• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastic Predictions of 3D Orthogonal Woven Composites Using Micro/meso-scale Repeated Unit Cell Models

    2019-12-06 09:00:08JIAXiwenGAOLimin高麗敏ZHANGTian張?zhí)?/span>ZHANGFa張發(fā)WANGYan王巖
    關(guān)鍵詞:王巖高麗

    JIAXiwen,GAOLimin(高麗敏),ZHANGTian(張?zhí)?,ZHANGFa(張發(fā)),WANGYan(王巖)

    Department of Structural Integrity, Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China

    Abstract: This presentation predicts the elastic properties of three-dimensional (3D) orthogonal woven composite (3DOWC) by finite element analysis based on micro/meso repeated unit cell (RUC) models. First, the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix. Then a full thickness meso-scale RUC model including weft yarns, warp yarns, Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted. For thick 3DOWC with large number of weft, warp layers, an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established, respectively. Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers. The predicted results by the above two alternative methods are in good experimental agreement.

    Key words: composite; multi-scale analysis; repeated unit cell model; finite element method

    Introduction

    Three-dimensional (3D) orthogonal woven composite (3DOWC) has three different types of fiber yarns, namely as weft yarns, warp yarns and Z-yarns. These three types of non-crimped yarns are placed in three mutually orthogonal directions[1]. Compared to conventional laminated composites and other types of textile composites, 3DOWC can have higher stiffness and strength along thickness directions. Currently, 3DOWC has been pursued in the aerospace industry primarily to improve the vulnerability of conventional laminates to de-lamination under impact and subsequent local buckling failure under in-plane compression[2]. Evidently, the understanding of the mechanical property of 3DOWC is required for practical applications.

    The mechanical behaviors of 3DOWCs under quasi-static loadings have been investigated based on experiments and theoretical analyses. As to the experimental studies, attentions are focused on the tensile strength and failure mechanisms[3-11], compressive characteristics[11-15]and shear responses[11, 16]. For the theoretical investigations, predictions of global properties of 3DOWCs are most commonly based on analyzing a representative volume element (RVE) or a repeated unit cell (RUC) model. Kimetal.[17-18]investigated the elastic properties of 3DOWCs based on direct numerical simulation (DNS) at RVE level. A unit structure including the stuffer yarns, filler yarns, weaver yarns, and the resin region was generated to numerically model the complex geometry of 3DOWCs. Based on the composition rule of fiber and matrix[19], Kuo[20]estimated the engineering elastic constants of 3D orthogonal woven carbon-carbon composite based on a unit cell model and then applied them to study the behavior of a notched 3DOWC beam. Using the laminate block models and unit cell model, Tanetal.[21-24]analyzed the mechanical properties of 3DOWCs by analytical approach and finite element analysis (FEA) method at micro/macro-scale levels. Based on a 3D mosaic unit cell model, Bogdanovich[25-26]predicted the failure initiation and ultimate failure strains and loads, as well as characteristic features of progressive failure processes. Furthermore, the modeling strategies for other types of 3D woven composites can be referred to the review article[27-28]and many references therein.

    The above-mentioned RVE models including DNS, laminate block and mosaic models have made different degrees of simplification on the complex fabric architecture in the 3DOWC and may not be able to provide accurate details of local stress distributions at fiber or fiber yarn scale levels. In addition, the “plane-remains-plane” boundary conditions were commonly applied either in the analytical or numerical analyses. In fact, the “plane-remains-plane” boundary conditions are over-constraint boundary conditions under shear loadings as indicated in Refs.[29-30]. Furthermore, two-step homogenization method was applied to predict the high-crimp woven composites[31].

    A multi-scale analysis method based on analysis of repeated unit cell models (RUCs) at micro-scale RUC and meso-scale levels have been used to predict mechanical properties and damages for various laminated and textile composites. At micro-RUC level, the properties of fiber yarn are first obtained and then at the meso-scale RUC level, the global properties of the composites are predicted. The meso-RUC is constructed according to the actual fiber yarns architecture in the composite. Therefore, the accurate local stress distribution, which is essential to damage analysis, can be obtained.

    As an extension of our previous researches[32-35], the full elastic stiffness matrix of 3DOWC is predicted based on finite element analysis on the micro/meso RUC models. The predicted results by the above two alternative methods are in good experimental agreement, and the above-mentioned results are consisted with the effect of fiber architecture on tensile fracture of 3D woven textile composites[36]. 3D woven composites offer higher damage tolerance and resistance to delamination. The results show that there is an architecture dependent strain field and these localizations lead to the onset of failure in these materials.

