• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋅卟啉自組裝在染料敏化太陽能電池中的應(yīng)用

    2019-12-11 05:51:18賈海浪彭智杰李珊珊龔炳泉關(guān)明云
    無機(jī)化學(xué)學(xué)報 2019年12期
    關(guān)鍵詞:敏化理工學(xué)院工程學(xué)院

    賈海浪 彭智杰 李珊珊 龔炳泉 關(guān)明云

    (江蘇理工學(xué)院化學(xué)與環(huán)境工程學(xué)院,常州 213001)

    0 Introduction

    In recent years,the rapid development of economy has also brought about serious environmental pollution and energy shortage,and people show more and more interest in the development and utilization of new energy.New energy has incomparable advantages compared with traditional energy,such as abundant sources,easy development,environmental friendliness,recycling and so on.Among them,solar energy has great application potential,it has become one of the important areas of new energy[1-2].Many researchers are devoted to the research of DSSCs(dye-sensitized solar cells),the DSSCs have many advantages compared with traditional energy,such as low cost,simple fabrication process,wide source of raw materials,multi-color transparency,high photoelectric conversion efficiency and environmental friendliness[3-5].After more than 20 years of development,DSSCs have made great progress,up to now,the device of ADEKA-1 exhibited the highest PCE of 14.3%[6].

    Dyes play an important role in DSSCs,due to TiO2is a wide band material,it can only absorb ultraviolet rays and the utilization of sunlight is very low,on the contrary,dyes can broaden the absorption of DSSCs to visible and even near infrared regions[7-8].So far,many research groups have designed and synthesized many new dyes.Generally speaking,ideal dyes need to meet the following conditions:(1)dyes can absorb sunlight in visible and even infrared regions,(2)dyes contain carboxyl(-COOH),sulfonic acid(-SO3H),phosphoric acid(-PO3H2),pyridine and other anchoring groups,(3)high quantum efficiency,(4)the excited state energy level of dyes should match theconduction level of TiO2,(5)dyesshould have high oxidation potential and high regeneration efficiency,(6)dyes have good stability and can be recycled 105times[9-12].So far,there are two kinds of efficient dyes for DSSCs,metal complexes and metal-free organic dyes[13-16].Many excellent dyes have been prepared,the PCE of some of these dyes has exceeded 10%[17-20].In 2005,ruthenium complex dye N719 was prepared,the PCE of N719 achieved 11.18%[21].In 2010,Wang prepared ruthenium complex C106,the value of PCE was up to 11.7%[22].In addition,many metalloporphyrin dyes have excellent photoelectric properties,Gr?tzel and co-workers reported an excellent porphyrin dye YD2-o-C8,the PCE of the device reached 12.3%[23-27].In 2014,Gr?tzel and co-workers synthesized a more efficient dye SM315,under the condition of using cobalt-based redox electrolyte,the PCE of the device was up to 13%[28].Organic dyes have also developed rapidly,these dyes have good application prospects,which has obvious advantages compared with metal complexes,such as easy modification,low price,good plasticity and easy degradation[29-32].Some excellent dyes have been successfully prepared,such as C275,DTS-CA,HL7[33-35].

    Nevertheless,this is still far from the theoretical efficiency(33%),how to achieve higher PCE on the basis of the previous is a major challenge for DSSCs.Many dyes require complex synthetic steps,which have been troubling researchers,in addition,the monolayer structure of dye molecules always restricts the development of DSSCs,thus,we need to develop some new structures and methods.Construction of multilayer dyes by supramolecular self-assembly strategy may be a promising way to improve the performance of DSSCs.The method is easy to operate,by adjusting the antenna molecules and anchoring groups,the light-harvesting ability of dyes can be improved and charge recombination can be reduced,and complex synthesis is not required[36-38].What′s more,the amount of dye adsorbed will not decrease,this may change the limitation of monolayer dyes of DSSCs.Saha and co-workers used ZnPc and PyPMI as antenna molecules and anchoring groups,respectively,after supramolecular self-assembly,the PCE of PyPMIZnPc was 3 times than that of device of PyPMI[39].

    Hererin,we prepared two antenna molecules zinc porphyrin P2 and P3.The zinc porphyrin was choosed as antenna molecule due to its excellent photoelectric properties,which has good absorption in a range of 400~450 nm(Soret band)and 500~700 nm(Q band),this will be very helpful to improve the lightharvesting ability of devices.4-Pyrid-4-ylbenzoic acid(A)was used as the anchoring group,which can coordinate with zinc porphyrin,after supramolecular self-assembly,the DSSCs based on A-P show obvious photovoltaic performance. The device of A-P2 exhibited the PCE of 1.68%,and the Vocis 526 mV,the Jscis 5.39 mA·cm-2,which is better than that of A-P3.We also studied the optical properties,electrochemical properties,photovoltaic performance to analyze the differences between them.

    1 Experimental

    1.1 Synthesis

    The structures of P2,P3 were shown in Fig.1,and the synthesis method of the two antenna molecules was shown in Fig.2.All solvents were treated by standard methods before use and all chemicals were purchased from commercial suppliers and used without further purification unless indicated otherwise.The1H NMR were recorded on a Bruker DRX NMR spectrometer with tetramethylsilane(TMS)as the internal standard.

