• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Co-sensitization of Dyes with Different Acceptor Moieties for Dye-sensitized Solar Cells

    2019-11-20 05:31:56ZHAOXuePEIJuanLIYingpin
    影像科學與光化學 2019年6期

    ZHAO Xue, PEI Juan, LI Yingpin

    (College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, P.R. China)

    Abstract: In order to broaden the response range of dye-sensitized solar cells to the solar spectrum and improve the photovoltaic performance of the cells, two triphenylamine dyes (TR1 and TC1) containing different acceptor moieties (rhodanine-3-acetic acid (RA) and cyanoacrylic acid (CA)) were co-sensitized. The TR1 dyes adsorbed on TiO2 surface with a lied down mode, while the TC1 dyes with a standing adsorption mode. When the two dyes were co-sensitized on TiO2 in different molar ratios, TC1 would occupy part of the positions of TR1, which could expand the spectrum and inhibit the charge recombination at the same time. The electron lifetime of the co-sensitized solar cell device was longer than that of TR1-sensitized solar cell. Finally, the co-sensitized device sensitized by co-sensitizer solution in which the molar ratio of TR1 to TC1 is 5∶5 yielded short-circuit photocurrent density (Jsc) of 11.7 mA/cm2, open circuit voltage (Voc) of 704 mV, fill factor (FF) of 0.73 and the highest efficiency of 6.03%. This performance is superior to those of solar cell devices sensitized by the two dyes individually.

    Key words: dye-sensitized solar cells; co-sensitization; triphenylamine dyes; photovoltaic performance; impedance

    1 Introduction

    Dye-sensitized solar cells (DSCs) reported in 1991 are regarded as low-cost next generation solar cells, and significant progress has been made in the past few decades[1-3]. In DSCs, the sensitizers play a crucial role due to their critical function in light harvesting and electron injection[4]. Uptill now, DSCs based on metal-complex sensitizers such as Ru complexes and Zn porphyrin photosensitizers have achieved efficiencies up to 11% and 13%, respectively[5,6]. However, the limitations corresponding to these complexes such as the rare resources of ruthenium and zinc metals, high manufacturing cost, and environmental issues would restrain their widespread applications[7]. So other organic metal-free sensitizers have attracted much attention for researchers in view of their advantages, such as larger molar extinction coefficients, higher structural flexibility, lower cost and environmentally friendliness[8,9]. It was worthy noting that the record highest efficiency of 12.5% has been achieved by Wang and coworkers[10].

    Generally, metal-free organic sensitizers are constituted by donor-(πconjugated spacer)-acceptor (D-π-A) structure. However, the absorption spectra of most of the D-π-A dyes are narrow, which is not beneficial for higher short-circuit current (Jsc). Therefore, further studies are needed to develop to reduce the charge recombination and broaden the range of light-harvesting. Co-sensitization is an effective approach, by which a combination of two or more dyes adsorbed together on semiconductor surface, extending the light-harvesting ability to enhance the short-circuit photocurrent density (Jsc) and thus the efficiency (η) of DSCs[11]. Oguraetal. used a co-sensitizer composing terpyridine complex (black dye) with an indoline dye (D131) and resulted in a significantly enhanced photocurrent, leading to a device performance of 11%[12]. Koetal. explored a Ru complex (JK-142) as sensitizer in combination with an organic dye (JK-62), and positioned them on TiO2film[13]. Surprisingly a considerably improved efficiency of up to 10.2% was achieved, which is favorably superior to that of N719 (8.68%) in the same device configurations. In 2011, a DSC with a high photovoltaic performance of 12.3% was demonstrated with the co-sensitization of a zinc porphyrin dye YD2-o-C8 and a metal-free organic dye Y123 with cobalt (Ⅱ/Ⅲ)-based redox electrolyte[14]. Of course, there are also successful examples of co-sensitized DSCs using solely metal-free organic dyes. For instance, Choi et al. achieved a high performance of 8.65% by co-sensitizing JK2 and SQ1 on Al2O3-coated TiO2films[15]. Sunetal. applied cyanine dye CM203 to co-sensitize with other two organic dyes (CMR103 and HY113), theJscwas markedly increased due to the spectra response to the whole visible domain, and consequently the conversion efficiency of 8.2% was achieved[16]. In addition to much emphasis on the effect of spectral complementation ameliorating theJscmentioned in the above research, dyes in co-sensitized system also have some influence on open circuit voltage (Voc) and thenJscorη. Almost all theJscandVocof co-sensitized cells exhibit different degree of increase compared with those of DSCs based on individual dyes.