    1 Multi-scale RUC Models

    1.1 Micro-RUC model for fiber bundle

    Fiber bundles exist in a form of fibers with matrix in the 3DOWC. In the micro-RUC model, the yarns are usually considered as unidirectional fiber reinforced composite with periodic distribution of fibers in matrix. Based on the fiber packing patterns in matrix, a hexagonal model was widely applied for modeling transversely isotropic property of fiber bundles. In this analysis, based on the hexagonal fiber distribution, a rectangular micro-RUC model is selected as shown in Fig.1. The fiber volume fraction is taken to be 73.5% in the micro-RUC model.

    (a) Fibers packing pattern

    (b) Micro-RUC of fiber bundles to be meshed

    1.2 Meso-RUC model for 3DOWC

    In the current study, a 3DOWC of E-glass fiber with AROPOLTMINF80501unsaturated polymer matrix is analyzed. The composite was manufactured by the vacuum assisted resin infusion (VARI) molding technology and its specification is listed in Table 1.

    Table 1 Specification of 3D orthogonal woven fabric

    Through burning a cubic specimen in a griddle, nearly 64.1% weight of the specimen was reserved. The total fiber volume ratio of the 3DOWC is therefore obtained about 43.7% by the density of 2.55 g/cm3for the fiber and 1.22 g/cm3for the matrix. From the photographs of the 3DOWC as shown in Figs. 2 and 3, it can be seen that the weft yarns, warp yarns and Z-yarns are perpendicular to each other in straight lines and all the yarns have an approximate rectangular cross section.

    Fig. 2 Photograph of 3D orthogonal woven fabric

    (a) Surface

    (b) Cross section along warp direction

    Based on the linear density of fiber bundles with matrix in weft and warp yarns as provided in Table 1 and totally thickness of 9.64 mm with 33 layers of fiber bundles, the structural dimensions of the full thickness meso-RUC for 3DOWC are determined and it is shown in Fig. 4(a) and Tables 2-3. For clearance of the architecture of the meso-RUC, the architectures of the matrix, weft yarns, warp yarns and Z-yarns in the RUC are displayed separately in Figs. 4(b)-(e). The volume fraction of the fiber yarns in the meso-RUC model for 3DOWC is obtained about 59.5%. Correspondingly the fiber volume fraction in the micro-RUC is calculated as 73.5%. Note that a thin layer of the matrix with thickness of 0.1 mm is added at the top and bottom surfaces of the meso-RUC.

    (a) Full (b) Matrix (c) Warp yarns (d) Weft yarns (e) Z-yarns

    Table 2 Meso-structural parameters of 3DOWC

    Table 3 Sizes of micro/meso-RUC and sub-RUCs

    2 Alternative Method Based on Sub-RUC Models of 3DOWCS

    The full thickness meso-RUC of 3DOWC shown in Fig. 4 is constructed by a number of repeated inner layers in the middle and two surface layers on the top and bottom. For clearance of the interior architecture of the sub-meso-RUC, the systems of yarns and matrix in the sub-meso-RUC are shown separately in Figs. 5-6.

    (a) Architecture of yarns system (b) Architecture of matrix

    (a) Architecture of yarns system (b) Architecture of matrix

    The essential differences in architecture of the surface and inner layers could result in quite different stress/strain distribution characteristics under the load. For 3DOWC with relatively large number of layers in thickness direction, to reduce the model size and CPU time, the following alternative modeling method is suggested. The periodic boundary conditions (PBCs) are applied by master and slave nodes technique for full meso-scale, inner meso-scale and surface meso-scale RUCs in detailed statement[32].

    The analysis is carried out on the inner meso-RUC and the surface meso-RUC, separately. The full compliance matrix of the 3DOWC can be derived from the compliance matrices of the above two sub-meso RUCs based on the classical laminate theory.

