokine expression was detected in M2 eclls and mixed M1 and M2 cells.

    Figure 6 Caco-2 cell apoptosis was restrained by M1 cells mixed with M2 cells.

    Figure 7 M1 cells mixed with M2 cells lead to reduction of Caco-2 cell apoptosis in co-culture.

    Figure 8 M2 cells reduced iNOS expression in M1 inflammatory macrophages.

    ARTICLE HIGHLIGHTS

    Research background

    Inflammatory bowel disease (IBD) is characterized by chronic and non-specific inflammation of the intestinal mucosa and mainly includes ulcerative colitis and Crohn's disease. The incidence of IBD is increasing, and the disease has gained growing attention due to its substantial impacts on patient quality of life and increased side effects of traditional drugs in the treatment of IBD, so it is important to find new methods to treat IBD.

    Research motivation

    Toxoplasma ROP16I/III(ToxoROP16I/III) induced RAW264.7 polarization to M2 macrophage, downregulated the M1-associated inflammation response and played a protective role in Caco-2 intestinal epithelial cells.

    Research objectives

    The pathogenesis of IBDs remains unclear and the efficacy of current treatments is uncertain.Toxoplasma ROP16I/III-induced M2 macrophages might provide a promising strategy for the immunotherapy of IBDs using the parasite-derived molecules.

    Research methods

    ToxoROP16I/IIIinduced RAW264.7 polarization to M2 macrophage, enhanced the synthesis of arginase-1 (Arg-1), interleukin (IL)-10, transformed growth factor (TGF)-β1, and IL-13, downregulated the M1-associated inflammation response IL-1β, tumor necrosis factor (TNF)-α, IL-6,nitric oxide (NO), and inducible nitric oxide synthase (iNOS) as shown by quantitative real-time reverse transcriptase polymerase chain reaction. M1 and M2 cells co-cultured with Caco-2 cells through transwell alleviated Caco-2 cell apoptosis and its associated proteins by flow cytometry assay and Western blotting.

    Research results

    M1 cells exhibited dramatically increased production of iNOS, NO, TNF-α, IL-1β, and IL-6, while ToxoROP16I/IIIinduced macrophage bias to M2 cells in vitro, showing increased expression of Arg-1, IL-10, and TGF-β1 and elevated production of p-Stat3 and p-Stat6. The M2 mixed with M1 cell culture downregulated the production of iNOS, NO, TNF-α, IL-1β, and IL-6 by M1 cells,resulting in apoptotic alleviation of Caco-2 cells.

    Research conclusions

    ToxoROP16I/III-induced macrophages with an M2 phenotype inhibited the apoptosis of Caco-2 cells caused by lipopolysaccharide macrophage stimulation. These findings may be helpful for gaining a better understanding of the underlying mechanism and may represent a promising strategy for a novel immunotherapy against IBD.

    Research perspectives

    ToxoROP16I/IIImay be a new method for the treatment of IBD, and there are few side effects in the course of treatment. It will become another new aspect of study in the treatment of IBD.

    ACKNOWLEDGEMENTS

    We thank the Department of Pathogen Biology, Provincial Laboratories of Pathogen Biology and Zoonoses Anhui, Anhui Medical University for allowing this work to be performed there; and Prof. Chen Xi, Prof. Shen Jilong and Mr. Luo Qingli for their help in the experiment.

