• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of chaotic climatic process in the Tarim River Basin(I)

    2019-11-20 13:48:04ZuHanLiu
    Sciences in Cold and Arid Regions 2019年5期

    ZuHan Liu

    1.Key Laboratory of the Education Ministry for Poyang Lake Wetland and Watershed Research,Jiangxi Normal University,Nanchang,Jiangxi 330022,China

    2.Jiangxi Province Key Laboratory for Water Information Cooperative Sensing and Intelligent Processing,Nanchang Institute of Technology,Nanchang,Jiangxi 330099,China

    ABSTRACT Based on observational data obtained from 1961 to 2011 in the Tarim River Basin,China,we investigated the chaotic dynamics of temperature,precipitation,relative humidity,and evaporation.The main findings are as follow:(1)The four data series have significant chaotic and fractal behaviors,which are the result of the evolution of a nonlinear chaotic dynamic system.The climatic process in the Tarim River Basin also has deterministic and stochastic characteristics.(2)To describe the temperature,precipitation,relative humidity,and evaporation dynamics,at least three independent variables at daily scale are required;in terms of complexity,their order is evaporation >temperature >precipitation >relative humidity.(3)Their respective largest Lyapunov exponent λ1 shows the order of their degree of complexity is relative humidity >temperature >precipitation ≈evaporation;the maximum time scales for which the four systems can be predicted are 17 days,17 days,16 days,and 16 days,if calculated separately.(4)The Kolmogorov entropy K illustrates that the complexity of the nonlinear precipitation system is much greater than that of the other three systems.Both temperature and evaporation systems exhibit weaker chaotic behavior,their predictability is better,and the degree of complexity is less than that of the other two factors.

    Keywords:chaos;climatic process;largest Lyapunov exponent;Kolmogorov entropy;correlation dimension

    1 Introduction

    With the rapid development of meteorological science and technology,there is growing concern about climate change,which to a certain degree threatens the further development of human society.Currently,the challenge for meteorological workers facing this important issue is how to produce the mutation phenomenon of climate change,or rather the climatic process change or jump from one steady state into another,and to understand that the process of weather is chaotic after the climate abruptly changes.

    As a complex nonlinear dynamic behavior,chaos is a general phenomenon in nature and is one of the most important discoveries of the later 20th century.Chaos is the regressive nonperiodic behavior state caused by the nonlinear system and having sensitive dependence on the initial conditions,which represents the inner randomicity of chaos time-series in a dynamic system,is pseudorandom in nature,and certainty is one of the basic properties of the dynamic system of chaos action.Chaos theory is only recently breaking down the myth and misreading that determinism and forecast must be connected.The chaos theory negates Laplace's mechanic determinism and enriches and develops the theory of scientific determinism.

    Qian(1994)first proposed to construct a"geospherology"focusing attention on the Earth's surface layer with an open complex giant system(OCGS)approach.Chaos science is facing many uncertainties brought about by singularity,diversity,and evolvability.Chaos is a certainty,as inherent randomness of a deterministic system is a certainty;but in instability physics,it reveals the probability of intrinsic kinetics of significance,strongly suggesting that the probability of objectivity is different from the traditional sense of full determinacy.Chaotic systems from the time-series is an irregular system of randomness and faint fluctuations(Wernitz and Hoffmann,2012).The precision of the instantaneous state and a description of its physical laws are among many uncertainty factors;these two are the main ones influencing the complex system prediction(Palmeret al.,1994).

    In recent years,research on the temporal evolution of the climatic process and its impacts on ecosystems has become a key issue in hydrology and ecology.These theories and perspectives adopt a wide purview,including the wavelet and neuro-fuzzy conjunction model(Honoratoet al.,2019),the regional atmospheric modeling system(RAMS)(Liston and Pielke,2000;Wen and Duan,2019),a latent Gaussian Markov random-field model(Zheng and Yao,2019),and the generalized linear model(Segondet al.,2006;Nguelifack and Kemajou-Brown,2019).However,climatic process has been identified as a set of atmospheric states of a dynamical,chaotic system showing deterministic variability(Lorenz,1962).The interpretation of climate as a complex intervariable organization is a key issue for understanding temporal evolution of dynamic systems(Millánet al.,2009;Liuet al., 2014a). Subsequently, valuable applications of chaos and nonlinear dynamical systems theory in atmospheric and climate science have been developed(Tsonis,1996).The idea of climate's evolving on a strange attractor is often invoked,sometimes implicitly,to illustrate qualitative aspects of theories and conjectures regarding the climate system's behavior(e.g.,Palmer,1999;Branstator and Teng,2010).