    3 Results and Discussion

    3.1 Mechanical analysis for micro-RUC

    Through the FEM analyses on the micro-RUC, Fig. 1(b) and its component (fiber/matrix) property ofE=72.5 GPa andν=0.22 for fiber andE=3.6 GPa andν=0.35 for AROPOLTMINF80501, by applying the six simple loading cases, respectively, the nine elastic constants of the fiber yarn are obtained and they are listed in Table 4. It can be seen that the highest modulus is in the fiber direction and the transversely isotropic properties of the fiber yarn have been well predicted. The results are consistent with previous research results based on the statistically equivalent fiber distribution[34]. In addition, the present method can also yield detailed stress distributions inter/intra-fibers in yarns.

    Table 4 Elastic parameters being predicted for micro-RUC

    Note: 1-fiber direction; 2,3-transversely cross-section directions.

    Fig. 7 Deformation and stress distribution of micro-RUC

    3.2 Mechanical analyses for meso-RUCS

    3.2.1Analysesforfullmeso-RUCS

    For the full thickness meso-RUC of 3DOWC in Fig. 4(a). The nine elastic constants of the 3DOWC based on analysis to the full thickness meso-RUC are listed in Table 5. The tested elastic modulus ofE11=20.94 GPa[32-33]in warp direction are in good agreement to predicted results ofE11=22.31 GPa.

    3.2.2Analysesforsub-meso-RUCS

    Based on analyses on the inner and surface meso-RUCs shown in Fig. 5, their elastic constants are also listed in Table 5. Obviously, the inner layer has higher tensile and shear modulus than that from the surface layer, which is consistent with denser array of fiber bundles in the inner part of the 3DOWC. Furthermore, the detailed von Mises stress distributions of the sub-RUCs under in-plane loadings are shown in Figs. 8-11, respectively.

    Table 5 Elastic parameters being predicted based on RUC and sub-RUCs

    Note: 1-warp yarn direction;2-weft yarn direction;3-Z-yarn direction.

    (a) Inner RUC

    (b) Matrix

    (c) Z-yarns

    (a) Inner RUC

    (b) Matrix

    (c) Z-yarns

    (a) Surface RUC

    (b) Matrix

    (a) Surface RUC

    (b) Matrix

    (c) Z-yarns

    (a) Inner RUC

    (b) Matrix

    (c) Z-yarns

    (a) Surface RUC

    (b) Matrix

    (c) Z-yarns

    (a) Surface RU

    (b) Matrix

    (c) Z-yarns

    (a) Surface RU

    (b) Matrix

    (c) Z-yarns

    From the above results for various loading cases, the stress levels in the surface layer are higher than those in the inner layer, which indicates that damages of the 3DOWC may generally initiate from the surface layer. Although fiber yarns are main load carriers, matrix cracking may initiate before the fiber yarn fracture due to lower ultimate strength of matrix, especially near the intersection area of different directional fiber yarns. The introduction of the Z-yarns increases the stiffness in thickness direction and reduces overall matrix stress level in the 3DOWC under the out-of-plane loadings. This explains higher resistance to delamination of the 3DOWC. However, high stress concentration is observed in the L corner of the Z-yarns under the shear loadings. Therefore, fracture of fiber yarns of the 3DOWC is most possibly to start from the Z-yarns at this corner.

    3.3 Analysis based on the classic laminate’s theory

    In the classical laminate theory, only in-plane mechanical properties of laminated composites are considered. The constitutive relation for the current 3DOWC can be expressed as

    (1)

    Table 6 In-plane stiffness matrix coefficients of full meso-RUC and sub meso-RUCs

    In this case, the whole 3DOWC is seen as a laminate consisting of 14 inner layers and top/bottom surface layers. The in-plane and flexural coefficients are obtained from the following Eq. (2) based on the thicknesses of the sub meso-RUCs listed in Table 3.

    (2)

    The in-plane and flexural stiffness coefficients of the 3DOWC depending on the full thickness meso-RUC and based on its sub-meso-RUCs are calculated, respectively, and listed in Table 7 (Aijfor GPa·mm andDijfor GPa·mm3). The results from these two alternative methods are in very good agreement.

