• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elastic Predictions of 3D Orthogonal Woven Composites Using Micro/meso-scale Repeated Unit Cell Models

    2019-12-06 09:00:08JIAXiwenGAOLimin高麗敏ZHANGTian張?zhí)?/span>ZHANGFa張發(fā)WANGYan王巖
    關(guān)鍵詞:王巖高麗

    JIAXiwen,GAOLimin(高麗敏),ZHANGTian(張?zhí)?,ZHANGFa(張發(fā)),WANGYan(王巖)

    Department of Structural Integrity, Beijing Aeronautical Science & Technology Research Institute of COMAC, Beijing 102211, China

    Abstract: This presentation predicts the elastic properties of three-dimensional (3D) orthogonal woven composite (3DOWC) by finite element analysis based on micro/meso repeated unit cell (RUC) models. First, the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix. Then a full thickness meso-scale RUC model including weft yarns, warp yarns, Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted. For thick 3DOWC with large number of weft, warp layers, an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established, respectively. Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers. The predicted results by the above two alternative methods are in good experimental agreement.

    Key words: composite; multi-scale analysis; repeated unit cell model; finite element method

    Introduction

    Three-dimensional (3D) orthogonal woven composite (3DOWC) has three different types of fiber yarns, namely as weft yarns, warp yarns and Z-yarns. These three types of non-crimped yarns are placed in three mutually orthogonal directions[1]. Compared to conventional laminated composites and other types of textile composites, 3DOWC can have higher stiffness and strength along thickness directions. Currently, 3DOWC has been pursued in the aerospace industry primarily to improve the vulnerability of conventional laminates to de-lamination under impact and subsequent local buckling failure under in-plane compression[2]. Evidently, the understanding of the mechanical property of 3DOWC is required for practical applications.

    The mechanical behaviors of 3DOWCs under quasi-static loadings have been investigated based on experiments and theoretical analyses. As to the experimental studies, attentions are focused on the tensile strength and failure mechanisms[3-11], compressive characteristics[11-15]and shear responses[11, 16]. For the theoretical investigations, predictions of global properties of 3DOWCs are most commonly based on analyzing a representative volume element (RVE) or a repeated unit cell (RUC) model. Kimetal.[17-18]investigated the elastic properties of 3DOWCs based on direct numerical simulation (DNS) at RVE level. A unit structure including the stuffer yarns, filler yarns, weaver yarns, and the resin region was generated to numerically model the complex geometry of 3DOWCs. Based on the composition rule of fiber and matrix[19], Kuo[20]estimated the engineering elastic constants of 3D orthogonal woven carbon-carbon composite based on a unit cell model and then applied them to study the behavior of a notched 3DOWC beam. Using the laminate block models and unit cell model, Tanetal.[21-24]analyzed the mechanical properties of 3DOWCs by analytical approach and finite element analysis (FEA) method at micro/macro-scale levels. Based on a 3D mosaic unit cell model, Bogdanovich[25-26]predicted the failure initiation and ultimate failure strains and loads, as well as characteristic features of progressive failure processes. Furthermore, the modeling strategies for other types of 3D woven composites can be referred to the review article[27-28]and many references therein.

    The above-mentioned RVE models including DNS, laminate block and mosaic models have made different degrees of simplification on the complex fabric architecture in the 3DOWC and may not be able to provide accurate details of local stress distributions at fiber or fiber yarn scale levels. In addition, the “plane-remains-plane” boundary conditions were commonly applied either in the analytical or numerical analyses. In fact, the “plane-remains-plane” boundary conditions are over-constraint boundary conditions under shear loadings as indicated in Refs.[29-30]. Furthermore, two-step homogenization method was applied to predict the high-crimp woven composites[31].

    A multi-scale analysis method based on analysis of repeated unit cell models (RUCs) at micro-scale RUC and meso-scale levels have been used to predict mechanical properties and damages for various laminated and textile composites. At micro-RUC level, the properties of fiber yarn are first obtained and then at the meso-scale RUC level, the global properties of the composites are predicted. The meso-RUC is constructed according to the actual fiber yarns architecture in the composite. Therefore, the accurate local stress distribution, which is essential to damage analysis, can be obtained.