    As a part of our ongoing efforts to design and synthesize triphenylamine-based organic dyes, we also interested in co-sensitizing multiple dyes for improving the performance of DSCs[17-20]. We noticed an interesting trend in which sensitizers incorporating cyanoacrylic acid (CA) moiety as the acceptor/anchoring group commonly exhibited higher Voc values than the corresponding ones bearing identical donors andπ-bridges but a different acceptor of rhodanine-3-acetic acid (RA) moiety. In the present work, the co-sensitization of two metal-free triphenylamine dyes with different acceptor moieties (RA and CA) is applied to DSCs. Furthermore, the relationship between the photovoltaic properties and triphenylamine dyes are also discussed in detail.

    2 Experiment

    2.1 Preparation of Dye-sensitized Nanocrystalline TiO2 Electrodes and Characterization

    The two triphenylamine dyes TR1 and TC1 with different acceptor moieties were synthesized following the previous reports[20,21]. The chemical structures of these dyes are shown in Figure 1. Nanocrystalline TiO2films were prepared by coating TiO2paste onto the F-doped transparent conductive glass (F-doped SnO2, short for FTO) as described by Gr?tzel and coworkers[22]. Briefly, FTO substrates (10 Ω/sq, >85% transparency in the visible region, Yaohua, China) were treated with TiCl4(aq., 50 mmol/L) for 30 min, followed by screen-printing a paste consisted of TiO2(P25, a mixture of 30% rutile and 70% anatase, Degussa AG, Germany; 16%), ethyl cellulose (20-30 cp, 5%) and terpinol (79%). The film was successively fired at 450 ℃ under air for 30 min, treated with TiCl4solution and fired again to give a ~15 μm thick mesoscopic TiO2film.

    Dyes TR1 and TC1 were dissolved individually in absolute methanol to form dye-sensitizer solutions with equal concentration (5×10-5mol/L) and volume (10 mL). Mixing TR1 and TC1 solutions with different volume ratios of 9∶1, 7∶3, 5∶5, 3∶7 and 1∶9 would get the co-sensitizer solutions, in which the total concentration and volume are still the same as those of individual dye solutions. Dye sensitization was carried out by immersing the TiO2electrodes in TR1 or TC1 solutions while the TiO2films were still hot. This process gave TR1/TiO2and TC1/TiO2electrodes. Co-sensitized electrodes were obtained by immersing TiO2films in the prepared mixed solutions with TR1 to TC1 molar ratios of 9∶1, 7∶3, 5∶5, 3∶7 and 1∶9, which were coded as Co1/TiO2, Co2/TiO2, Co3/TiO2, Co4/TiO2and Co5/TiO2, respectively. The absorption spectra of the dyes in methanol solutions and adsorbed on TiO2films were measured with a Jasco V-550 UV/Vis spectrophotometer.

    Figure 1 Molecular structures of triphenylamine dyes TR1 and TC1

    2.2 Fabrication and Characterization of Dye-sensitized Solar Cells

    The dye-sensitized TiO2photoanode and the platinum coated FTO photocathode were separated by adhesive tapes (45 μm thick) to form a space, in which a redox electrolyte (0.1 mol/L LiI, 0.05 mol/L I2, and 0.6 mol/L DMPImI in acetonitrile) be introduced. The cells were finalized by firmly clamping the two electrodes together.

    For photovoltaic measurements of the DSCs, a 500 W Xe lamp (400-800 nm) served as the light source in combination with a optical filter to remove ultraviolet and infrared radiation. The light intensity was held at 100 mW/cm2at the surface of the test cells with the aid of a radiant power meter (Oriel Model 70260 with 70268 Probe). I-V characteristics were recorded with a digital source meter (Keithley 2400) controlled by a computer. Monochromatic incident photon to current conversion efficiency (IPCE), plotted as a function of excitation wavelength, was recorded on a home-built system equipped with a bromine tungsten lamp and a grating spectrometer (SBP300, Zolix). The IPCE system was calibrated using a silicon reference cell (the 18th Research Institute of Electronics Industry Ministry, China). Electrochemical impedance spectra (EIS) measurements of the DSCs were carried out using a potentiostat/galvanostat/FRA (PARSTAT 2273) in the dark with the frequency range of 100 mHz to 100 kHz. The applied bias voltage and alternate current amplitude were set at -0.65 V and 0.01 V, respectively. The resulting curves were fitted to the appropriate equivalent circuit using Z-view software.