    Table 7 In-plane and flexural coefficients of full meso-RUC and sub meso-RUCs

    4 Conclusions

    Elastic mechanical properties of 3DOWC have been predicted based on finite element analysis on micro- and meso-scale RUCs. From the micro-RUC, property of fiber yarn is predicted initially. Then property of the 3DOWC is predicted based on the meso-RUC constructed according to actual architecture of fiber yarns in the 3DOWC. For thick 3DOWCs containing relative large number of plies, an alternative simpler method based on smaller surface meso-RUC and inner meso RUC can be applied. The predicted properties of the 3DOWC by the two methods are in quite good agreement. An important advantage of the proposed methods lies in that not only the global properties of the composite can be predicted but also detailed stress/strain distributions in the fiber, fiber yarns and matrix are provided. This information is helpful in understanding damage/failure mechanisms of the 3DOWC under various loading conditions. It is found that damage of the 3DOWC most possibly initiates from the surface layer where the maximumeffective stress level is generally higher than that in the inner layers. Stitching Z-yarns in the 3DOWC can improve the property in out-of-plane direction; however, the fiber yarn fracture may start from L corner of the Z-yarns due to high stress concentration.

    猜你喜歡
    王巖高麗
    高麗莉作品賞析
    ViVi美眉(2020年1期)2020-04-26 10:09:49
    母與子
    繽紛花園
    何勞側(cè)目窺俗態(tài) 別有遙情接莽蒼——與王巖對話
    人物之一:王巖
    陳菲非、王曉娜、王巖陶瓷作品
    《高麗史》1所見女真諸部朝貢高麗情況研究
    威力無比的眼藥水
    外星人的暑假作業(yè)
    新女媧補天
    久久久亚洲精品成人影院| 精品国产乱码久久久久久小说| 国产国语露脸激情在线看| √禁漫天堂资源中文www| 丁香六月欧美| 婷婷色av中文字幕| 久久久久精品人妻al黑| 后天国语完整版免费观看| 国产男人的电影天堂91| 一本综合久久免费| 精品人妻1区二区| 国产一区二区激情短视频 | 国产精品三级大全| 99国产精品一区二区三区| 秋霞在线观看毛片| 99久久人妻综合| 天天影视国产精品| 国产精品99久久99久久久不卡| 中文字幕亚洲精品专区| 美女高潮到喷水免费观看| 制服诱惑二区| 人人澡人人妻人| 一边摸一边做爽爽视频免费| 亚洲av美国av| 一区在线观看完整版| 久久午夜综合久久蜜桃| 