    Fig.1 Self-assembly of A(4-pyrid-4-ylbenzoic acid)with P2 or P3

    Fig.2 Synthesis procedure of P2 and P3

    1.1.1 Synthesis of compound 2

    The compound 1 (2.00 g,2.05 mmol)was were dissolved in DCM (500 mL),then the temperature is cooled to 0℃,and the NBS(0.75 g,4.20 mmol,in 30 mL DCM)was dropped slowly.After 6 h,the mixture was quenched with acetone,and evaporated in vacuo.Then the residue was dissolved in DCM(200 mL)and MeOH(100 mL),the Zn(OAc)2·2H2O(2.25 g,10.25 mmol)was added,the mixture was stirred at room temperature for 2 h.The mixture was washed with brine,dried over MgSO4,and evaporated in vacuo.The residue was purified by silica gel column chromatography (VPE∶VEA=10∶1)to give compound 2(1.83 g,75%).1H NMR (CDCl3,500 MHz):δH9.66~9.67(m,4H),8.92~8.95(m,4H),7.72(t,J=8.5 Hz,2H),7.02 (d,J=8.5 Hz,4H),3.86(t,J=6.0 Hz,8H),0.96~0.99(m,8H),0.80~0.84(m,8H).0.38~0.63(m,44H).

    1.1.2 Synthesis of P2

    A mixture of compound 2 (1.00 g,0.84 mmol),triisopropylacetylene(0.46 g,2.51 mmol),CuI(32 mg,0.17 mmol)in THF(60 mL)and Et3N(10 mL).Then the Pd(PPh3)2Cl2(0.20 g)was added under N2,the mixture was heated under 80℃for overnight.The reaction mixture was cooled to room temperature and evaporated in vacuo.The residue was purified by silica gel column chromatography(VDCM∶VPE=1∶4)to give P2(0.71 g,61%).1H NMR(CDCl3,500 MHz):δH9.66(d,J=4.5Hz,4H),8.87(d,J=4.5 Hz,4H),7.69(t,J=8.5 Hz,2H),7.00 (d,J=6.0Hz 4H),3.85 (t,J=6.0 Hz,8H),1.45~1.51(m,42H),0.92~0.98(m,8H),0.80~0.84(m,8H).0.39~0.63(m,44H).

    1.1.3 Synthesis of P3

    Under nitrogen,compound 2(100 mg,84μmol),compound 3(110 mg,250μmol),K2CO3(46 mg,334 μmol)and Pd(PPh3)4(30 mg)were dissolved in 1,4-dioxane (30 mL)and H2O (5 mL).The mixture was heated under 90℃for overnight.The reaction mixture was cooled to room temperature and extracted by DCM (3×30 mL).The combined organic layers were washed with brine,dried over MgSO4,and evaporated in vacuo.The residue was purified by silica gel column chromatography(VDCM∶VPE=1∶4)to give P3(101 mg,73%).1H NMR (CDCl3,400 MHz):δH8.76~8.83(m,8H),7.93~7.97(m,4H),7.64~7.68(m,2H),7.22~7.28(m,3H),7.16(d,J=8.4 Hz,2H),6.96~7.04(m,9H),4.08(t,J=7.2 Hz,4H),3.80(t,J=6.4 Hz,8H),2.01~2.08(m,4H),1.55~1.63(m,4H),1.26~1.47(m,16H),0.83~0.97(m,24H),0.68~0.73(m,8H),0.45~0.59(m,34H).

    1.2 Fabrication of DSSCs

    The working electrode (active area is 0.196 cm2)was prepared by screen printing the TiO2paste on Fluorine-doped tin oxide(FTO)glass plates(15Ω·m-2).For preparation of a DSSC,FTO glass plates were cleaned in a detergent solution using an ultrasonic bath for 30 min for two times and then rinsed with water and ethanol.Then,the plates were immersed into 40 mmol·L-1TiCl4(aqueous)at 70℃for 30 min and washed with water and ethanol.The TiO2paste consisted of 12μm thick film (particle size,20 nm,pore size 32 nm).The TiO2films were performed with a programmed procedure:(1)80℃for 15 min;(2)135℃for 10 min;(3)325℃for 30 min;(4)375℃for 5 min;(5)450℃for 15 min,and (6)500℃for 15 min.Then the films were treated again with TiCl4at 70℃for 30 min and sintered at 500℃for 30 min.Then the electrode was immersed into 2 mmol·L-1A solution (methanol)for 2 h at room temperature,then rinsed with ethanol,and then was immersed into 1 mmol·L-1P solution (VTHF∶VEtOH=4∶1)for 18 h to form supramolecules on the TiO2surface and dried in air.The working electrode and the Pt counter electrode were then sealed with a Surlyn film (25μm)by heating the sandwich-type cell at 110℃.The electrolyte was introduced through pre-drilled holes in the counter electrode and was driven into the cell via vacuum backfilling,and the hole was sealed with a Surlyn film and a thin glass(0.1 mm thickness)cover by heating.The electrolyte was composed of 0.6 mol·L-11-butyl-3-methylimidazolium iodide (BMII),50 mmol·L-1I2,50 mmol·L-1LiI,0.5 mol·L-1tertbutylpyridine and 0.1 mol·L-1guanidiniumthiocyanate(GuNCS)in acetonitrile.