    女生性感内裤真人,穿戴方法视频| 亚洲黑人精品在线| 亚洲精品在线观看二区| 国产乱人伦免费视频| 91在线观看av| 成人三级做爰电影| 欧美日韩福利视频一区二区| 这个男人来自地球电影免费观看| 成人特级av手机在线观看| 他把我摸到了高潮在线观看| 国产高潮美女av| 亚洲熟女毛片儿| 91九色精品人成在线观看| 亚洲 欧美一区二区三区| 中文字幕最新亚洲高清| 熟女人妻精品中文字幕| 丝袜人妻中文字幕| 欧美激情在线99| 男人舔女人的私密视频| 中文亚洲av片在线观看爽| 国产久久久一区二区三区| 色视频www国产| 精品欧美国产一区二区三| 亚洲五月天丁香| 亚洲欧美一区二区三区黑人| 日韩三级视频一区二区三区| 丰满人妻一区二区三区视频av | 国产精品 欧美亚洲| 欧美日韩福利视频一区二区| 夜夜爽天天搞| 香蕉丝袜av| 国产精品av久久久久免费| 69av精品久久久久久| 99久久无色码亚洲精品果冻| 免费大片18禁| 亚洲欧美一区二区三区黑人| 亚洲九九香蕉| 亚洲av电影在线进入| 久久精品综合一区二区三区| 琪琪午夜伦伦电影理论片6080| 在线免费观看的www视频| 国产精品免费一区二区三区在线| 国产不卡一卡二| 亚洲真实伦在线观看| 日韩免费av在线播放| 伊人久久大香线蕉亚洲五| 此物有八面人人有两片| 欧美+亚洲+日韩+国产| 欧美一区二区精品小视频在线| 国产高清视频在线播放一区| 久久久久久九九精品二区国产| 日韩免费av在线播放| 国产三级在线视频| 久久久国产欧美日韩av| 国产一区在线观看成人免费| 18禁黄网站禁片免费观看直播| 丁香欧美五月| 婷婷六月久久综合丁香| 在线永久观看黄色视频| 久久久久久久久久黄片| 巨乳人妻的诱惑在线观看| 亚洲美女视频黄频| 99热只有精品国产| 十八禁网站免费在线| 国产一区二区激情短视频| 欧美日韩中文字幕国产精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲av日韩精品久久久久久密| 色播亚洲综合网| 国模一区二区三区四区视频 | 亚洲自偷自拍图片 自拍| 国产亚洲精品一区二区www| 日本熟妇午夜| 国产黄片美女视频| 久久国产精品影院| 我的老师免费观看完整版| 国内少妇人妻偷人精品xxx网站 | 久久天躁狠狠躁夜夜2o2o| 欧美乱妇无乱码| 一本一本综合久久| 精品熟女少妇八av免费久了| 非洲黑人性xxxx精品又粗又长| 精品熟女少妇八av免费久了| 国产亚洲欧美98| 少妇的丰满在线观看| 婷婷丁香在线五月| 午夜久久久久精精品| 91老司机精品| 日日摸夜夜添夜夜添小说| 精品一区二区三区av网在线观看| 一本精品99久久精品77| 国产 一区 欧美 日韩| 99国产精品99久久久久| 国产精品野战在线观看| 黑人操中国人逼视频| 国产熟女xx| 欧美绝顶高潮抽搐喷水| 又黄又爽又免费观看的视频| 手机成人av网站| 国产黄片美女视频| 亚洲色图av天堂| 一级黄色大片毛片| 精品不卡国产一区二区三区| 免费av不卡在线播放| 午夜福利在线观看免费完整高清在 | 搡老岳熟女国产| 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线黄色| 在线免费观看的www视频| 国产精品一区二区三区四区久久| 国产一区二区三区在线臀色熟女| 欧美激情在线99| www.www免费av| 一进一出抽搐动态| 欧洲精品卡2卡3卡4卡5卡区| 精品久久久久久久久久免费视频| 亚洲中文日韩欧美视频| 亚洲专区字幕在线| 在线观看免费视频日本深夜| 国产高潮美女av| 亚洲精品在线观看二区| 午夜a级毛片| 老汉色av国产亚洲站长工具| 欧美性猛交╳xxx乱大交人| 日韩欧美免费精品| 国产精华一区二区三区| 