性色av一级| 国产一卡二卡三卡精品| 久久性视频一级片| xxxhd国产人妻xxx| 亚洲 国产 在线| 国产欧美亚洲国产| 18禁黄网站禁片午夜丰满| 黄色a级毛片大全视频| 国产日韩欧美视频二区| 1024香蕉在线观看| 免费高清在线观看视频在线观看| 久久精品久久精品一区二区三区| 久久人人97超碰香蕉20202| 国产在线视频一区二区| 国产成人一区二区三区免费视频网站 | 国产视频首页在线观看| 性色av一级| 一本一本久久a久久精品综合妖精| 国产精品国产三级专区第一集| 欧美另类一区| 啦啦啦啦在线视频资源| 五月开心婷婷网| 欧美日韩一级在线毛片| 色视频在线一区二区三区| 妹子高潮喷水视频| 亚洲国产日韩一区二区| 亚洲欧洲国产日韩| 一区二区三区乱码不卡18| 亚洲国产精品国产精品| 51午夜福利影视在线观看| 一本—道久久a久久精品蜜桃钙片| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 视频区欧美日本亚洲| 视频区图区小说| 国产免费视频播放在线视频| 亚洲专区中文字幕在线| 免费高清在线观看日韩| 精品久久蜜臀av无| 女性被躁到高潮视频| 精品一区二区三卡| 久久99精品国语久久久| 国产日韩一区二区三区精品不卡| 狠狠精品人妻久久久久久综合| 久久鲁丝午夜福利片| 一区在线观看完整版| 日日夜夜操网爽| 纯流量卡能插随身wifi吗| 国产一区二区激情短视频 | 久久精品国产综合久久久| av天堂在线播放| 精品国产一区二区三区久久久樱花| 免费不卡黄色视频| 9热在线视频观看99| 日韩欧美一区视频在线观看| 亚洲精品自拍成人| 国精品久久久久久国模美| 久久久久久人人人人人| 久久久国产精品麻豆| 国产麻豆69| 精品国产国语对白av| videos熟女内射| 香蕉丝袜av| 日韩中文字幕视频在线看片| 侵犯人妻中文字幕一二三四区| 国产午夜精品一二区理论片| 日本午夜av视频| 国精品久久久久久国模美| 国产爽快片一区二区三区| 亚洲成色77777| 操美女的视频在线观看| 一边摸一边抽搐一进一出视频| 人妻 亚洲 视频| 亚洲精品日韩在线中文字幕| av在线播放精品| 丝瓜视频免费看黄片| 黑丝袜美女国产一区| 18禁裸乳无遮挡动漫免费视频| 国产精品熟女久久久久浪| 在线观看免费视频网站a站| 这个男人来自地球电影免费观看| 黄片播放在线免费| 精品人妻1区二区| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| 777久久人妻少妇嫩草av网站| 久久毛片免费看一区二区三区| 久久99精品国语久久久| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 老司机影院毛片| 亚洲精品乱久久久久久| 国产亚洲av高清不卡| 在线精品无人区一区二区三| 99热网站在线观看| 亚洲五月色婷婷综合| 深夜精品福利| 十分钟在线观看高清视频www| 老司机影院成人| 亚洲人成网站在线观看播放| 69精品国产乱码久久久| 99久久99久久久精品蜜桃| 午夜福利视频在线观看免费| 一级,二级,三级黄色视频| 高潮久久久久久久久久久不卡| 亚洲 国产 在线| 中文字幕另类日韩欧美亚洲嫩草| 青春草亚洲视频在线观看| 免费在线观看影片大全网站 | 国产视频首页在线观看| 亚洲自偷自拍图片 自拍| 手机成人av网站| 久久久久视频综合| 男女高潮啪啪啪动态图| 一区二区三区四区激情视频| 一二三四在线观看免费中文在| 新久久久久国产一级毛片| 亚洲久久久国产精品| 十八禁人妻一区二区| 久久久国产一区二区| 亚洲国产最新在线播放| 嫩草影视91久久| 国产在线视频一区二区| 亚洲人成电影观看| 中文字幕av电影在线播放| 亚洲成人免费电影在线观看 | 亚洲欧洲国产日韩| 久久综合国产亚洲精品| 免费日韩欧美在线观看| 国产欧美日韩一区二区三区在线| 久久久久久久久久久久大奶| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 国产精品三级大全| 久久久久久久大尺度免费视频| 免费高清在线观看日韩| 国产激情久久老熟女| 免费看av在线观看网站| 欧美日韩亚洲综合一区二区三区_| 一级片'在线观看视频| 国产精品国产三级国产专区5o| 女人久久www免费人成看片| 少妇的丰满在线观看| 又紧又爽又黄一区二区| 成人免费观看视频高清| 青春草亚洲视频在线观看| 亚洲图色成人| 亚洲av国产av综合av卡| 亚洲自偷自拍图片 自拍| 91麻豆精品激情在线观看国产 | 午夜日韩欧美国产| a级片在线免费高清观看视频| 又大又黄又爽视频免费| 国产视频一区二区在线看| 性高湖久久久久久久久免费观看| e午夜精品久久久久久久| 欧美日韩精品网址| 色网站视频免费| 国产片内射在线| www.