    1.3 Characterizations of DSSCs

    The photocurrent-voltage (I-V)curves of the DSSCs were measured on a Keithley 2400 source meter under standard global AM 1.5G solar irradiation supplied by a xenon light source(Oriel).The incident photo-to-electron conversion efficiency(IPCE)spectra of the DSSCs were measured by a DC method.The light source was a 300 W xenon lamp (Oriel 6258)coupled with a flux controller to improve the stability of the irradiance.The single wavelength was selected by a monochromator (Cornerstone 260 Oriel74125).Light intensity was measured by a NREL traceable Si detector(Oriel 71030NS)and the short circuit currents of the DSSCs were measured by an optical power meter(Oriel 70310).

    1.4 UV-Vis spectroscopy,electrochemical properties and amounts of dye loading

    The UV-Vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer.The cyclic voltammograms(CV)of the dyes and electrochemical impedance spectroscopy (EIS)were studied using a Chenhua CHI760Emodel Electrochemical Workstation(Shanghai).The amounts of dye loading were estimated according to the following methods:the sensitized electrodes were immersed into a 0.1 mol·L-1NaOH solution in a mixed solvent (VH2O∶VTHF=1∶4),which resulted in desorption of each dye.The amounts of dye loading can be estimated according to the following formula:C=AV/(εS),where C stands for the amounts of dye loading,A is optical absorbance of the dye,V is volume of desorption solution,εis molar extinction coefficients,S iseffectivearea of TiO2films.

    2 Results and discussion

    2.1 Optical properties

    As shown in Fig.3a,we measured the absorption spectra of P2 and P3 in DCM.It is obvious that all the antenna molecules show standard porphyrin absorption peaks,they have characteristic absorption in the range of 400~450 nm (Soret band)and 500~700 nm(Q band),the band of 400~700 nm can be attributed to electronic transitions fromπ-π*and intramolecular charge transfer(ICT).The antenna molecule porphyrin P2 displays high absorption coefficient(2.26×105L·mol-1·cm-1)at 438 nm in Soret band,and medium absorption coefficient at 580 nm (8.20×103L·mol-1·cm-1)and 631 nm(2.20×104L·mol-1·cm-1),respectively.From this,we can see that antenna molecule P2 has good spectral response in visible region,this in favor of enhancing the light-harvesting capability of dyes,thereby increasing Jsc(short-circuit current density)of DSSCs.When the Rgroup isreplaced by phenothiazine,the absorption spectrum of P3 shows a slight hypsochromic-shift compared with P2,this may be due to the non-planar steric effect between porphyrin ringand phenothiazine.Theantennamoleculeporphyrin P3 displays high molar extinction coefficient(2.39×105L·mol-1·cm-1)at 436 nm,with medium absorption coefficient at 567 nm(1.16×104L·mol-1·cm-1)and 614 nm(1.12×104L·mol-1·cm-1),respectively.

    Fig.3 (a)UV-Vis absorption spectra of P1,P2 and P3 in DCM,(b)UV-Vis absorption spectra of A-P1,A-P2 and A-P3 anchored on TiO2 surface

    In order to study the changes of absorption spectra,we further measured the spectral response performance of the three supermolecules anchored on 12μm TiO2films (Fig.3b).As shown in Fig.4,The TiO2film was first immersed into 2 mmol·L-1A solution for 2 h at room temperature and rinsed with ethanol,then was immersed into 1 mmol·L-1Psolution to form supramolecules on the TiO2surface and dried in air.From Fig.3b,we can see that the absorption spectra have changed a lot compared with those of P2,P3 in DCM,the absorption spectra have been significantly improved,their absorption ranges all are over 650 nm,even up to 700 nm.This indicates that the light-harvesting ability of dyes has been improved greatly after supramolecular self-assembly,this will improve the Jscof the DSSCs.From Fig.3a,we can see that there is little difference in spectral response between P2 and P3,after self-assembly,the absorption spectrum of A-P2 was obviously better than that of AP3,we infer that this should be attributed mainly to the difference in the antenna molecules loading amounts.To better analyze the differences between their absorption spectra,the amounts of dye loading were further measured.After self-assembed with porphyrin chromophores,the value of loading amount of P2 is about 1.12×10-8mol·cm-2,and the value of P3 isonly about 0.51×10-8mol·cm-2,thelargest loading amount of P2 can enhance the light-harvesting ability of the device well.