在线免费观看不下载黄p国产 | 久久这里只有精品19| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 亚洲天堂国产精品一区在线| 国产精品野战在线观看| 久久久久国产精品人妻aⅴ院| 亚洲欧美精品综合一区二区三区| av天堂中文字幕网| 亚洲av成人不卡在线观看播放网| av欧美777| 亚洲18禁久久av| 欧美性猛交╳xxx乱大交人| 香蕉国产在线看| 法律面前人人平等表现在哪些方面| 在线十欧美十亚洲十日本专区| 亚洲av成人不卡在线观看播放网| 欧美日韩中文字幕国产精品一区二区三区| 久久久国产成人免费| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av| www日本黄色视频网| 欧美zozozo另类| 熟女少妇亚洲综合色aaa.| 日韩国内少妇激情av| 91av网一区二区| 男女之事视频高清在线观看| 日本黄色片子视频| 久久国产精品人妻蜜桃| 中文字幕av在线有码专区| 亚洲国产日韩欧美精品在线观看 | 色综合婷婷激情| 成人国产综合亚洲| 亚洲 欧美 日韩 在线 免费| 村上凉子中文字幕在线| 九九久久精品国产亚洲av麻豆 | 国产真实乱freesex| 午夜精品一区二区三区免费看| 国产精品久久久久久久电影 | 黄片小视频在线播放| 长腿黑丝高跟| 亚洲av电影在线进入| 国产高清有码在线观看视频| 桃红色精品国产亚洲av| 久久久国产成人免费| www国产在线视频色| xxx96com| 韩国av一区二区三区四区| 欧美三级亚洲精品| 国产真人三级小视频在线观看| 一二三四社区在线视频社区8| 亚洲av熟女| 国产真实乱freesex| 精品久久久久久成人av| 少妇的逼水好多| 网址你懂的国产日韩在线| 18禁观看日本| 国产私拍福利视频在线观看| 黄色视频,在线免费观看| 欧美成狂野欧美在线观看| 成人鲁丝片一二三区免费| 成人一区二区视频在线观看| 天天一区二区日本电影三级| 国产精品综合久久久久久久免费| 九九久久精品国产亚洲av麻豆 | 午夜亚洲福利在线播放| 嫩草影视91久久| 国产美女午夜福利| 日日摸夜夜添夜夜添小说| 亚洲激情在线av| 日本在线视频免费播放| 国产精品爽爽va在线观看网站| 免费大片18禁| 99精品久久久久人妻精品| svipshipincom国产片| 中文字幕av在线有码专区| 白带黄色成豆腐渣| 精品人妻1区二区| 欧美黄色片欧美黄色片| 久久中文字幕一级| 国产欧美日韩一区二区精品| 蜜桃久久精品国产亚洲av| 人人妻人人看人人澡| 999久久久精品免费观看国产| 无遮挡黄片免费观看| 国产精品免费一区二区三区在线| 国产精品爽爽va在线观看网站| 桃红色精品国产亚洲av| 精品日产1卡2卡| 中文字幕高清在线视频| 老司机深夜福利视频在线观看| 精品电影一区二区在线| 国产精品一及| 黄频高清免费视频| 国产美女午夜福利| 国产 一区 欧美 日韩| 又黄又爽又免费观看的视频| 999久久久国产精品视频| 美女黄网站色视频| 国产高清有码在线观看视频| xxxwww97欧美| 怎么达到女性高潮| 午夜两性在线视频| 精华霜和精华液先用哪个| 久久这里只有精品中国| 搡老妇女老女人老熟妇| 午夜激情欧美在线| 久久午夜综合久久蜜桃| 国产伦一二天堂av在线观看| 日本免费一区二区三区高清不卡| 国产免费av片在线观看野外av| 亚洲av熟女| 久久草成人影院| 在线国产一区二区在线| 欧美日韩黄片免| 他把我摸到了高潮在线观看| 成人午夜高清在线视频| 国产麻豆成人av免费视频| 日韩欧美国产在线观看| 一个人看视频在线观看www免费 | 九九在线视频观看精品| 色在线成人网| 日本a在线网址| 两性夫妻黄色片| 