自偷自拍.com| 久久性视频一级片| 一边摸一边抽搐一进一出视频| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 国产精品一二三区在线看| 国产免费现黄频在线看| 国产日韩一区二区三区精品不卡| 精品国产一区二区三区四区第35| 午夜老司机福利片| 国产日韩欧美视频二区| 大型av网站在线播放| 我的亚洲天堂| 久久亚洲精品不卡| 精品久久久久久电影网| 免费看av在线观看网站| 久久免费观看电影| 中文字幕精品免费在线观看视频| 久久鲁丝午夜福利片| 午夜激情久久久久久久| 男人舔女人的私密视频| 久久性视频一级片| 欧美精品亚洲一区二区| 性高湖久久久久久久久免费观看| 欧美中文综合在线视频| 自线自在国产av| 亚洲激情五月婷婷啪啪| 在现免费观看毛片| 国产成人精品在线电影| 中文字幕最新亚洲高清| 日本五十路高清| 18在线观看网站| 亚洲欧美一区二区三区久久| 啦啦啦 在线观看视频| 午夜激情久久久久久久| 新久久久久国产一级毛片| 超色免费av| 日韩免费高清中文字幕av| 国产伦理片在线播放av一区| 国产精品亚洲av一区麻豆| 另类精品久久| 日韩av在线免费看完整版不卡| 中文字幕高清在线视频| 99国产精品免费福利视频| 爱豆传媒免费全集在线观看| 欧美+亚洲+日韩+国产| 久久精品成人免费网站| 无限看片的www在线观看| 国产成人一区二区在线| 成年女人毛片免费观看观看9 | 汤姆久久久久久久影院中文字幕| 亚洲一区中文字幕在线| 在线天堂中文资源库| 国产一区亚洲一区在线观看| 黑人巨大精品欧美一区二区蜜桃| 男人操女人黄网站| 咕卡用的链子| 一区福利在线观看| 视频区图区小说| 91精品伊人久久大香线蕉| 国产野战对白在线观看| 亚洲天堂av无毛| 国产精品久久久久久精品电影小说| 视频区欧美日本亚洲| 久久午夜综合久久蜜桃| 国产主播在线观看一区二区 | 成年动漫av网址| 精品一区二区三区四区五区乱码 | 亚洲av欧美aⅴ国产| 亚洲中文日韩欧美视频| 看免费成人av毛片| 久久人人爽av亚洲精品天堂| kizo精华| 首页视频小说图片口味搜索 | 啦啦啦在线观看免费高清www| 晚上一个人看的免费电影| 日韩av不卡免费在线播放| 好男人视频免费观看在线| 亚洲,欧美精品.| 国产亚洲欧美精品永久| 一个人免费看片子| 日韩伦理黄色片| 欧美成人午夜精品| 母亲3免费完整高清在线观看| 色播在线永久视频| 国产三级黄色录像| 一级毛片女人18水好多 | 真人做人爱边吃奶动态| 深夜精品福利| 国产一区二区 视频在线| 国产免费又黄又爽又色| 成人国语在线视频| 极品少妇高潮喷水抽搐| 国产一区二区在线观看av| 另类精品久久| 91国产中文字幕| av不卡在线播放| 国产精品久久久人人做人人爽| 中文欧美无线码| 人人澡人人妻人| 丝袜在线中文字幕| 欧美激情极品国产一区二区三区| 亚洲av成人精品一二三区| av电影中文网址| 两个人免费观看高清视频| 国产精品成人在线| 免费一级毛片在线播放高清视频 | 亚洲色图 男人天堂 中文字幕| 免费一级毛片在线播放高清视频 | 五月开心婷婷网| av天堂久久9| 美女午夜性视频免费| 日韩制服骚丝袜av| 丝袜在线中文字幕| 国产熟女午夜一区二区三区| 热re99久久精品国产66热6| 亚洲国产欧美一区二区综合| 午夜激情av网站| 成年美女黄网站色视频大全免费| 我要看黄色一级片免费的| 五月开心婷婷网| 黄色a级毛片大全视频| 亚洲人成网站在线观看播放| 欧美国产精品一级二级三级| 80岁老熟妇乱子伦牲交| 国产精品 欧美亚洲| 国产精品久久久av美女十八| 一本色道久久久久久精品综合| 成人国产一区最新在线观看 | 亚洲av成人不卡在线观看播放网 | 成人国语在线视频| 欧美日韩亚洲高清精品| 国产成人精品无人区| 国产成人a∨麻豆精品| 亚洲精品美女久久久久99蜜臀 | 岛国毛片在线播放| 丁香六月欧美| 