    As an extension of our previous researches[32-35], the full elastic stiffness matrix of 3DOWC is predicted based on finite element analysis on the micro/meso RUC models. The predicted results by the above two alternative methods are in good experimental agreement, and the above-mentioned results are consisted with the effect of fiber architecture on tensile fracture of 3D woven textile composites[36]. 3D woven composites offer higher damage tolerance and resistance to delamination. The results show that there is an architecture dependent strain field and these localizations lead to the onset of failure in these materials.

    1 Multi-scale RUC Models

    1.1 Micro-RUC model for fiber bundle

    Fiber bundles exist in a form of fibers with matrix in the 3DOWC. In the micro-RUC model, the yarns are usually considered as unidirectional fiber reinforced composite with periodic distribution of fibers in matrix. Based on the fiber packing patterns in matrix, a hexagonal model was widely applied for modeling transversely isotropic property of fiber bundles. In this analysis, based on the hexagonal fiber distribution, a rectangular micro-RUC model is selected as shown in Fig.1. The fiber volume fraction is taken to be 73.5% in the micro-RUC model.

    (a) Fibers packing pattern

    (b) Micro-RUC of fiber bundles to be meshed

    1.2 Meso-RUC model for 3DOWC

    In the current study, a 3DOWC of E-glass fiber with AROPOLTMINF80501unsaturated polymer matrix is analyzed. The composite was manufactured by the vacuum assisted resin infusion (VARI) molding technology and its specification is listed in Table 1.

    Table 1 Specification of 3D orthogonal woven fabric

    Through burning a cubic specimen in a griddle, nearly 64.1% weight of the specimen was reserved. The total fiber volume ratio of the 3DOWC is therefore obtained about 43.7% by the density of 2.55 g/cm3for the fiber and 1.22 g/cm3for the matrix. From the photographs of the 3DOWC as shown in Figs. 2 and 3, it can be seen that the weft yarns, warp yarns and Z-yarns are perpendicular to each other in straight lines and all the yarns have an approximate rectangular cross section.

    Fig. 2 Photograph of 3D orthogonal woven fabric

    (a) Surface

    (b) Cross section along warp direction

    Based on the linear density of fiber bundles with matrix in weft and warp yarns as provided in Table 1 and totally thickness of 9.64 mm with 33 layers of fiber bundles, the structural dimensions of the full thickness meso-RUC for 3DOWC are determined and it is shown in Fig. 4(a) and Tables 2-3. For clearance of the architecture of the meso-RUC, the architectures of the matrix, weft yarns, warp yarns and Z-yarns in the RUC are displayed separately in Figs. 4(b)-(e). The volume fraction of the fiber yarns in the meso-RUC model for 3DOWC is obtained about 59.5%. Correspondingly the fiber volume fraction in the micro-RUC is calculated as 73.5%. Note that a thin layer of the matrix with thickness of 0.1 mm is added at the top and bottom surfaces of the meso-RUC.

    (a) Full (b) Matrix (c) Warp yarns (d) Weft yarns (e) Z-yarns

    Table 2 Meso-structural parameters of 3DOWC

    Table 3 Sizes of micro/meso-RUC and sub-RUCs

    2 Alternative Method Based on Sub-RUC Models of 3DOWCS

    The full thickness meso-RUC of 3DOWC shown in Fig. 4 is constructed by a number of repeated inner layers in the middle and two surface layers on the top and bottom. For clearance of the interior architecture of the sub-meso-RUC, the systems of yarns and matrix in the sub-meso-RUC are shown separately in Figs. 5-6.

    (a) Architecture of yarns system (b) Architecture of matrix

    (a) Architecture of yarns system (b) Architecture of matrix

    The essential differences in architecture of the surface and inner layers could result in quite different stress/strain distribution characteristics under the load. For 3DOWC with relatively large number of layers in thickness direction, to reduce the model size and CPU time, the following alternative modeling method is suggested. The periodic boundary conditions (PBCs) are applied by master and slave nodes technique for full meso-scale, inner meso-scale and surface meso-scale RUCs in detailed statement[32].

    The analysis is carried out on the inner meso-RUC and the surface meso-RUC, separately. The full compliance matrix of the 3DOWC can be derived from the compliance matrices of the above two sub-meso RUCs based on the classical laminate theory.