    3 Results and Discussions

    The absorption spectra of dyes TR1 and TC1 in absolute methanol solution are shown in Figure 2(a). The absorption peaks of TR1 and TC1 in methanol are at 470 and 410 nm. The corresponding maximum molar extinction coefficients (εmax) are 4.47×104mol-1·L·cm-1and 2.35×104mol-1·L·cm-1, which are higher than those of Ru complexes (~1.4 × 103mol-1·L·cm-1), indicating a good ability of light harvesting[23]. Noticeably, the photoresponse could complement to each other to some extent, especially in the range of 380-550 nm.

    Figure 2(b) shows the absorption spectra of TiO2films sensitized by dyes TR1 and TC1, with that of pure TiO2film as a reference. In comparison to the spectra of dyes in methanol solution, the absorption spectra on TiO2films are broadened and red-shifted from 470 nm to 486 nm for TR1, and 410 nm to 431 nm for TC1, implying that the formation of dye aggregates on TiO2films[24]. Spectra of TiO2films sensitized by co-sensitizer solutions are also shown in Figure 2(b). In general, the absorption intensity ratio of dye TR1 part to TC1 part became smaller with the concentration increase of dye TC1, but with the absorption onset at almost the same position.

    Figure 2 Absorption spectra of dyes TR1 and TC1 in methanol solution (a), and all TiO2 films sensitized in different sensitizer solutions with different volume ratios, with that of pure TiO2 film as a reference (b)

    Figure 3 shows the current-voltage characteristics of DSCs sensitized by individual dyes TR1 and TC1 (DevicesA,B). The corresponding photovoltaic parameters (Jsc,Voc,FFandη) of these DSCs are summarized in Table 1. DeviceBshows significant higherVocvalue (720 mV) than that of DeviceA(633 mV), but lowerJscvalue (8.10 mA/cm2) than TR1 (9.10 mA/cm2). Many research groups, including ours, have attributed the higherVocvalues of TC dyes to their adsorption mode on TiO2[20]. TC dyes with standing adsorption mode have larger adsorption angles, and show larger dipole moments in the direction normal to the TiO2surface than TR dyes (lie down along the TiO2surface) (Figure 4). It is likely to shift the conduction band of TiO2to more negative position and generate higherVocvalues[20]. Additionally, the charge recombination is relatively reduced for DeviceB, which is in consistent with the decreased order of dark current for comparing TC1-based cell device to TR1-based one (Figure 3), and thus benefit for voltage improvement. Finally, efficiencies of 4.15% and 4.01% are obtained for Devices A and B, respectively. And dye TR1 is subjected to co-sensitize with dye TC1 because the latter could compensate for the deficit of the former in the photoresponse and charge recombination.

    Figure 3 Current density-voltage characteristics of DSCs (Devices A-G) sensitized by TR1, TC1 and co-sensitizers; and dark-current of Devices A, B and E

    Figure 4 Adsorption mode of the two triphenylamine dyes on TiO2 surface

    Device No.aDyesJsc /(mA·cm-2)Voc /mVFFη /%ATR1 (TR1∶TC1 = 10∶0)9.106330.724.15BTC1 (TR1∶TC1 = 0∶10)8.107200.694.01CCo1 (TR1∶TC1 = 9∶1)9.476450.714.34DCo2 (TR1∶TC1 = 7∶3)9.746780.714.70ECo3 (TR1∶TC1 = 5∶5)11.77040.736.03FCo4 (TR1∶TC1 = 3∶7)10.67100.715.34GCo5 (TR1∶TC1 = 1∶9)9.367150.714.73

    a. Devices A and B are the cells sensitized by TR1 and TC1 dye solutions, while Devices C-G are the cells sensitized by the co-sensitized dyes.

    DSCs sensitized by dye mixture solutions (DevicesC-G) with different molar ratios are also characterized. It can be seen from Figure 3 and Table 1 that,Vocare increasing all along with the increasing adsorbed amount of dye TC1 obviously. Because dye TC1 molecules occupy some positions of dye TR1, the charge recombination would be reduced for reasons mentioned above. For example, the dark current of DeviceEis decreased than DeviceA, but serious than DeviceB(Figure 3). And the more the TC dye, the smaller the dark current is. On the other hand,Jscvalues are not always increasing by decreasing the co-sensitizer molar ratio of the mixture solutions (from DeviceCto DeviceG). It is intriguing that the largestJscvalue reaches 11.7 mA/cm2for DeviceE. Then theJscandηbecame to decrease, but still higher than solar cells sensitized by individual dyes. The highest efficiency of 6.03% is achieved for DeviceEsensitized by the mixture solution containing equivalent concentration. These results indicate that co-sensitization of the two dyes is an effective strategy to improve the efficiency of DSCs.