    Contemporary China is implementing the One Belt and One Road open strategy and strategic programs of reconstructing the beautiful landscape.Given this background and facing the frequent extreme weather events of climate change(Wanget al.,2019),how to understand the complexity of the climate system has important theoretical and practical significance.Here lies the advantage of chaos theory.The sensitivity and randomness of the system to the initial conditions,the density of the periodic points,the Lyapunov exponent,and the fractal dimension are the objects of chaos discussion (Rocha and Varandas,2018).The chaotic characteristics of an unknown system are often more accurately identified by numerical methods. The reconstruction parameters are determined by phase-space reconstruction;and the correlation dimension,maximum Lyapunov exponent,and Kolmogorov entropy are calculated,respectively.It can be shown whether the time-series has chaotic attractors,so as to enable study of the dynamic variation law of chaotic dynamics of the system.

    The purpose of this study was to further understanding of the temporal complexity of climatic processes,based on observed average daily temperature,precipitation,relative humidity,and evaporation at 23 meteorological stations in the Tarim River Basin,China,from January 1,1961,to December 31,2010.Following chaos theory,we used a combination of quantitative and qualitative,microscopic analyses to explore the chaotic characteristics and complexity of the combination of four climate-factor time-series.The quantitative degree of system chaos was acquired,and the average time scale that could forecast weather was found.More specifically,the reconstruction parameters(namely,the embedding dimensionmand delay timeτ)were determined by application of mutual information and the Cao method;and the characteristic quantities as the largest Lyapunov exponentλ1,Kolmogorov entropyK,and the correlation dimensionDwere calculated.All the results indicated an obvious chaotic characteristic in the four climatic-factor timeseries in the Tarim River Basin,all of which resulted from evolution of the nonlinear chaotic dynamic system.Finally,their chaotic behavior and some influencing factors are discussed.

    2 Study area and data

    The Tarim River Basin(34°20'N-43°39'N,71°39'E-93°45'E)is the hinterland of Eurasia;high mountains and areas of barren soil,covering almost the entire southern part of Xinjiang,including 42 cities or counties and 55 collective farms managed by the Xinjiang Production and Construction Corporation.Its area is 1.02×106km2,and over 97%of the area belongs to a drainage basin internal to China.This area has a typical desert climate,with an average annual temperature of 10.6°C to 11.5°C.Monthly mean temperature ranges from 20°C to 30°C in July and-10°C to-20°C in January.The highest and lowest temperatures are 43.6°C and-27.5°C,respectively.The accumulative temperature of >10°C ranges from 4,100°C to 4,300°C.Average annual precipitation is 116.8 mm in the basin,ranging from 200 to 500 mm in the mountainous area,50 to 80 mm at the edges of the basin,and only 17.4 to 25.0 mm in the central area of the basin.Within any given year,the distribution of precipitation is quite uneven.More than 80%of the total annual precipitation falls between May and September,and less than 20%falls from October to next April.

    The records used in this paper were obtained from high-quality data of three climatic factors—temperature,precipitation,and relative humidity—from January 1,1961,to December 31,2011,at 23 meteorological stations in the Tarim River Basin and processed by the Information Center of Meteorological Office in the Xinjiang Uygur Autonomous Region.Figure 1 shows locations of the 23 stations,and more detailed information can be found in the Liuet al.(2014a)reference.According to Chenet al.(2002),scaling of correlated data series was not affected by randomly cutting out segments and stitching together the remaining parts,even when 50%of the points were removed.Therefore,we removed the missing values from the raw data over some stations,as they are only a small part of the series.Furthermore,to overcome the natural nonstationarity of the data due to season trends,we removed the annual cycle from the raw dataeby computing the anomaly seriese'=e-<e>dfor relative humidity,where <>ddenotes the long-time average value for the given calendar day.We applied the standard normal homogeneity test(SNHT),using the Buishand and Pettit homogeneity test method,to check these data(Pettit,1979;Buishand,1982;Alexandersson,1986).The stepwise multiple linear-regression method was employed to revise the inhomogeneity of the time-series.

    Figure 1 Locations of meteorological stations in the Tarim River Basin

    3 Methodology

    Chaos theory can be traced to 1963,when the U.S.meteorologist Lorenz simulated atmospheric turbulence between two infinite planes(Lorenz,1963).