    3 Results and Discussion

    3.1 Mechanical analysis for micro-RUC

    Through the FEM analyses on the micro-RUC, Fig. 1(b) and its component (fiber/matrix) property ofE=72.5 GPa andν=0.22 for fiber andE=3.6 GPa andν=0.35 for AROPOLTMINF80501, by applying the six simple loading cases, respectively, the nine elastic constants of the fiber yarn are obtained and they are listed in Table 4. It can be seen that the highest modulus is in the fiber direction and the transversely isotropic properties of the fiber yarn have been well predicted. The results are consistent with previous research results based on the statistically equivalent fiber distribution[34]. In addition, the present method can also yield detailed stress distributions inter/intra-fibers in yarns.

    Table 4 Elastic parameters being predicted for micro-RUC

    Note: 1-fiber direction; 2,3-transversely cross-section directions.

    Fig. 7 Deformation and stress distribution of micro-RUC

    3.2 Mechanical analyses for meso-RUCS

    3.2.1Analysesforfullmeso-RUCS

    For the full thickness meso-RUC of 3DOWC in Fig. 4(a). The nine elastic constants of the 3DOWC based on analysis to the full thickness meso-RUC are listed in Table 5. The tested elastic modulus ofE11=20.94 GPa[32-33]in warp direction are in good agreement to predicted results ofE11=22.31 GPa.

    3.2.2Analysesforsub-meso-RUCS

    Based on analyses on the inner and surface meso-RUCs shown in Fig. 5, their elastic constants are also listed in Table 5. Obviously, the inner layer has higher tensile and shear modulus than that from the surface layer, which is consistent with denser array of fiber bundles in the inner part of the 3DOWC. Furthermore, the detailed von Mises stress distributions of the sub-RUCs under in-plane loadings are shown in Figs. 8-11, respectively.

    Table 5 Elastic parameters being predicted based on RUC and sub-RUCs

    Note: 1-warp yarn direction;2-weft yarn direction;3-Z-yarn direction.

    (a) Inner RUC

    (b) Matrix

    (c) Z-yarns

    (a) Inner RUC

    (b) Matrix

    (c) Z-yarns

    (a) Surface RUC

    (b) Matrix

    (a) Surface RUC

    (b) Matrix

    (c) Z-yarns

    (a) Inner RUC

    (b) Matrix

    (c) Z-yarns

    (a) Surface RUC

    (b) Matrix

    (c) Z-yarns

    (a) Surface RU

    (b) Matrix

    (c) Z-yarns

    (a) Surface RU

    (b) Matrix

    (c) Z-yarns

    From the above results for various loading cases, the stress levels in the surface layer are higher than those in the inner layer, which indicates that damages of the 3DOWC may generally initiate from the surface layer. Although fiber yarns are main load carriers, matrix cracking may initiate before the fiber yarn fracture due to lower ultimate strength of matrix, especially near the intersection area of different directional fiber yarns. The introduction of the Z-yarns increases the stiffness in thickness direction and reduces overall matrix stress level in the 3DOWC under the out-of-plane loadings. This explains higher resistance to delamination of the 3DOWC. However, high stress concentration is observed in the L corner of the Z-yarns under the shear loadings. Therefore, fracture of fiber yarns of the 3DOWC is most possibly to start from the Z-yarns at this corner.

    3.3 Analysis based on the classic laminate’s theory

    In the classical laminate theory, only in-plane mechanical properties of laminated composites are considered. The constitutive relation for the current 3DOWC can be expressed as

    (1)

    Table 6 In-plane stiffness matrix coefficients of full meso-RUC and sub meso-RUCs

    In this case, the whole 3DOWC is seen as a laminate consisting of 14 inner layers and top/bottom surface layers. The in-plane and flexural coefficients are obtained from the following Eq. (2) based on the thicknesses of the sub meso-RUCs listed in Table 3.

    (2)

    The in-plane and flexural stiffness coefficients of the 3DOWC depending on the full thickness meso-RUC and based on its sub-meso-RUCs are calculated, respectively, and listed in Table 7 (Aijfor GPa·mm andDijfor GPa·mm3). The results from these two alternative methods are in very good agreement.