    Figure 5 presents the IPCE spectra of solar cells using the individual dyes (DevicesAandB). Although the photoresponse range of TC1 dye is narrower than the corresponding TR1 dye, a rather higher IPCE plateau value for TC1-sensitized solar cell (DeviceB) is performed. It is probably due to better electron injection into TiO2for TC1 dye and/or the reduced charge recombination that make the charge collection efficiency increase at the photoanode. The corresponding IPCE spectrum of cell DeviceEis displayed also in Figure 5. It is found to be broadened by covering the visible domain from 400 to 700 nm in comparison with those of solar cells sensitized by individual dyes TR1 and TC1. The peak values of 80% and 88% are at 530 and 460 nm, respectively, corresponding to the absorption spectra of dye mixtures on TiO2film.

    Figure 5 IPCE spectra of Devices A, B and E

    4 Conclusion

    In conclusion, we demonstrated that co-sensitization by two metal-free triphenylamine dyes with different acceptor groups (TR1 and TC1) is a successful approach to improve the performance of DSCs. The Voc of the cells were increasing all along with the decreased volume ratio (also molar ratio) of TR1∶TC1 in the co-sensitized solution, resulting from the standing adsorbed TC1 dye molecules take up some positions of TR1 with lied down adsorption mode. While theJscof the cells reached the max. at 5∶5 molar ratio, which profited from the complimentary spectra response of the two dyes on the one hand, and the enhanced the electron collection efficiency for the decreased dark current on the other hand. The best efficiency of 6.03% was obtained for the cell sensitized by the co-sensitizers with 5∶5 molar ratio in mixed solution. These results shown here not only provide new vision on how to produce highly efficient solar cells using dyes with various molecular structures, but also motivate other groups to explore more efficient co-sensitizers through controlling the molecule structure to further enhance the performance of DSCs.

    Figure 6 Impedance spectra of DSCs (Devices A, B and E) measured at -0.65 V bias in the dark