级片在线观看| 黄色成人免费大全| 亚洲国产看品久久| av在线天堂中文字幕| 在线免费观看不下载黄p国产 | 中文在线观看免费www的网站| 欧美日韩国产亚洲二区| 老汉色∧v一级毛片| 亚洲美女视频黄频| 亚洲欧美一区二区三区黑人| x7x7x7水蜜桃| 波多野结衣巨乳人妻| 日本免费一区二区三区高清不卡| 哪里可以看免费的av片| 国产精华一区二区三区| 国产综合懂色| 亚洲精品一卡2卡三卡4卡5卡| 日本 av在线| 成人午夜高清在线视频| 婷婷丁香在线五月| 在线十欧美十亚洲十日本专区| 一级a爱片免费观看的视频| 国产精品女同一区二区软件 | 成人鲁丝片一二三区免费| 在线观看舔阴道视频| 男女午夜视频在线观看| 成在线人永久免费视频| 热99re8久久精品国产| 欧美日本视频| 波多野结衣高清无吗| 中文字幕熟女人妻在线| 黄色片一级片一级黄色片| 国产欧美日韩精品一区二区| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频| 久久香蕉精品热| 天堂动漫精品| 欧美日韩福利视频一区二区| 怎么达到女性高潮| 国产一区二区三区视频了| 欧美黄色片欧美黄色片| 久久久久国内视频| 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| 亚洲,欧美精品.| 久久久久九九精品影院| 日本在线视频免费播放| 网址你懂的国产日韩在线| 男女做爰动态图高潮gif福利片| 亚洲av熟女| 熟女少妇亚洲综合色aaa.| 熟妇人妻久久中文字幕3abv| 亚洲国产精品sss在线观看| 精品免费久久久久久久清纯| 久久久久国产一级毛片高清牌| 两性午夜刺激爽爽歪歪视频在线观看| 成人三级黄色视频| 最近最新中文字幕大全免费视频| 亚洲第一欧美日韩一区二区三区| 又黄又爽又免费观看的视频| av欧美777| 欧美成人一区二区免费高清观看 | 午夜福利18| 一个人免费在线观看电影 | 神马国产精品三级电影在线观看| 亚洲av电影在线进入| 亚洲一区高清亚洲精品| 亚洲无线观看免费| 18禁黄网站禁片免费观看直播| 一个人观看的视频www高清免费观看 | 免费在线观看亚洲国产| 亚洲欧美日韩东京热| 午夜福利18| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 日本黄色视频三级网站网址| 99精品欧美一区二区三区四区| 最近在线观看免费完整版| 脱女人内裤的视频| 欧美日本亚洲视频在线播放| 91av网站免费观看| 精品日产1卡2卡| 日本成人三级电影网站| 久久中文看片网| 给我免费播放毛片高清在线观看| 久久久久精品国产欧美久久久| 女同久久另类99精品国产91| 亚洲av免费在线观看| 美女cb高潮喷水在线观看 | 亚洲国产精品999在线| 成人午夜高清在线视频| 高清在线国产一区| 不卡一级毛片| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 亚洲中文字幕日韩| 19禁男女啪啪无遮挡网站| 在线看三级毛片| 香蕉久久夜色| 精品乱码久久久久久99久播| 99久久国产精品久久久| 成人国产综合亚洲| 88av欧美| 欧美另类亚洲清纯唯美| 亚洲人成网站在线播放欧美日韩| 亚洲激情在线av| 欧美日韩一级在线毛片| 特级一级黄色大片| 久久天堂一区二区三区四区| 最近在线观看免费完整版| 国产亚洲精品一区二区www| 久久精品夜夜夜夜夜久久蜜豆| 99精品久久久久人妻精品| 国产伦一二天堂av在线观看| 久久婷婷人人爽人人干人人爱| 毛片女人毛片| 欧美日韩国产亚洲二区| 久久99热这里只有精品18| 欧美日韩一级在线毛片| 麻豆一二三区av精品| 亚洲真实伦在线观看| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 91字幕亚洲| 国产高清有码在线观看视频| 国产精品98久久久久久宅男小说| 国产精品免费一区二区三区在线| 久99久视频精品免费| 国产亚洲精品av在线| www.