    Table 7 In-plane and flexural coefficients of full meso-RUC and sub meso-RUCs

    4 Conclusions

    Elastic mechanical properties of 3DOWC have been predicted based on finite element analysis on micro- and meso-scale RUCs. From the micro-RUC, property of fiber yarn is predicted initially. Then property of the 3DOWC is predicted based on the meso-RUC constructed according to actual architecture of fiber yarns in the 3DOWC. For thick 3DOWCs containing relative large number of plies, an alternative simpler method based on smaller surface meso-RUC and inner meso RUC can be applied. The predicted properties of the 3DOWC by the two methods are in quite good agreement. An important advantage of the proposed methods lies in that not only the global properties of the composite can be predicted but also detailed stress/strain distributions in the fiber, fiber yarns and matrix are provided. This information is helpful in understanding damage/failure mechanisms of the 3DOWC under various loading conditions. It is found that damage of the 3DOWC most possibly initiates from the surface layer where the maximumeffective stress level is generally higher than that in the inner layers. Stitching Z-yarns in the 3DOWC can improve the property in out-of-plane direction; however, the fiber yarn fracture may start from L corner of the Z-yarns due to high stress concentration.

    猜你喜歡
    王巖高麗
    高麗莉作品賞析
    ViVi美眉(2020年1期)2020-04-26 10:09:49
    母與子
    繽紛花園
    何勞側(cè)目窺俗態(tài) 別有遙情接莽蒼——與王巖對話
    人物之一:王巖
    陳菲非、王曉娜、王巖陶瓷作品
    《高麗史》1所見女真諸部朝貢高麗情況研究
    威力無比的眼藥水
    外星人的暑假作業(yè)
    新女媧補天
    欧美日本视频| av女优亚洲男人天堂| 久久精品国产清高在天天线| 久久久久久久久久黄片| 亚洲18禁久久av| 久久欧美精品欧美久久欧美| 国产老妇女一区| 在线观看免费视频日本深夜| 中文亚洲av片在线观看爽| 欧美日韩精品网址| 手机成人av网站| 麻豆成人av在线观看| 日日摸夜夜添夜夜添小说| 国产亚洲欧美98| 身体一侧抽搐| 午夜激情欧美在线| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 舔av片在线| 少妇熟女aⅴ在线视频| 日本成人三级电影网站| 国产精品综合久久久久久久免费| 欧美av亚洲av综合av国产av| 99热只有精品国产| 