    窝窝影院91人妻| 精品久久久久久电影网| 午夜福利免费观看在线| av中文乱码字幕在线| 变态另类成人亚洲欧美熟女 | 自线自在国产av| 99国产精品99久久久久| av片东京热男人的天堂| 在线看a的网站| 国产蜜桃级精品一区二区三区 | 69av精品久久久久久| 欧美老熟妇乱子伦牲交| 国产一区二区三区视频了| 在线国产一区二区在线| 欧美丝袜亚洲另类 | 女人爽到高潮嗷嗷叫在线视频| 国产精品久久电影中文字幕 | 欧美大码av| 国产麻豆69| 欧美日韩乱码在线| 另类亚洲欧美激情| 每晚都被弄得嗷嗷叫到高潮| 色播在线永久视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人精品久久二区二区91| 19禁男女啪啪无遮挡网站| 搡老岳熟女国产| 曰老女人黄片| 亚洲欧美日韩高清在线视频| 久久久久久亚洲精品国产蜜桃av| 在线观看免费午夜福利视频| 久久久久久久久久久久大奶| 乱人伦中国视频| 九色亚洲精品在线播放| 丝袜美足系列| 日韩欧美在线二视频 | 欧美激情久久久久久爽电影 | 热99久久久久精品小说推荐| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线免费观看视频4| 国产国语露脸激情在线看| 久久久久久久精品吃奶| 99re6热这里在线精品视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜两性在线视频| 老司机深夜福利视频在线观看| 99精品在免费线老司机午夜| 欧洲精品卡2卡3卡4卡5卡区| 国产欧美日韩综合在线一区二区| 高清黄色对白视频在线免费看| 午夜福利视频在线观看免费| 午夜免费成人在线视频| 一区二区三区激情视频| 免费在线观看视频国产中文字幕亚洲| 亚洲中文日韩欧美视频| 正在播放国产对白刺激| 狂野欧美激情性xxxx| aaaaa片日本免费| 成人黄色视频免费在线看| 99国产综合亚洲精品| 黄片小视频在线播放| 久久狼人影院| 女性被躁到高潮视频| 亚洲色图综合在线观看| 99国产精品99久久久久| 怎么达到女性高潮| xxx96com| 午夜老司机福利片| 两性夫妻黄色片| 久久天躁狠狠躁夜夜2o2o| 香蕉丝袜av| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久成人aⅴ小说| 飞空精品影院首页| 少妇 在线观看| www日本在线高清视频| 咕卡用的链子| 免费在线观看日本一区| 国产人伦9x9x在线观看| 夫妻午夜视频| 欧美丝袜亚洲另类 | 欧美日韩黄片免| a级毛片黄视频| 日韩免费高清中文字幕av| 两性午夜刺激爽爽歪歪视频在线观看 | 99香蕉大伊视频| 99精国产麻豆久久婷婷| 露出奶头的视频| 欧美日韩中文字幕国产精品一区二区三区 | 老司机靠b影院| 欧美不卡视频在线免费观看 | 一二三四社区在线视频社区8| av中文乱码字幕在线| 韩国精品一区二区三区| 男人舔女人的私密视频| 亚洲国产欧美日韩在线播放| 国产精品久久久久成人av| 欧美日韩国产mv在线观看视频| 午夜福利影视在线免费观看| 欧美人与性动交α欧美软件| 一本大道久久a久久精品| 在线十欧美十亚洲十日本专区| a级毛片黄视频| 国产精品久久久久久精品古装| 亚洲伊人色综图| 日韩欧美国产一区二区入口| 新久久久久国产一级毛片| videos熟女内射| 久久精品aⅴ一区二区三区四区| 午夜福利乱码中文字幕| 18禁国产床啪视频网站| 国产真人三级小视频在线观看| 久久国产乱子伦精品免费另类| 人人妻,人人澡人人爽秒播| 老熟女久久久| 国产日韩欧美亚洲二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品影院久久| 人妻 亚洲 视频| 久久久水蜜桃国产精品网| 啦啦啦 在线观看视频| 国产不卡av网站在线观看| 日韩欧美一区视频在线观看| 女人高潮潮喷娇喘18禁视频| 女人被躁到高潮嗷嗷叫费观| 亚洲国产毛片av蜜桃av| 国产一区有黄有色的免费视频| 亚洲欧美色中文字幕在线| 国产真人三级小视频在线观看| 欧美精品高潮呻吟av久久| 精品国产一区二区三区四区第35| 亚洲美女黄片视频| 波多野结衣av一区二区av| av欧美777| 久久精品国产亚洲av香蕉五月 | av福利片在线| 国产精品美女特级片免费视频播放器 | 黄色女人牲交| 日韩欧美一区二区三区在线观看 | 久久精品人人爽人人爽视色| 国产三级黄色录像| 久久久国产精品麻豆| 视频区欧美日本亚洲| 亚洲人成77777在线视频| 久久香蕉国产精品| 国产精品九九99| 女性生殖器流出的白浆| 视频区欧美日本亚洲| 国产精品九九99| 国产免费现黄频在线看| 国产亚洲欧美在线一区二区| 亚洲精品粉嫩美女一区| 