自偷自拍.com| 狠狠狠狠99中文字幕| 一本精品99久久精品77| 男人舔奶头视频| 久久久久国内视频| 国产精品电影一区二区三区| 成人三级黄色视频| 男女视频在线观看网站免费| 久久热在线av| 亚洲av成人不卡在线观看播放网| 69av精品久久久久久| 男女那种视频在线观看| 999久久久国产精品视频| 两个人视频免费观看高清| 人妻丰满熟妇av一区二区三区| 最好的美女福利视频网| 亚洲五月天丁香| 高潮久久久久久久久久久不卡| 亚洲国产精品sss在线观看| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 99国产极品粉嫩在线观看| 最近最新中文字幕大全免费视频| 夜夜躁狠狠躁天天躁| 18禁黄网站禁片免费观看直播| 毛片女人毛片| 欧美绝顶高潮抽搐喷水| 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| 色哟哟哟哟哟哟| 久久中文字幕一级| xxx96com| 色在线成人网| 久久午夜亚洲精品久久| 亚洲无线观看免费| 日韩欧美三级三区| 很黄的视频免费| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 欧美国产日韩亚洲一区| 成人国产一区最新在线观看| 成人无遮挡网站| 可以在线观看毛片的网站| 18禁观看日本| 岛国在线免费视频观看| 丁香六月欧美| 久久精品国产亚洲av香蕉五月| 三级毛片av免费| 黑人巨大精品欧美一区二区mp4| 偷拍熟女少妇极品色| 国内精品久久久久精免费| 男人舔女人下体高潮全视频| 好男人在线观看高清免费视频| 日韩精品中文字幕看吧| 长腿黑丝高跟| 欧美一级毛片孕妇| 全区人妻精品视频| 制服丝袜大香蕉在线| 夜夜躁狠狠躁天天躁| 97人妻精品一区二区三区麻豆| 男人和女人高潮做爰伦理| 国产精品国产高清国产av| 国产一区二区三区在线臀色熟女| 午夜久久久久精精品| 成人三级黄色视频| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 日本在线视频免费播放| 老汉色av国产亚洲站长工具| 特大巨黑吊av在线直播| 日韩免费av在线播放| 一边摸一边抽搐一进一小说| 亚洲国产日韩欧美精品在线观看 | 国产主播在线观看一区二区| 狂野欧美白嫩少妇大欣赏| 变态另类成人亚洲欧美熟女| 香蕉丝袜av| 99久久精品一区二区三区| 男女做爰动态图高潮gif福利片| 国产精品美女特级片免费视频播放器 | 亚洲 欧美 日韩 在线 免费| 制服丝袜大香蕉在线| xxx96com| 亚洲片人在线观看| 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看| 欧美xxxx黑人xx丫x性爽| 色综合婷婷激情| 免费高清视频大片| 日本在线视频免费播放| 亚洲国产精品sss在线观看| 女警被强在线播放| 全区人妻精品视频| 69av精品久久久久久| 国产伦在线观看视频一区| 女生性感内裤真人,穿戴方法视频| 久久午夜综合久久蜜桃| 亚洲国产精品999在线| 女警被强在线播放| 亚洲中文字幕日韩| 一个人观看的视频www高清免费观看 | 在线观看舔阴道视频| 国产黄a三级三级三级人| 久久人妻av系列| 国产蜜桃级精品一区二区三区| 狂野欧美激情性xxxx| 精品国产亚洲在线| 亚洲av熟女| 搡老熟女国产l中国老女人| 国产三级黄色录像| 