亚洲狠狠婷婷综合久久图片| av在线天堂中文字幕| 男女下面进入的视频免费午夜| 久久久久免费精品人妻一区二区| 午夜免费激情av| 少妇丰满av| 一级毛片高清免费大全| 麻豆成人午夜福利视频| 日韩中文字幕欧美一区二区| 精品午夜福利视频在线观看一区| 久久久久亚洲av毛片大全| 99久久成人亚洲精品观看| 美女大奶头视频| 男女那种视频在线观看| 麻豆国产97在线/欧美| 亚洲av电影在线进入| 国产高清有码在线观看视频| 亚洲成av人片免费观看| 两人在一起打扑克的视频| www国产在线视频色| 熟女人妻精品中文字幕| 十八禁人妻一区二区| 日韩成人在线观看一区二区三区| 欧美最黄视频在线播放免费| 亚洲精品久久国产高清桃花| 欧美午夜高清在线| 精品不卡国产一区二区三区| www国产在线视频色| 国产黄色小视频在线观看| 午夜福利在线观看吧| 午夜激情欧美在线| av黄色大香蕉| 亚洲无线观看免费| 国产精品久久久久久久电影 | 十八禁网站免费在线| 国产精品,欧美在线| 欧美日韩黄片免| 可以在线观看毛片的网站| 日韩欧美精品免费久久 | 波多野结衣高清无吗| 国产激情欧美一区二区| 欧美成人一区二区免费高清观看| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 午夜福利在线观看吧| 美女黄网站色视频| 亚洲成人免费电影在线观看| 亚洲久久久久久中文字幕| 偷拍熟女少妇极品色| 天美传媒精品一区二区| 亚洲av第一区精品v没综合| 国产精品嫩草影院av在线观看 | ponron亚洲| 91字幕亚洲| av中文乱码字幕在线| 国产乱人视频| 熟女少妇亚洲综合色aaa.| 舔av片在线| 国产真人三级小视频在线观看| 老司机在亚洲福利影院| 99久久成人亚洲精品观看| 母亲3免费完整高清在线观看| 少妇人妻一区二区三区视频| 国产免费男女视频| 12—13女人毛片做爰片一| 国内揄拍国产精品人妻在线| 乱人视频在线观看| 久9热在线精品视频| 日韩欧美在线二视频| 国产熟女xx| 日韩欧美国产在线观看| 一本一本综合久久| 亚洲精品国产精品久久久不卡| 午夜福利在线观看免费完整高清在 | 老鸭窝网址在线观看| 亚洲精品日韩av片在线观看 | 精品一区二区三区人妻视频| 亚洲在线自拍视频| 国产精品美女特级片免费视频播放器| 久久久国产精品麻豆| 欧美+亚洲+日韩+国产| 国产不卡一卡二| 久久精品国产清高在天天线| 丝袜美腿在线中文| 99在线视频只有这里精品首页| 亚洲欧美日韩高清专用| 欧美黑人巨大hd| 成人特级av手机在线观看| 久久欧美精品欧美久久欧美| 国产免费男女视频| 观看免费一级毛片| 久久九九热精品免费| 国产精品,欧美在线| 国产精品综合久久久久久久免费| 免费看a级黄色片| 亚洲av成人av| 成人无遮挡网站| 精品午夜福利视频在线观看一区| 亚洲国产日韩欧美精品在线观看 | 国产一区二区在线av高清观看| 伊人久久大香线蕉亚洲五| 国产探花极品一区二区| 国产av一区在线观看免费| 久久九九热精品免费| 性色av乱码一区二区三区2| 国产高清激情床上av| 变态另类成人亚洲欧美熟女| 国产成人啪精品午夜网站| 91久久精品国产一区二区成人 | 精品免费久久久久久久清纯| 丰满的人妻完整版| 亚洲美女黄片视频| 国产精品乱码一区二三区的特点| 国产三级中文精品| 久久精品影院6| 欧美在线一区亚洲| 精品无人区乱码1区二区| 最新在线观看一区二区三区| 亚洲人成网站在线播| 国产久久久一区二区三区| 色精品久久人妻99蜜桃| 精品久久久久久久毛片微露脸| 精品乱码久久久久久99久播| 国产三级在线视频| 欧美性感艳星| 亚洲精品成人久久久久久| 精品一区二区三区人妻视频| 激情在线观看视频在线高清| 国产精品久久久久久亚洲av鲁大| 88av欧美| 最后的刺客免费高清国语| 午夜免费激情av| 特大巨黑吊av在线直播| 国产精品 欧美亚洲| 成人一区二区视频在线观看| 精品人妻一区二区三区麻豆 | 高清毛片免费观看视频网站| aaaaa片日本免费| 嫁个100分男人电影在线观看| 18禁在线播放成人免费| 国产高清视频在线观看网站| 国产主播在线观看一区二区| 国产高清视频在线播放一区| 成人国产综合亚洲| av黄色大香蕉| 欧美色视频一区免费| 欧美黑人巨大hd| 99国产综合亚洲精品| 长腿黑丝高跟| 嫩草影院精品99| 18禁国产床啪视频网站| 久久亚洲真实| 精品午夜福利视频在线观看一区| 