女人久久www免费人成看片| 国产三级黄色录像| 人人妻人人澡人人爽人人夜夜| 91成年电影在线观看| 亚洲九九香蕉| 免费女性裸体啪啪无遮挡网站| 亚洲七黄色美女视频| 欧美精品人与动牲交sv欧美| 亚洲五月天丁香| 桃红色精品国产亚洲av| 国产精华一区二区三区| 欧美精品一区二区免费开放| 成人手机av| 日本一区二区免费在线视频| 99热网站在线观看| 女人精品久久久久毛片| 婷婷丁香在线五月| 99精品在免费线老司机午夜| 国产精品电影一区二区三区 | 欧美在线黄色| 亚洲熟妇熟女久久| 亚洲九九香蕉| 国产成人精品久久二区二区91| 国产精品av久久久久免费| 日韩熟女老妇一区二区性免费视频| 90打野战视频偷拍视频| 黄色视频不卡| 99精国产麻豆久久婷婷| 日韩熟女老妇一区二区性免费视频| 电影成人av| e午夜精品久久久久久久| 91大片在线观看| 国产成+人综合+亚洲专区| 老司机在亚洲福利影院| 亚洲午夜精品一区,二区,三区| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区三区在线| 欧美黑人精品巨大| 天天添夜夜摸| 欧美人与性动交α欧美精品济南到| 少妇的丰满在线观看| 一级毛片女人18水好多| 国产精品久久久久成人av| 妹子高潮喷水视频| 亚洲精品久久成人aⅴ小说| 国产精品国产av在线观看| 好男人电影高清在线观看| 91成人精品电影| 日韩精品免费视频一区二区三区| 日本黄色日本黄色录像| 极品教师在线免费播放| а√天堂www在线а√下载 | 咕卡用的链子| 国产真人三级小视频在线观看| 成人国产一区最新在线观看| 无遮挡黄片免费观看| 欧美激情极品国产一区二区三区| 免费人成视频x8x8入口观看| 别揉我奶头~嗯~啊~动态视频| 成熟少妇高潮喷水视频| 99国产精品99久久久久| 欧美日韩国产mv在线观看视频| 美国免费a级毛片| 国产99白浆流出| 国产无遮挡羞羞视频在线观看| 中文字幕精品免费在线观看视频| 国产在视频线精品| 国产99久久九九免费精品| 曰老女人黄片| 悠悠久久av| 久久久精品免费免费高清| 国产男女超爽视频在线观看| 亚洲国产欧美一区二区综合| 1024视频免费在线观看| 在线观看日韩欧美| 成人国语在线视频| 免费av中文字幕在线| 亚洲欧美一区二区三区久久| 黄网站色视频无遮挡免费观看| 91成人精品电影| 亚洲久久久国产精品| 视频在线观看一区二区三区| 精品久久蜜臀av无| 色播在线永久视频| 国产99白浆流出| 80岁老熟妇乱子伦牲交| 国产免费现黄频在线看| 成年人黄色毛片网站| 欧洲精品卡2卡3卡4卡5卡区| 真人做人爱边吃奶动态| 亚洲三区欧美一区| 一区二区日韩欧美中文字幕| 51午夜福利影视在线观看| 色婷婷av一区二区三区视频| 国产激情欧美一区二区| 亚洲中文字幕日韩| 国产免费av片在线观看野外av| 男女之事视频高清在线观看| 很黄的视频免费| 国精品久久久久久国模美| 免费在线观看视频国产中文字幕亚洲| 久久国产精品影院| 国产深夜福利视频在线观看| 在线观看免费视频网站a站| 少妇裸体淫交视频免费看高清 | 丰满人妻熟妇乱又伦精品不卡| 国产免费男女视频| 久久久国产欧美日韩av| 亚洲av成人不卡在线观看播放网| 亚洲国产精品sss在线观看 | 国产无遮挡羞羞视频在线观看| 激情视频va一区二区三区| 国产在线一区二区三区精| 亚洲精品久久成人aⅴ小说| 国产不卡av网站在线观看| 亚洲性夜色夜夜综合| 18在线观看网站| 777米奇影视久久| 99精品在免费线老司机午夜| 国产精品98久久久久久宅男小说| 久久久国产欧美日韩av| 国产免费av片在线观看野外av| 老司机影院毛片| 一区二区三区精品91| 777米奇影视久久| 真人做人爱边吃奶动态| 不卡av一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美一区视频在线观看| 在线天堂中文资源库| 日韩人妻精品一区2区三区| 久9热在线精品视频| 大片电影免费在线观看免费| 国产精品一区二区免费欧美| 色老头精品视频在线观看| 亚洲精品在线美女| 91成人精品电影| 99精品欧美一区二区三区四区| 中文字幕人妻丝袜制服| 视频在线观看一区二区三区| 成熟少妇高潮喷水视频| 精品卡一卡二卡四卡免费| 纯流量卡能插随身wifi吗| 亚洲av美国av| 亚洲av日韩在线播放| x7x7x7水蜜桃| 国产日韩一区二区三区精品不卡| 777久久人妻少妇嫩草av网站| 国产99白浆流出| 国产精品久久久av美女十八| videos熟女内射| 两个人免费观看高清视频| av网站免费在线观看视频| 免费在线观看亚洲国产| 亚洲欧美日韩高清在线视频| 91九色精品人成在线观看| 午夜视频精品福利| 侵犯人妻中文字幕一二三四区| 久久久久久人人人人人| 