亚洲av日韩精品久久久久久密 | kizo精华| 精品第一国产精品| 亚洲av美国av| 亚洲欧美日韩高清在线视频 | 亚洲精品久久成人aⅴ小说| 可以免费在线观看a视频的电影网站| 乱人伦中国视频| 操出白浆在线播放| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产av影院在线观看| 中文字幕亚洲精品专区| bbb黄色大片| 丝袜在线中文字幕| 操出白浆在线播放| 自线自在国产av| 操出白浆在线播放| av线在线观看网站| 99久久精品国产亚洲精品| 日韩制服丝袜自拍偷拍| 日本vs欧美在线观看视频| 亚洲专区中文字幕在线| 日韩制服骚丝袜av| 亚洲成人免费av在线播放| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 极品人妻少妇av视频| 嫩草影视91久久| 18禁黄网站禁片午夜丰满| 亚洲国产成人一精品久久久| 午夜老司机福利片| 新久久久久国产一级毛片| 老司机午夜十八禁免费视频| 日本91视频免费播放| 亚洲伊人久久精品综合| 新久久久久国产一级毛片| 亚洲av男天堂| 少妇精品久久久久久久| 精品久久蜜臀av无| 亚洲精品久久成人aⅴ小说| 国产亚洲欧美精品永久| 午夜福利一区二区在线看| 国产亚洲午夜精品一区二区久久| 久久天堂一区二区三区四区| 丰满迷人的少妇在线观看| 熟女av电影| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 国产一区二区 视频在线| 久久av网站| 久久人人爽av亚洲精品天堂| 九草在线视频观看| 午夜日韩欧美国产| 狠狠婷婷综合久久久久久88av| 美国免费a级毛片| 欧美激情高清一区二区三区| 在现免费观看毛片| 1024视频免费在线观看| 精品国产超薄肉色丝袜足j| 日本av免费视频播放| 另类精品久久| 18禁黄网站禁片午夜丰满| 伊人久久大香线蕉亚洲五| 国产成人一区二区三区免费视频网站 | 国产成人一区二区在线| 国产av国产精品国产| 国产三级黄色录像| 人妻人人澡人人爽人人| 男女下面插进去视频免费观看| 老司机在亚洲福利影院| 最新的欧美精品一区二区| 午夜两性在线视频| 欧美日韩一级在线毛片| 极品少妇高潮喷水抽搐| 婷婷丁香在线五月| 国产欧美日韩一区二区三 | 咕卡用的链子| 国产成人精品久久二区二区91| 女性被躁到高潮视频| 母亲3免费完整高清在线观看| 少妇 在线观看| 国产精品偷伦视频观看了| 美女视频免费永久观看网站| 又大又黄又爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 一级片'在线观看视频| 两个人免费观看高清视频| av天堂久久9| 中文字幕人妻丝袜一区二区| 国产成人免费无遮挡视频| 国产免费现黄频在线看| 不卡av一区二区三区| 亚洲av欧美aⅴ国产| 侵犯人妻中文字幕一二三四区| 嫁个100分男人电影在线观看 | 久久久久久亚洲精品国产蜜桃av| 日韩 欧美 亚洲 中文字幕| 多毛熟女@视频| a级片在线免费高清观看视频| 精品少妇久久久久久888优播| 国产精品.久久久| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 午夜激情av网站| 免费人妻精品一区二区三区视频| 少妇粗大呻吟视频| 操美女的视频在线观看| 国产主播在线观看一区二区 | 国产高清不卡午夜福利| 亚洲精品日本国产第一区| 日韩一本色道免费dvd| 性色av一级| 女警被强在线播放| 国产精品麻豆人妻色哟哟久久| 国产男人的电影天堂91| www.熟女人妻精品国产| 国产淫语在线视频| 国产精品一区二区免费欧美 | 国产麻豆69| 国产成人系列免费观看| 亚洲精品国产色婷婷电影| 国产精品二区激情视频| av国产久精品久网站免费入址| 日本黄色日本黄色录像| 搡老乐熟女国产| av在线老鸭窝| bbb黄色大片| 秋霞在线观看毛片| 伊人亚洲综合成人网| netflix在线观看网站| 宅男免费午夜| 国产成人啪精品午夜网站| 波多野结衣av一区二区av| 黄色片一级片一级黄色片| 国产亚洲一区二区精品| 母亲3免费完整高清在线观看| 国产精品熟女久久久久浪| 99国产综合亚洲精品| 午夜日韩欧美国产| www.av在线官网国产| 丰满迷人的少妇在线观看| av视频免费观看在线观看| 