激情在线观看视频在线高清| 美女免费视频网站| 成人午夜高清在线视频| 成年女人毛片免费观看观看9| 亚洲人成网站高清观看| 国语自产精品视频在线第100页| 欧美bdsm另类| 日韩欧美三级三区| 女生性感内裤真人,穿戴方法视频| 日本一二三区视频观看| 性欧美人与动物交配| 亚洲第一欧美日韩一区二区三区| 啦啦啦观看免费观看视频高清| 国产乱人视频| 丁香欧美五月| 免费看a级黄色片| av在线天堂中文字幕| 99久久精品国产亚洲精品| netflix在线观看网站| 午夜福利在线在线| 国产三级黄色录像| 女警被强在线播放| 中文字幕av在线有码专区| 老汉色∧v一级毛片| 久久亚洲精品不卡| 午夜福利免费观看在线| 一个人免费在线观看电影| 国产一区二区在线av高清观看| 亚洲精品色激情综合| 国产91精品成人一区二区三区| www.色视频.com| 人人妻人人澡欧美一区二区| 久久欧美精品欧美久久欧美| 亚洲精品亚洲一区二区| 日韩欧美精品v在线| 亚洲美女黄片视频| 一区二区三区高清视频在线| 欧美日韩瑟瑟在线播放| 伊人久久精品亚洲午夜| 91九色精品人成在线观看| 亚洲欧美日韩高清在线视频| 亚洲久久久久久中文字幕| 午夜激情欧美在线| 日韩av在线大香蕉| 欧美日韩乱码在线| 亚洲av电影在线进入| 国产一区二区三区在线臀色熟女| 亚洲精品粉嫩美女一区| 亚洲精品美女久久久久99蜜臀| 一a级毛片在线观看| 欧美黄色片欧美黄色片| 一本一本综合久久| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 极品教师在线免费播放| 国产日本99.免费观看| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在 | 亚洲色图av天堂| h日本视频在线播放| 精品福利观看| 又黄又爽又免费观看的视频| 国产精品一区二区三区四区免费观看 | 三级国产精品欧美在线观看| 99在线人妻在线中文字幕| 国产美女午夜福利| 亚洲国产日韩欧美精品在线观看 | 亚洲性夜色夜夜综合| 亚洲精品国产精品久久久不卡| 亚洲国产欧洲综合997久久,| 中国美女看黄片| 免费人成视频x8x8入口观看| 搡老妇女老女人老熟妇| 51午夜福利影视在线观看| 岛国在线免费视频观看| 中文字幕精品亚洲无线码一区| 在线看三级毛片| 国产精品久久久久久久久免 | 成人特级av手机在线观看| 国产精品三级大全| 最近视频中文字幕2019在线8| 国产亚洲欧美在线一区二区| 床上黄色一级片| 高清日韩中文字幕在线| 我要搜黄色片| 日本在线视频免费播放| 九九在线视频观看精品| 亚洲精品色激情综合| 亚洲五月婷婷丁香| 亚洲第一电影网av| 精品国产超薄肉色丝袜足j| 麻豆国产97在线/欧美| 很黄的视频免费| 九色国产91popny在线| 国产老妇女一区| 国产精品,欧美在线| 亚洲欧美日韩卡通动漫| 国产中年淑女户外野战色| 久久久色成人| 在线观看日韩欧美| xxxwww97欧美| 特大巨黑吊av在线直播| 国产成人啪精品午夜网站| 欧美成人免费av一区二区三区| 狂野欧美激情性xxxx| 午夜激情福利司机影院| 色av中文字幕| 国产极品精品免费视频能看的| 国产精品三级大全| 国产97色在线日韩免费| 精品福利观看| 日本精品一区二区三区蜜桃| 在线免费观看不下载黄p国产 | 一级a爱片免费观看的视频| 久久99热这里只有精品18| 国产黄a三级三级三级人| 久久久精品欧美日韩精品| а√天堂www在线а√下载| 岛国在线免费视频观看| 嫁个100分男人电影在线观看| 69av精品久久久久久| 欧美在线一区亚洲| 国产精品久久视频播放| а√天堂www在线а√下载| 欧美成人性av电影在线观看| 国产精品久久久久久人妻精品电影| 欧美成人性av电影在线观看| 久久6这里有精品| 69人妻影院| 精品免费久久久久久久清纯| 亚洲av电影不卡..