    Fig.4 Schematic diagram of self-assembly

    2.2 Electrochemical properties

    In the process of dye design,the excited state energy level of dyes should match the conduction level of TiO2,and dyes should have high oxidation potential and high regeneration efficiency[40-41].In order to study the related properties,we measured the cyclic voltammetry curves of A-P2 and A-P3 anchored on TiO2(Fig.5).As shown in Fig.5,the EOX(ground state oxidation potentials)of A-P2 and A-P3 were 0.93 and 0.79 V (versus NHE),respectively.As we known,the redox potential of the I-/I3-is 0.4 V,while the EOXof the two supramolecules all are much positive than 0.4 V,the result indicates that the oxidized dyes can be effectively recycled.We estimated the energy gap (E0-0)by their absorption spectra,and the values of A-P2 and A-P3 are 1.77 and 1.82 eV,respectively.Thus,the excited oxidation potentials (EOX*)of A-P2 and A-P3 are-0.84 and-1.03 V,respectively.They are all negative than the conduction band of TiO2(-0.5 V versus NHE),this indicates that the electron from the excited dyes of A-P2 and A-P3 all have high electron injection efficiency[42-43].

    Fig.5 Cyclic voltammogram of A-P2 and A-P3

    2.3 Photovoltaic performance of DSSCs

    The photovoltaic performance of the devices based on supramolecular self-assembly were measured,the J-V(photocurrent-density-photovoltage)curves of the devices were measured(Fig.6),and Table 1 shows the related parameters.As designed,the antenna molecules P2,P3 can coordinate with the anchoring groups (A)to form supermolecules A-P2 and A-P3,after self-assembly,the DSSCs based on these supermolecules exhibit remarkable photovoltaic performance.The device of A-P2 shows the highest PCE of 1.68%,with a value of Vocis 526 mV,a value of Jscis 5.39 mA·cm-2,and a value of FF is 59.20%.Compared with A-P2,the performance of A-P3 has slightly decreased,the PCE droped down to 0.79%.The main reason is that the Vocdecreased from 526 to 478 mV and the Jscdecreased from 5.39 mA·cm-2to 3.02 mA·cm-2.In addition,the loading amounts of P2,P3 have been measured,and the value of P2(1.12×10-8mol·cm-2)is much higher than that of P3 (0.51×10-8mol·cm-2).We can see that the loading amount has a great influence on the performance of DSSCs,the highest loading amount of P2 can make up for the deficiency of spectral response,this will not only enhance the light-harvesting capability of devices,on the other hand,close alignment of antenna molecules may can effectively prevent the I3-penetrating into the TiO2surface,thus,the charge recombination can be reduced.

    Fig.6 (a)I-V curves of A-P2 and A-P3,(b)IPCE curves of A-P2 and A-P3

    Table 1 Photovoltaic parameters of the DSSCs obtained from the J-V curves

    We find that the Jscof these DSSCs decreases in turn along the following trend:A-P2(5.39 mA·cm-2)>A-P3 (3.02 mA·cm-2).The incident photon-to-current conversion efficiency (IPCE)spectra of the DSSCs were measured to analysis the differences.From Fig.6b,the IPCE curves of A-P2 exhibited the highest value of 41.9%at 437 nm,and the photocurrent generation up to about 720 nm.The IPCE curves of A-P3 exhibited the photocurrent generation up to about 680 nm,the value at 434 nm was only 36.5%.In the long wave region,we also found that photocurrent of A-P2 was better than that of A-P3,this should be attributed to the larger loading amount of A-P2.

    Fig.7 (a)Nyquist plots of A-P2 and A-P3,(b)Bode phase plots of DSSCs based on A-P2 and A-P3

    2.4 EISmeasurements

    Electrochemical Impedance Spectroscopy(EIS)is an important method for studying the charge transfer properties at the interface of DSSCs,in this work,we measured the EIS to analyze charge recombination dynamics under dark[44-47].As we known,the charge recombination rate has an important influence on Voc.The EIS was measured under the applied voltage of-0.6 V to analyze the difference between Voc.From Fig.7,two semicircles were found in the plots,the small semicircle means the transport resistance at the Pt/electrolyte,and the large semicircle means the charge transfer resistance at the TiO2/dye/electrolyte interface.We can see that the radius of the large semicircle of A-P2 is larger than that of A-P3,this means that the device of A-P2 effectively reduces the electron recombination rate after self-assembly,it is conducive to suppressing dark current and improving Voc,this also explains why Vocof A-P2 has the largest value of 526 mV.In addition,the electron lifetimes of the DSSCs were further measured by bode phase plots.The DSSCwith longer electron lifetime indicates that there will be low dark current for the device,this helps to enhance the Voc.The peak frequency(f)at lower frequency region can be readed from Fig.7b,and the electron lifetime(τ)can be calculated byτ=1/(2πf)[48-49].The f of A-P2 and A-P3 are 63.2 and 76.5 Hz,respectively.As a result,the electron lifetime values of A-P2 and A-P3 are 2.51 and 2.08 ms,respectively.The trend is consistent with the Vocof DSSCs.

    3 Conclusions

    In summary,we used a simple method to improve the performance of DSSCs,two antenna molecules zinc porphyrin P2,P3 were prepared and then self-assembly was carried out by coordination with anchoring group (A,4-pyrid-4-ylbenzoic acid).This method shows obvious advantages,it can avoid complex synthesis steps and improve the lightharvesting ability of dyes and reduce charge recombination by adjusting the antenna molecules and anchoring groups.After supramolecular self-assembly,the device of A-P2 showed a PCE of 1.68%,and a Vocof 526 mV,a Jscof 5.39 mA·cm-2,and a FFof 59.20%,in contrast,the device of A-P3 showed a PCE of 0.79%,the main reason should be that the different structures of antenna molecules lead to different loading amount.The results show that self-assembly strategy has been successfully used in this work,this will be a potential and effective way to improve the performance of DSSCs.