热99久久久久精品小说推荐| 大香蕉久久网| 在线观看免费午夜福利视频| 免费在线观看日本一区| 999精品在线视频| 日韩三级视频一区二区三区| 日韩人妻精品一区2区三区| 最新的欧美精品一区二区| 久99久视频精品免费| 成人影院久久| 亚洲五月色婷婷综合| 一边摸一边抽搐一进一出视频| 国产精品影院久久| 老司机靠b影院| 国产精品影院久久| 天堂√8在线中文| 欧美色视频一区免费| 精品国内亚洲2022精品成人 | 国产精品综合久久久久久久免费 | 国产欧美亚洲国产| 亚洲一码二码三码区别大吗| 在线观看日韩欧美| 国内久久婷婷六月综合欲色啪| 一本综合久久免费| 亚洲精品中文字幕在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 狠狠婷婷综合久久久久久88av| 免费在线观看黄色视频的| 人人妻人人添人人爽欧美一区卜| 热re99久久精品国产66热6| 国产精品久久久人人做人人爽| 精品亚洲成a人片在线观看| 久久狼人影院| 午夜免费观看网址| 日本a在线网址| 人人妻人人澡人人看| 精品久久久久久久久久免费视频 | 精品福利永久在线观看| 男女高潮啪啪啪动态图| 妹子高潮喷水视频| videosex国产| 久久久国产成人精品二区 | 欧美性长视频在线观看| 欧美av亚洲av综合av国产av| 亚洲国产精品一区二区三区在线| 成人18禁在线播放| 亚洲国产欧美日韩在线播放| 精品一品国产午夜福利视频| 18禁美女被吸乳视频| 国产精品亚洲av一区麻豆| 天天躁日日躁夜夜躁夜夜| 十八禁高潮呻吟视频| 午夜福利在线免费观看网站| 国产国语露脸激情在线看| 国产成人免费无遮挡视频| www日本在线高清视频| 天天影视国产精品| 亚洲国产精品一区二区三区在线| 在线av久久热| 9191精品国产免费久久| 国产男靠女视频免费网站| 亚洲成av片中文字幕在线观看| 午夜精品久久久久久毛片777| 大码成人一级视频| 99国产精品99久久久久| 妹子高潮喷水视频| 天堂动漫精品| 久久香蕉激情| 免费一级毛片在线播放高清视频 | 国产成人精品无人区| aaaaa片日本免费| 亚洲av片天天在线观看| 亚洲少妇的诱惑av| 精品国产乱码久久久久久男人| 日本vs欧美在线观看视频| 搡老熟女国产l中国老女人| 免费黄频网站在线观看国产| 欧美日韩乱码在线| 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 国产免费av片在线观看野外av| 电影成人av| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费 | 99精国产麻豆久久婷婷| 制服诱惑二区| 美女福利国产在线| 999久久久精品免费观看国产| 国产精品久久久人人做人人爽| а√天堂www在线а√下载 | 少妇粗大呻吟视频| 亚洲久久久国产精品| 女警被强在线播放| 天天躁日日躁夜夜躁夜夜| 18禁观看日本| 国产av精品麻豆| 老司机福利观看| 国产在视频线精品| 国产一区在线观看成人免费| 国产成人精品久久二区二区91| 两人在一起打扑克的视频| 国产精品久久久久成人av| 日本五十路高清| 在线观看免费日韩欧美大片| 亚洲成a人片在线一区二区| 美女国产高潮福利片在线看| 国产蜜桃级精品一区二区三区 | 男女高潮啪啪啪动态图| 国产99白浆流出| 动漫黄色视频在线观看| 午夜福利一区二区在线看| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 免费在线观看影片大全网站| 天天添夜夜摸| 国产精品久久电影中文字幕 | 国产精品香港三级国产av潘金莲| 国产精品久久视频播放| 亚洲情色 制服丝袜| 男人舔女人的私密视频| 高清黄色对白视频在线免费看| 9色porny在线观看| 亚洲男人天堂网一区| 国产极品粉嫩免费观看在线| 99久久99久久久精品蜜桃| av视频免费观看在线观看| 成人手机av| 精品国产国语对白av| 另类亚洲欧美激情| 操出白浆在线播放| 动漫黄色视频在线观看| 国产欧美亚洲国产| 亚洲精品国产一区二区精华液| 麻豆乱淫一区二区| 狠狠婷婷综合久久久久久88av| 精品久久久久久久久久免费视频 | 亚洲人成伊人成综合网2020| 岛国在线观看网站| 欧美黑人欧美精品刺激| 成人三级做爰电影| 国产日韩欧美亚洲二区| 香蕉国产在线看| 色老头精品视频在线观看| 黄色视频不卡| 国产亚洲欧美精品永久| 悠悠久久av| 色精品久久人妻99蜜桃| 欧美乱码精品一区二区三区| 在线免费观看的www视频| 久久精品国产99精品国产亚洲性色 | 91精品国产国语对白视频| av视频免费观看在线观看| 国产精品秋霞免费鲁丝片| 国产精品亚洲一级av第二区| 成在线人永久免费视频| 丰满迷人的少妇在线观看| 亚洲第一av免费看| aaaaa片日本免费| 国产99白浆流出| 欧美精品人与动牲交sv欧美| 一本综合久久免费| 成年人免费黄色播放视频| 最新美女视频免费是黄的| 亚洲精品久久成人aⅴ小说| 91麻豆av在线| 国产无遮挡羞羞视频在线观看| 80岁老熟妇乱子伦牲交| 国产成人免费观看mmmm| 热re99久久精品国产66热6| 90打野战视频偷拍视频| 熟女少妇亚洲综合色aaa.