在线观看| 亚洲中文字幕日韩| 18禁在线播放成人免费| 国产久久久一区二区三区| 国内精品美女久久久久久| 国产精品三级大全| 无人区码免费观看不卡| 免费看光身美女| 美女免费视频网站| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 免费无遮挡裸体视频| 日韩 欧美 亚洲 中文字幕| 俄罗斯特黄特色一大片| 国模一区二区三区四区视频| 黄色片一级片一级黄色片| svipshipincom国产片| 人妻丰满熟妇av一区二区三区| 免费一级毛片在线播放高清视频| 少妇熟女aⅴ在线视频| 国产亚洲精品久久久久久毛片| 日韩欧美 国产精品| av国产免费在线观看| 国产三级黄色录像| 色av中文字幕| 一进一出抽搐gif免费好疼| 天美传媒精品一区二区| 精品一区二区三区av网在线观看| 精品久久久久久,| 国产亚洲av嫩草精品影院| 国产免费男女视频| 此物有八面人人有两片| 久久精品综合一区二区三区| 天美传媒精品一区二区| 欧美zozozo另类| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 脱女人内裤的视频| 老司机深夜福利视频在线观看| 国产视频一区二区在线看| 亚洲 国产 在线| 国产真实伦视频高清在线观看 | 51国产日韩欧美| 中出人妻视频一区二区| 99精品在免费线老司机午夜| 亚洲成av人片在线播放无| 白带黄色成豆腐渣| 亚洲成人久久性| 欧美+亚洲+日韩+国产| 国产一区在线观看成人免费| 少妇的逼好多水| 老司机福利观看| ponron亚洲| av视频在线观看入口| 亚洲国产色片| av黄色大香蕉| 午夜福利高清视频| 乱人视频在线观看| 亚洲男人的天堂狠狠| 亚洲 欧美 日韩 在线 免费| 长腿黑丝高跟| 免费在线观看成人毛片| 日本一本二区三区精品| 亚洲av二区三区四区| 久久久久亚洲av毛片大全| 国产精品免费一区二区三区在线| 老鸭窝网址在线观看| 亚洲成a人片在线一区二区| 99久久成人亚洲精品观看| 日韩欧美在线乱码| 在线观看66精品国产| 亚洲片人在线观看| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 88av欧美| 亚洲人成网站在线播| 日本五十路高清| 久久久色成人| 成人国产综合亚洲| 丰满乱子伦码专区| 在线观看日韩欧美| 欧美+日韩+精品| 国产三级中文精品| 老汉色av国产亚洲站长工具| 亚洲五月天丁香| 亚洲国产色片| 男女那种视频在线观看| 成年版毛片免费区| 国产不卡一卡二| a在线观看视频网站| 精品久久久久久成人av| 人人妻人人看人人澡| 日韩欧美 国产精品| 国产伦精品一区二区三区视频9 | 国产成人影院久久av| 久久久久久久亚洲中文字幕 | 国产精品乱码一区二三区的特点| 身体一侧抽搐| 九九久久精品国产亚洲av麻豆| 色精品久久人妻99蜜桃| 国产精品99久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 欧美中文综合在线视频| 亚洲精品日韩av片在线观看 | 尤物成人国产欧美一区二区三区| 在线观看av片永久免费下载| 69人妻影院| 中文字幕久久专区| 无遮挡黄片免费观看| 久久性视频一级片| 国产亚洲精品综合一区在线观看| 国产精品亚洲美女久久久| 亚洲人成网站在线播放欧美日韩| 国产av在哪里看| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| www国产在线视频色| 在线十欧美十亚洲十日本专区| 日本 av在线| 欧美成人a在线观看| 怎么达到女性高潮| 免费在线观看影片大全网站| 老鸭窝网址在线观看| 日本熟妇午夜| 俄罗斯特黄特色一大片| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 精品人妻一区二区三区麻豆 | 国产真实伦视频高清在线观看 | 99久久九九国产精品国产免费| 搡女人真爽免费视频火全软件 | 国产成年人精品一区二区| 亚洲成av人片免费观看| 欧美乱码精品一区二区三区| 亚洲乱码一区二区免费版| 欧美性猛交╳xxx乱大交人| 又黄又粗又硬又大视频| 啦啦啦韩国在线观看视频| av欧美777| 很黄的视频免费| 欧美日韩黄片免| 偷拍熟女少妇极品色| 精品人妻一区二区三区麻豆 | 欧美一级a爱片免费观看看| 老熟妇仑乱视频hdxx| 90打野战视频偷拍视频| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 欧美黑人欧美精品刺激| 99热6这里只有精品| 成人永久免费在线观看视频| 热99在线观看视频| 欧美色视频一区免费| 日本成人三级电影网站| 69av精品久久久久久| 在线十欧美十亚洲十日本专区| 超碰av人人做人人爽久久 | 中文字幕人成人乱码亚洲影| 久久精品国产99精品国产亚洲性色| av天堂中文字幕网| 国产高清有码在线观看视频| 