    Acknowledgements:This work was supported by grants from the National Natural Science Foundation of China(21701060),Changzhou Sci Tech Program(CJ20190079),China and Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(17KJB150015,18KJA150003),China.

    猜你喜歡
    敏化理工學(xué)院工程學(xué)院
    福建工程學(xué)院
    福建工程學(xué)院
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計量學(xué)分析
    江蘇理工學(xué)院
    常熟理工學(xué)院
    福建工程學(xué)院
    理工學(xué)院簡介
    福建工程學(xué)院
    任意門
    久久久久久久久久成人| 99热这里只有是精品50| 亚洲精品日本国产第一区| 久久久久久国产a免费观看| 一区二区av电影网| 91午夜精品亚洲一区二区三区| 国产一区二区三区综合在线观看 | 亚洲精品成人久久久久久| 99久久九九国产精品国产免费| 国产精品蜜桃在线观看| 又爽又黄无遮挡网站| 69人妻影院| 亚洲成人av在线免费| 人人妻人人爽人人添夜夜欢视频 | 少妇的逼水好多| 中文资源天堂在线| 亚洲成色77777| 亚洲经典国产精华液单| 精品国产露脸久久av麻豆| 十八禁网站网址无遮挡 | 99久久中文字幕三级久久日本| 精品久久国产蜜桃| 校园人妻丝袜中文字幕| 日韩欧美精品免费久久| 在线 av 中文字幕| 国产视频内射| 亚洲美女搞黄在线观看| 精品视频人人做人人爽| 内射极品少妇av片p| 精品久久久噜噜| 亚洲无线观看免费| 亚洲精品日韩av片在线观看| 欧美激情在线99| 99热这里只有是精品在线观看| a级一级毛片免费在线观看| 欧美xxⅹ黑人| 国产成人精品婷婷| 高清欧美精品videossex| 久久精品国产a三级三级三级| 黄色配什么色好看| 菩萨蛮人人尽说江南好唐韦庄| 国精品久久久久久国模美| 男人狂女人下面高潮的视频| 日日摸夜夜添夜夜添av毛片| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久久久免| 成人亚洲精品一区在线观看 | 日韩三级伦理在线观看| 大香蕉97超碰在线| 青春草视频在线免费观看| 肉色欧美久久久久久久蜜桃 | 午夜免费男女啪啪视频观看| 自拍偷自拍亚洲精品老妇| 狂野欧美激情性xxxx在线观看| 国产精品一区www在线观看| 男人添女人高潮全过程视频| 男人舔奶头视频| 久久久久久久午夜电影| 建设人人有责人人尽责人人享有的 | 69人妻影院| 嘟嘟电影网在线观看| 搞女人的毛片| 日韩不卡一区二区三区视频在线| 丰满少妇做爰视频| 丝袜喷水一区| 你懂的网址亚洲精品在线观看| 国产成人免费观看mmmm| 国内精品宾馆在线| 午夜免费观看性视频| 欧美精品人与动牲交sv欧美| av一本久久久久| 97精品久久久久久久久久精品| 国产在线男女| 亚洲天堂av无毛| av国产精品久久久久影院| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看| 99久久中文字幕三级久久日本| 亚洲欧美清纯卡通| 国产日韩欧美亚洲二区| 久久久久久九九精品二区国产| 有码 亚洲区| 国产成人aa在线观看| 少妇的逼水好多| 蜜臀久久99精品久久宅男| 欧美性猛交╳xxx乱大交人| a级毛色黄片| 麻豆成人av视频| 欧美日韩视频精品一区| 欧美成人一区二区免费高清观看| 成人一区二区视频在线观看| 国产一区二区三区av在线| 国产黄片视频在线免费观看| videos熟女内射| 午夜福利在线观看免费完整高清在| 亚洲精品色激情综合| 久久久久网色| 国产毛片在线视频| 国产伦精品一区二区三区视频9| 中文字幕久久专区| 国产伦精品一区二区三区四那| 国产乱人视频| 久久久久久久精品精品| 观看免费一级毛片| 中文字幕av成人在线电影| 成人特级av手机在线观看| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放| 色吧在线观看| 99热全是精品| 夫妻性生交免费视频一级片| 最近最新中文字幕免费大全7| 久久国内精品自在自线图片| a级一级毛片免费在线观看| 午夜福利在线在线| 亚洲国产精品成人综合色| 日日啪夜夜爽| 亚洲精品视频女| 欧美一区二区亚洲| 99热这里只有精品一区| 夜夜看夜夜爽夜夜摸| 午夜激情久久久久久久| 少妇 在线观看| 伦精品一区二区三区| 少妇丰满av| 欧美成人一区二区免费高清观看| 午夜视频国产福利| 26uuu在线亚洲综合色| 男男h啪啪无遮挡| 