| 在线观看66精品国产| 国产精品九九99| 91麻豆av在线| 777久久人妻少妇嫩草av网站| 亚洲av日韩精品久久久久久密| 中文字幕最新亚洲高清| 国产一区有黄有色的免费视频| 欧美日韩福利视频一区二区| 国产99白浆流出| 国产精品久久久久久人妻精品电影| 色播在线永久视频| 一本一本久久a久久精品综合妖精| 久久久国产一区二区| 99久久人妻综合| 久9热在线精品视频| 在线观看免费视频日本深夜| 久久精品国产亚洲av高清一级| 色播在线永久视频| 高清视频免费观看一区二区| av网站在线播放免费| 国产在线一区二区三区精| 如日韩欧美国产精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品中文字幕一二三四区| av一本久久久久| 欧美av亚洲av综合av国产av| 首页视频小说图片口味搜索| 日本五十路高清| 视频区图区小说| 老熟妇仑乱视频hdxx| 久久精品91无色码中文字幕| 色老头精品视频在线观看| 国产男女超爽视频在线观看| 黄色毛片三级朝国网站| 人人妻人人爽人人添夜夜欢视频| 午夜成年电影在线免费观看| 免费看a级黄色片| 免费在线观看黄色视频的| 欧美不卡视频在线免费观看 | 欧美精品亚洲一区二区| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看| 中文字幕人妻丝袜制服| 免费在线观看视频国产中文字幕亚洲| 国产免费现黄频在线看| xxxhd国产人妻xxx| 亚洲av美国av| 国产aⅴ精品一区二区三区波| 一区二区日韩欧美中文字幕| 欧美人与性动交α欧美软件| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 成年动漫av网址| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| 成人黄色视频免费在线看| 亚洲精品一卡2卡三卡4卡5卡| 男女之事视频高清在线观看| 亚洲av成人一区二区三| 国产一区二区三区综合在线观看| 日韩欧美在线二视频 | 视频区图区小说| 亚洲 国产 在线| 国产成人av教育| 日韩免费av在线播放| 成年人黄色毛片网站| 动漫黄色视频在线观看| 18在线观看网站| 国产精品免费视频内射| 久久亚洲真实| 久久久久国产精品人妻aⅴ院 | 国产成人免费无遮挡视频| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 高清视频免费观看一区二区| 成人影院久久| 欧美黄色片欧美黄色片| 国产高清国产精品国产三级| 宅男免费午夜| 成人三级做爰电影| 啦啦啦免费观看视频1| 成年女人毛片免费观看观看9 | 一二三四社区在线视频社区8| 亚洲精品国产色婷婷电影| 国产高清激情床上av| 人妻久久中文字幕网| 日本欧美视频一区| 在线观看日韩欧美| 国产精品国产高清国产av | 国产熟女午夜一区二区三区| 免费在线观看视频国产中文字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 交换朋友夫妻互换小说| 热re99久久国产66热| 成人国产一区最新在线观看| 高清黄色对白视频在线免费看| 精品少妇久久久久久888优播| 免费少妇av软件| 亚洲人成电影免费在线| 欧美日韩精品网址| 日韩熟女老妇一区二区性免费视频| 校园春色视频在线观看| 日韩中文字幕欧美一区二区| 90打野战视频偷拍视频| 两个人看的免费小视频| 亚洲美女黄片视频| 欧美人与性动交α欧美精品济南到| 免费日韩欧美在线观看| 精品人妻熟女毛片av久久网站| 亚洲avbb在线观看| 亚洲视频免费观看视频| av片东京热男人的天堂| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 久久热在线av| 啦啦啦免费观看视频1| 亚洲一区高清亚洲精品| 美女午夜性视频免费| 久久ye,这里只有精品| 日本精品一区二区三区蜜桃| 国产高清国产精品国产三级| 人妻一区二区av| 黄色a级毛片大全视频| 亚洲av成人av| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 亚洲欧美一区二区三区久久| 亚洲九九香蕉| 欧美国产精品va在线观看不卡| 一级片免费观看大全| 在线观看66精品国产|