亚洲在线观看片| 男女午夜视频在线观看| 全区人妻精品视频| 99久久精品热视频| 久久久国产成人免费| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆| 美女cb高潮喷水在线观看| 国产黄片美女视频| 88av欧美| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 亚洲av免费在线观看| 国产69精品久久久久777片| 九九在线视频观看精品| 舔av片在线| 天堂影院成人在线观看| 在线观看av片永久免费下载| 欧美在线一区亚洲| 可以在线观看毛片的网站| 日韩 欧美 亚洲 中文字幕| 好男人在线观看高清免费视频| 国产伦在线观看视频一区| 色吧在线观看| 国产单亲对白刺激| 国产三级中文精品| 99热6这里只有精品| 免费看a级黄色片| 国产69精品久久久久777片| 女人高潮潮喷娇喘18禁视频| 色视频www国产| 亚洲精品日韩av片在线观看 | 真实男女啪啪啪动态图| 草草在线视频免费看| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 国产私拍福利视频在线观看| 成年免费大片在线观看| 亚洲精品在线美女| 国产精品久久久久久人妻精品电影| 国产精品野战在线观看| 久久久久久久久大av| 欧美丝袜亚洲另类 | 欧美xxxx黑人xx丫x性爽| 看黄色毛片网站| 免费av毛片视频| 性欧美人与动物交配| 久久久久久人人人人人| 成人av在线播放网站| 日韩人妻高清精品专区| 很黄的视频免费| 无遮挡黄片免费观看| 老司机福利观看| 婷婷六月久久综合丁香| 午夜久久久久精精品| 婷婷六月久久综合丁香| 女人被狂操c到高潮| 亚洲精品一区av在线观看| 国产成人aa在线观看| 国产精品久久久久久久电影 | 免费av观看视频| 国产高清激情床上av| 桃色一区二区三区在线观看| ponron亚洲| 嫁个100分男人电影在线观看| 国内精品一区二区在线观看| 综合色av麻豆| 亚洲欧美日韩高清在线视频| 色噜噜av男人的天堂激情| 成人鲁丝片一二三区免费| 男人舔奶头视频| 1024手机看黄色片| 99视频精品全部免费 在线| 69av精品久久久久久| 搡老熟女国产l中国老女人| 丰满人妻一区二区三区视频av | 国产亚洲精品一区二区www| 亚洲熟妇中文字幕五十中出| 欧美国产日韩亚洲一区| 97人妻精品一区二区三区麻豆| 99热6这里只有精品| 成年女人看的毛片在线观看| 嫩草影院入口| 成人高潮视频无遮挡免费网站| 亚洲欧美一区二区三区黑人| 午夜日韩欧美国产| 欧美日韩中文字幕国产精品一区二区三区| 成人欧美大片| 偷拍熟女少妇极品色| 婷婷亚洲欧美| 午夜福利视频1000在线观看| 老熟妇仑乱视频hdxx| 美女高潮的动态| 男女做爰动态图高潮gif福利片| 亚洲人成网站在线播| 男女做爰动态图高潮gif福利片| 国产高清videossex| 哪里可以看免费的av片| 久久精品国产综合久久久| 日日干狠狠操夜夜爽| 日韩精品中文字幕看吧| 女人十人毛片免费观看3o分钟| 激情在线观看视频在线高清| 啪啪无遮挡十八禁网站| 日本熟妇午夜| 最近最新中文字幕大全免费视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av一区综合| 免费av观看视频| 亚洲av电影在线进入| 中文字幕高清在线视频| 丰满乱子伦码专区| 成人精品一区二区免费| 麻豆国产97在线/欧美| 欧美最黄视频在线播放免费| 十八禁网站免费在线| 国产成人av激情在线播放| 亚洲精品色激情综合| 国内精品久久久久精免费| 深夜精品福利| 免费人成在线观看视频色| 琪琪午夜伦伦电影理论片6080| 看黄色毛片网站| 少妇裸体淫交视频免费看高清| 伊人久久精品亚洲午夜| 亚洲国产精品成人综合色| 亚洲 欧美 日韩 在线 免费| 美女 人体艺术 gogo| 18禁黄网站禁片免费观看直播| 最近最新中文字幕大全电影3| 欧美一区二区国产精品久久精品| 国产精品乱码一区二三区的特点| 十八禁人妻一区二区| 国产爱豆传媒在线观看| 精品日产1卡2卡| 精品乱码久久久久久99久播| 18+在线观看网站| 欧美黑人巨大hd| 国产爱豆传媒在线观看| 婷婷丁香在线五月| 久久99热这里只有精品18| 最新美女视频免费是黄的| 亚洲内射少妇av| 韩国av一区二区三区四区| 日本免费a在线|