97在线人人人人妻| 久久久久久九九精品二区国产| 狂野欧美激情性xxxx在线观看| 免费看av在线观看网站| 熟女电影av网| 国产高清国产精品国产三级 | 成人高潮视频无遮挡免费网站| 菩萨蛮人人尽说江南好唐韦庄| 久久国内精品自在自线图片| 国产精品99久久久久久久久| 美女国产视频在线观看| 亚洲精品日本国产第一区| 18+在线观看网站| 久久国产乱子免费精品| 国语对白做爰xxxⅹ性视频网站| 国产免费一区二区三区四区乱码| 国产伦精品一区二区三区四那| 久久99蜜桃精品久久| 免费观看性生交大片5| 国产久久久一区二区三区| 制服丝袜香蕉在线| 欧美性猛交╳xxx乱大交人| 在线亚洲精品国产二区图片欧美 | 狂野欧美激情性bbbbbb| 在线精品无人区一区二区三 | 免费观看性生交大片5| 别揉我奶头 嗯啊视频| 日本-黄色视频高清免费观看| 男女边吃奶边做爰视频| 熟妇人妻不卡中文字幕| 夜夜看夜夜爽夜夜摸| 久久久久久久午夜电影| 亚洲国产精品国产精品| freevideosex欧美| 亚洲精品国产av成人精品| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 亚洲精品影视一区二区三区av| 国产成人精品一,二区| 久久久午夜欧美精品| 亚洲,一卡二卡三卡| 精品亚洲乱码少妇综合久久| .国产精品久久| 99久久精品热视频| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 亚洲av福利一区| 国产乱来视频区| 白带黄色成豆腐渣| 嫩草影院精品99| 免费黄网站久久成人精品| 身体一侧抽搐| 午夜福利视频精品| 日日摸夜夜添夜夜添av毛片| 26uuu在线亚洲综合色| 好男人在线观看高清免费视频| 尾随美女入室| 久久人人爽人人爽人人片va| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 精品一区二区三区视频在线| 一个人看的www免费观看视频| 国产成人福利小说| 日本三级黄在线观看| 在线观看av片永久免费下载| 欧美日韩视频高清一区二区三区二| 尤物成人国产欧美一区二区三区| 欧美日韩在线观看h| 日韩免费高清中文字幕av| 免费av观看视频| 免费av毛片视频| 99热6这里只有精品| 在线a可以看的网站| 男女国产视频网站| 国产午夜福利久久久久久| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 欧美变态另类bdsm刘玥| 亚洲一级一片aⅴ在线观看| 国产亚洲一区二区精品| 日韩欧美 国产精品| 久久精品久久精品一区二区三区| 国产成人午夜福利电影在线观看| 久久99热这里只有精品18| 国产中年淑女户外野战色| av福利片在线观看| 观看美女的网站| 日本一本二区三区精品| 久久精品国产自在天天线| 国产精品一区www在线观看| 成年版毛片免费区| 午夜亚洲福利在线播放| 免费看不卡的av| www.色视频.com| 国产乱来视频区| 一级毛片黄色毛片免费观看视频| 国精品久久久久久国模美| 成人欧美大片| 99热网站在线观看| 女的被弄到高潮叫床怎么办| 制服丝袜香蕉在线| 国模一区二区三区四区视频| 看免费成人av毛片| 我要看日韩黄色一级片| av在线老鸭窝| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 少妇高潮的动态图| 综合色av麻豆| 成年女人在线观看亚洲视频 | 成人美女网站在线观看视频| 日本wwww免费看| 久久精品国产亚洲网站| 五月开心婷婷网| 少妇丰满av| 久久韩国三级中文字幕| 黄色欧美视频在线观看| 成人毛片a级毛片在线播放| 国产av不卡久久| 精品一区二区三区视频在线| 青春草视频在线免费观看| 两个人的视频大全免费| 日韩强制内射视频| 国产一级毛片在线| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 久久精品熟女亚洲av麻豆精品| 身体一侧抽搐| 国产精品精品国产色婷婷| 成年免费大片在线观看| 女人久久www免费人成看片| 在线观看一区二区三区| 午夜福利视频1000在线观看| 美女被艹到高潮喷水动态| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 国产精品蜜桃在线观看| 高清午夜精品一区二区三区| 男女边吃奶边做爰视频| 香蕉精品网在线| 人妻制服诱惑在线中文字幕| 一级毛片 在线播放| 国产亚洲精品久久久com| 午夜精品一区二区三区免费看| 永久网站在线| 深爱激情五月婷婷| 亚洲人成网站高清观看| 久久久久久伊人网av| 免费看日本二区| 久久精品人妻少妇| 国产淫片久久久久久久久| 国产精品一区二区在线观看99| 舔av片在线| 99热这里只有精品一区| 国产精品一区二区性色av| 在线观看国产h片| 色婷婷久久久亚洲欧美| 美女国产视频在线观看| 