真实男女啪啪啪动态图| 国产不卡一卡二| 桃色一区二区三区在线观看| 精品电影一区二区在线| 久久久久九九精品影院| 网址你懂的国产日韩在线| 精品国产乱码久久久久久男人| 99国产精品99久久久久| 深夜精品福利| 精品久久久久久久久久久久久| 无遮挡黄片免费观看| 非洲黑人性xxxx精品又粗又长| 999久久久精品免费观看国产| www.www免费av| 成人国产综合亚洲| 黄频高清免费视频| 黑人操中国人逼视频| 90打野战视频偷拍视频| 麻豆一二三区av精品| 中文字幕人妻丝袜一区二区| 亚洲天堂国产精品一区在线| 男女做爰动态图高潮gif福利片| 免费看美女性在线毛片视频| 天堂影院成人在线观看| 五月伊人婷婷丁香| 久久久久国产一级毛片高清牌| 亚洲美女黄片视频| 国产日本99.免费观看| 欧美又色又爽又黄视频| 麻豆成人午夜福利视频| 不卡一级毛片| 丝袜人妻中文字幕| 国产精品98久久久久久宅男小说| 欧美zozozo另类| 免费看光身美女| 欧美日韩乱码在线| 国产熟女xx| 久久久精品欧美日韩精品| 国产伦精品一区二区三区四那| 国产精品免费一区二区三区在线| 日本在线视频免费播放| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 最新在线观看一区二区三区| av天堂在线播放| 无人区码免费观看不卡| 一区二区三区高清视频在线| av女优亚洲男人天堂 | 成人无遮挡网站| 国产精品亚洲一级av第二区| 日本 欧美在线| 国产精品98久久久久久宅男小说| 日韩av在线大香蕉| 99久久99久久久精品蜜桃| 麻豆国产97在线/欧美| 国产1区2区3区精品| 成人特级av手机在线观看| 麻豆一二三区av精品| 琪琪午夜伦伦电影理论片6080| 一级毛片精品| 亚洲中文av在线| 精品国内亚洲2022精品成人| 日韩三级视频一区二区三区| 看片在线看免费视频| 一个人免费在线观看的高清视频| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 欧美日本视频| 久久中文字幕一级| 亚洲自偷自拍图片 自拍| 日本a在线网址| 不卡av一区二区三区| 99国产精品一区二区蜜桃av| 国内精品一区二区在线观看| 嫩草影院入口| 黄色日韩在线| 亚洲精品久久国产高清桃花| 国产精品久久久久久久电影 | 国产亚洲av嫩草精品影院| 一区二区三区激情视频| 俺也久久电影网| 动漫黄色视频在线观看| 国产淫片久久久久久久久 | 欧美zozozo另类| 网址你懂的国产日韩在线| 国模一区二区三区四区视频 | 最近最新免费中文字幕在线| 国产精品一区二区精品视频观看| 欧美成人一区二区免费高清观看 | 色精品久久人妻99蜜桃| 激情在线观看视频在线高清| 色精品久久人妻99蜜桃| 熟女电影av网| 男人和女人高潮做爰伦理| 日本免费一区二区三区高清不卡| 久9热在线精品视频| 悠悠久久av| 亚洲成人久久爱视频| 久久久久久九九精品二区国产| bbb黄色大片| 国产男靠女视频免费网站| 亚洲精品456在线播放app | 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 久久久精品欧美日韩精品| 熟妇人妻久久中文字幕3abv| 狠狠狠狠99中文字幕| 白带黄色成豆腐渣| 这个男人来自地球电影免费观看| 人妻夜夜爽99麻豆av| 三级毛片av免费| 成人三级黄色视频| 校园春色视频在线观看| 免费av毛片视频| 天堂影院成人在线观看| www.999成人在线观看| 99热精品在线国产| 国产精品爽爽va在线观看网站| 欧美绝顶高潮抽搐喷水| 国产精品 国内视频| 国产极品精品免费视频能看的| 别揉我奶头~嗯~啊~动态视频| 日韩精品青青久久久久久|