美女扒开内裤让男人捅视频| 亚洲国产精品国产精品| 免费在线观看黄色视频的| 免费看av在线观看网站| 一个人免费看片子| 亚洲精品国产色婷婷电影| 九草在线视频观看| 欧美性长视频在线观看| 亚洲人成电影观看| 亚洲av在线观看美女高潮| 成人三级做爰电影| 久久精品国产亚洲av涩爱| 天天躁日日躁夜夜躁夜夜| 母亲3免费完整高清在线观看| 亚洲av综合色区一区| 精品久久久久久电影网| 日韩欧美一区视频在线观看| 国精品久久久久久国模美| 国产亚洲精品久久久久5区| 侵犯人妻中文字幕一二三四区| 美女主播在线视频| 天天影视国产精品| 久久综合国产亚洲精品| 美女脱内裤让男人舔精品视频| 亚洲欧美一区二区三区国产| 日韩伦理黄色片| 久久国产精品男人的天堂亚洲| 青春草亚洲视频在线观看| 亚洲成色77777| 亚洲午夜精品一区,二区,三区| 香蕉国产在线看| 国产野战对白在线观看| 在线观看国产h片| 成人免费观看视频高清| 精品福利观看| 18禁黄网站禁片午夜丰满| 美女午夜性视频免费| 人人澡人人妻人| 亚洲九九香蕉| 久久人人爽人人片av| 一区二区av电影网| 在线观看免费视频网站a站| 看免费av毛片| 狠狠婷婷综合久久久久久88av| 麻豆乱淫一区二区| 99热网站在线观看| 18禁国产床啪视频网站| 天天躁日日躁夜夜躁夜夜| 免费看十八禁软件| 亚洲国产精品国产精品| 久久ye,这里只有精品| 性高湖久久久久久久久免费观看| a 毛片基地| 精品国产乱码久久久久久小说| 美女午夜性视频免费| 黄色怎么调成土黄色| 中文字幕人妻丝袜制服| 一区二区三区激情视频| 操美女的视频在线观看| a级片在线免费高清观看视频| av国产久精品久网站免费入址| 麻豆av在线久日| 99久久人妻综合| av一本久久久久| 老司机影院毛片| 久久人人爽人人片av| 性少妇av在线| 久久久欧美国产精品| 好男人视频免费观看在线| 视频在线观看一区二区三区| 亚洲伊人色综图| 国产人伦9x9x在线观看| 叶爱在线成人免费视频播放| 在线观看www视频免费| 18禁裸乳无遮挡动漫免费视频| 人人妻人人爽人人添夜夜欢视频| 免费在线观看视频国产中文字幕亚洲 | 日本色播在线视频| 国产精品香港三级国产av潘金莲 | 久久精品国产亚洲av高清一级| 美女视频免费永久观看网站| 国产亚洲欧美精品永久| 女性生殖器流出的白浆| 97精品久久久久久久久久精品| 久久这里只有精品19| 国产欧美日韩一区二区三 | 国产亚洲av高清不卡| 国产成人免费观看mmmm| 国产成人一区二区在线| 在现免费观看毛片| 免费在线观看黄色视频的| 一区二区日韩欧美中文字幕| 王馨瑶露胸无遮挡在线观看| 这个男人来自地球电影免费观看| 精品亚洲成国产av| 国产精品一区二区免费欧美 | 国产精品免费大片| 国产免费现黄频在线看| 午夜两性在线视频| 可以免费在线观看a视频的电影网站| 亚洲精品美女久久久久99蜜臀 | 欧美人与性动交α欧美精品济南到| 男人添女人高潮全过程视频| 日日摸夜夜添夜夜爱| 日本a在线网址| 欧美日韩亚洲高清精品| 免费av中文字幕在线| 最近中文字幕2019免费版| 啦啦啦啦在线视频资源| 啦啦啦在线观看免费高清www| 美女高潮到喷水免费观看| 又紧又爽又黄一区二区| 18禁裸乳无遮挡动漫免费视频| 日本黄色日本黄色录像| 水蜜桃什么品种好| 操美女的视频在线观看| 中文字幕人妻丝袜一区二区| 亚洲午夜精品一区,二区,三区| 精品国产一区二区久久| 黄片小视频在线播放| 欧美精品啪啪一区二区三区 | 亚洲欧洲日产国产| 99精国产麻豆久久婷婷| 999精品在线视频| www.精华液| 人体艺术视频欧美日本| 悠悠久久av| 久久久久精品国产欧美久久久 | 大香蕉久久成人网| 国产精品久久久av美女十八| 真人做人爱边吃奶动态| 只有这里有精品99| 人人妻,人人澡人人爽秒播 | 久久免费观看电影| 99国产精品一区二区三区| 99国产精品一区二区蜜桃av | 亚洲欧美色中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品国产av成人精品| 欧美精品一区二区大全| 一级黄色大片毛片| 美女主播在线视频| 国产又爽黄色视频| 亚洲情色 制服丝袜| 国产成人一区二区在线| 男男h啪啪无遮挡| 男女免费视频国产| 啦啦啦啦在线视频资源| e午夜精品久久久久久久| 久久精品熟女亚洲av麻豆精品|