天美传媒精品一区二区| 中文字幕免费在线视频6| 白带黄色成豆腐渣| 18禁裸乳无遮挡动漫免费视频 | 国产探花极品一区二区| 久久久久久伊人网av| 国产淫片久久久久久久久| 久久亚洲国产成人精品v| 五月伊人婷婷丁香| 日韩欧美精品免费久久| 看黄色毛片网站| 亚洲精品日韩av片在线观看| av国产久精品久网站免费入址| 午夜精品一区二区三区免费看| 免费高清在线观看视频在线观看| 91久久精品国产一区二区成人| 国产免费又黄又爽又色| 午夜福利在线在线| 亚洲精品影视一区二区三区av| 大又大粗又爽又黄少妇毛片口| 国产精品福利在线免费观看| 嫩草影院入口| 免费黄频网站在线观看国产| 亚洲真实伦在线观看| 一区二区三区免费毛片| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 精品人妻熟女av久视频| 永久免费av网站大全| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看| 久久韩国三级中文字幕| 看十八女毛片水多多多| 性插视频无遮挡在线免费观看| 特级一级黄色大片| 午夜免费鲁丝| 亚洲欧美日韩东京热| 偷拍熟女少妇极品色| 另类亚洲欧美激情| 国产视频首页在线观看| 少妇的逼水好多| 少妇的逼好多水| 国产成人精品一,二区| 亚洲av.av天堂| 丝瓜视频免费看黄片| 婷婷色综合大香蕉| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 麻豆精品久久久久久蜜桃| 天天躁夜夜躁狠狠久久av| 中文乱码字字幕精品一区二区三区| 在线天堂最新版资源| 国模一区二区三区四区视频| 99视频精品全部免费 在线| 在线观看免费高清a一片| 一个人看视频在线观看www免费| 99九九线精品视频在线观看视频| 另类亚洲欧美激情| 激情 狠狠 欧美| 久久这里有精品视频免费| 一级片'在线观看视频| 久久久久久久亚洲中文字幕| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久国产电影| 国内揄拍国产精品人妻在线| 亚洲av在线观看美女高潮| 亚洲欧洲国产日韩| 丝瓜视频免费看黄片| 又大又黄又爽视频免费| 亚洲av在线观看美女高潮| 少妇人妻 视频| 香蕉精品网在线| 亚洲精品日韩av片在线观看| 中文字幕制服av| 黄片wwwwww| 如何舔出高潮| 亚洲av成人精品一二三区| 99热这里只有精品一区| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 亚洲图色成人| 我的女老师完整版在线观看| 国产精品麻豆人妻色哟哟久久| 丰满人妻一区二区三区视频av| 国产精品国产三级国产专区5o| 大陆偷拍与自拍| 噜噜噜噜噜久久久久久91| 亚洲av在线观看美女高潮| 婷婷色麻豆天堂久久| 欧美成人一区二区免费高清观看| 欧美+日韩+精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 80岁老熟妇乱子伦牲交| 成人国产av品久久久| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 亚洲av国产av综合av卡| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 国产黄a三级三级三级人| 亚洲精品乱码久久久v下载方式| 黄片无遮挡物在线观看| 亚洲精品国产av蜜桃| 亚洲美女视频黄频| 日本一本二区三区精品| 一边亲一边摸免费视频| 少妇的逼水好多| 欧美性猛交╳xxx乱大交人| 99re6热这里在线精品视频| 午夜亚洲福利在线播放| 国产黄片美女视频| 大香蕉97超碰在线| 亚洲精品亚洲一区二区| 免费看日本二区| 在线观看一区二区三区| 观看免费一级毛片| 国产精品三级大全| av在线亚洲专区| 精品少妇久久久久久888优播| 欧美激情久久久久久爽电影| 性色avwww在线观看| 国内精品美女久久久久久| 国产精品一区www在线观看| 亚洲av中文av极速乱| 国产亚洲一区二区精品| av国产免费在线观看| 欧美成人午夜免费资源| 五月玫瑰六月丁香| 18+在线观看网站| 午夜免费鲁丝| 久久久久久久久久人人人人人人| 久久国内精品自在自线图片| 久久精品人妻少妇| 91精品国产九色| 日本wwww免费看| 国产色爽女视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91 | 联通29元200g的流量卡| 国产精品精品国产色婷婷| 亚洲欧美日韩东京热| 亚洲婷婷狠狠爱综合网| 午夜福利网站1000一区二区三区| 久久精品夜色国产| 亚洲精品成人久久久久久| 国产在线一区二区三区精| 爱豆传媒免费全集在线观看| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| 国产成人精品福利久久| 久久国内精品自在自线图片| freevideosex欧美| 精品视频人人做人人爽| 国产精品一区二区在线观看99| 日韩成人av中文字幕在线观看| 99久久人妻综合| 男人舔奶头视频| 久久久久网色| 国产熟女欧美一区二区| 日韩av在线免费看完整版不卡| 国产亚洲av嫩草精品影院| 女人久久www免费人成看片| 日本爱情动作片www.在线观看| 国产成人午夜福利电影在线观看| 久久精品综合一区二区三区| 国产淫语在线视频| 777米奇影视久久| 国产高清三级在线| 久久99热这里只有精品18| 中文字幕免费在线视频6| 亚洲自拍偷在线| 日韩一区二区三区影片| 亚洲精品自拍成人| av女优亚洲男人天堂| 寂寞人妻少妇视频99o| 男人和女人高潮做爰伦理| 大陆偷拍与自拍| 在现免费观看毛片| 国产精品国产三级专区第一集| 亚洲精品国产av蜜桃| 亚州av有码| kizo精华| 18禁在线无遮挡免费观看视频| 日本黄大片高清| 人妻系列 视频| 亚洲欧洲国产日韩| 久久精品熟女亚洲av麻豆精品| 欧美一区二区亚洲| 精品国产一区二区三区久久久樱花 | 美女xxoo啪啪120秒动态图| 久久久久久久久久久免费av| 亚洲欧美中文字幕日韩二区| av免费观看日本| 国产色爽女视频免费观看| 日韩强制内射视频| 国产精品.久久久| 亚洲精品日本国产第一区| 亚洲欧美精品专区久久| 老师上课跳d突然被开到最大视频| 久久久久久久午夜电影| 精品酒店卫生间| 五月天丁香电影| 国产一区二区三区av在线| 中文字幕人妻熟人妻熟丝袜美| 97在线视频观看| 国产毛片a区久久久久| 男人和女人高潮做爰伦理| 久久99蜜桃精品久久| 高清在线视频一区二区三区| 精品一区在线观看国产| 免费av不卡在线播放| av女优亚洲男人天堂| 久久国产乱子免费精品| 国产成人a区在线观看| 中国国产av一级| 欧美最新免费一区二区三区| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 成人综合一区亚洲| 日韩成人av中文字幕在线观看| 全区人妻精品视频| 国产精品国产三级国产专区5o| 精品久久久久久电影网| 人人妻人人看人人澡| 亚洲精品影视一区二区三区av| 午夜福利高清视频| 免费黄网站久久成人精品| 有码 亚洲区| 国产成人精品福利久久| 人妻少妇偷人精品九色| 日韩精品有码人妻一区| 成人一区二区视频在线观看| 日日摸夜夜添夜夜爱| 交换朋友夫妻互换小说| 亚洲人成网站在线播| 国产男女内射视频| 看十八女毛片水多多多| 久久精品夜色国产| 国产精品久久久久久精品电影| 人人妻人人看人人澡| 国产免费一区二区三区四区乱码| 午夜福利在线在线| 国产亚洲av片在线观看秒播厂| 青春草亚洲视频在线观看| 欧美区成人在线视频| 国产视频内射| 亚洲av免费在线观看| 久久精品国产亚洲av涩爱| 国产精品熟女久久久久浪| 亚洲精品日韩av片在线观看| 亚洲三级黄色毛片| 少妇猛男粗大的猛烈进出视频 | 国产欧美日韩一区二区三区在线 | www.av在线官网国产| 亚洲国产精品成人久久小说| 又大又黄又爽视频免费| 国产午夜精品一二区理论片| 午夜老司机福利剧场| 亚洲精品,欧美精品| 国产精品麻豆人妻色哟哟久久| 校园人妻丝袜中文字幕| 亚洲精品aⅴ在线观看| 久久久久久久大尺度免费视频| 男女国产视频网站| 国产又色又爽无遮挡免| 插阴视频在线观看视频| 国产精品无大码| 成人综合一区亚洲| 少妇猛男粗大的猛烈进出视频 | 亚洲人成网站在线播| 欧美另类一区| 国产高清不卡午夜福利| 久久精品久久久久久久性| av又黄又爽大尺度在线免费看| 日韩,欧美,国产一区二区三区| 午夜爱爱视频在线播放| 久久久成人免费电影| 免费av观看视频| 春色校园在线视频观看| 精品人妻视频免费看| 亚洲人成网站高清观看| 亚洲色图综合在线观看| 91午夜精品亚洲一区二区三区| 久久久久久久久久久丰满| 18禁在线播放成人免费| 亚洲av日韩在线播放| 中文字幕免费在线视频6| 亚洲精品国产成人久久av| 在线天堂最新版资源| 久热久热在线精品观看| 久久久久久国产a免费观看| 最近中文字幕2019免费版| 成年免费大片在线观看| 一级片'在线观看视频| 成人亚洲精品一区在线观看 | 中文字幕人妻熟人妻熟丝袜美| 观看美女的网站| 91久久精品电影网| 又爽又黄a免费视频| 午夜免费鲁丝| 精品人妻偷拍中文字幕| 在线观看人妻少妇| 国产av国产精品国产| 精品人妻偷拍中文字幕| 国产亚洲av片在线观看秒播厂| 免费观看性生交大片5| 男女啪啪激烈高潮av片| 真实男女啪啪啪动态图| 欧美激情在线99| 午夜福利在线在线| 天堂网av新在线| 亚洲精品影视一区二区三区av| 国产精品福利在线免费观看| 联通29元200g的流量卡| 成人无遮挡网站| 成人黄色视频免费在线看| 精品久久久久久久人妻蜜臀av| 久久久久九九精品影院| 看非洲黑人一级黄片| 熟女av电影| 在线免费十八禁| av免费在线看不卡|