    For a climatic-factor time-seriesx(t),we suppose it is generated by a nonlinear dynamic system withmdegrees of freedom.To restore the dynamic characteristic of the original system,the first step is to construct an appropriate series of state vectors,X(m)(t),with delay coordinates in them-dimensional phase space according to the phase-space reconstruction(Grassberger and Procaccia,1983b):X(m)(t)={x(t),x(t+τ),x(t+2τ),…,x(t+(m-1)τ)},wheremis the embedding dimension andτis an appropriate delay time(Xuet al.,2016).To reconstruct an appropriate phase space,τandmshould be determined(they are the two most basic important parameters).It must be said that the choice ofτ,which can usually be obtained by the autocorrelation function and C-C method (Kolokolov and Lyubinskii,2019)or the mutual information method(Fraser and Swinney,1986),plays an important role.As for the embedding dimension(m),it should not be too small or too large.If it is too small or too large,it can cause noise interference due to the extra dimension.Takens(1981)theoretically proved that whenm>2D+1,an embedding dimension of the attractor could be obtained,whereDis the correlation dimension.

    In addition,the three parameters,the correlation dimension(Grassberger and Procaccia,1983a),the largest Lyapunov exponent(Wolfet al.,1985),and the Kolmogorov entropy(Grassberger and Procaccia,1983b)are available in the literature to identify the existence of chaos in a time-series.

    The first parameter is the largest Lyapunov exponentλ1,which is is an important parameter in detecting and characterizing chaos produced from a dynamical system.The slope of the"average"liney(i)behaves as a function of the value of time steps forward in the trajectoryi(Wanet al.,2018).We can draw they(i)-icurve from the natural logarithm and fit the curve by the least-squares method(LSM),then the slope of the largest Lyapunov exponent isλ1.It defines the average rate of divergence or convergence of two neighbouring trajectories in the state-space.Specifically,the bigger theλ1,the longer the time scale is and the stronger the degree of complexity of the system.The predictable maximum time scale is the reciprocal of the largest Lyapunov exponentλ1,namely 1/λ1.

    The second parameter is the correlation dimension.Its benefits lie in determining the embedding dimension for the phase-space reconstruction of the climatic-factor time-series,which is of vital importance in describing geometric features of the strange attractor of a climatic system and is usually applied to analyze a time-series and determine if it exhibits a chaotic dynamic characteristic(Eggleston,2018).The most widely used method is the G-P algorithm proposed by Grassberger and Procaccia(1983a).The correlation integralC(ε)behaves as a power-law function of the surveyor's rod for distanceε,data present scaling:C(ε)∝εD.The correlation dimension(D)is defined as the slope of the regression line for all points[log(ε),log(C(ε))].

    The third parameter is the Kolmogorov entropy,which is the infinite resolution limit of block entropies and characterizes the degree of dynamical randomness of system.Asm→∞andε→0,K2=()converges to a steady value,which is the Kolmogorov entropyK.For a regular motion,the series corresponds toK=0 andK→∞,and the system indicates random motion;for 0 <K<∞,the system embodies deterministic chaotic motions.The bigger theKvalue,the more serious the degree of chaos of the system,the higher the complexity and the loss rate of information.

    For further detailed computation about chaos theory,see Grassberger and Procaccia(1983),Liuet al.(2006),and Eggleston(2018),etc..

    4 Results and discussion

    4.1 Delay time and embedding dimension

    The delay time and embedding dimension are calculated by using the mutual information method and the Cao method(Cao,1997).Figure 2 shows the change of delay timeτwith the mutual information of the four climatic-factor time-series.When theirτ=8,5,11,and 13,respectively,their mutual information reaches the lowest point for the first time,soτ=8,5,11,and 13 are selected for their optimum delay time,respectively.Figure 3 showsE1andE2change with the embedding dimension of the four climaticfactor time-series.When embedding dimensionsmrespectively are less than 15,3,3,and 6,E1andE2changes are increased significantly and gradually become steady untilm=15, 3, 3, and 6. In this case,the standard deviation ofE2fluctuation(E2=0.2391,0.2035,0.2196,and 0.2252,respectively)is much larger than(E1=0.1099,0.0315,0.0755,and 0.0755,respectively).With further increasing of their embedding dimensionsm,the fourE1values tend to l,the four climatic factors all exist determined parts.As mentioned,m=15,3,3,and 6 are selected as the saturated embedding dimension of their reconstructing-phase space.

    Figure 4 indicates the trend of a correlation integral spectrumεaccording to different embedding dimensionsm,and the change of correlation dimension and white noise withmvalues for the time-series and the white noise of using the G-P algorithm.Obviously,for each there exists a scale-free interval within a certain amount of four correlation integral spectrumε.Their slopes of scale-free interval increase and the distance between the curves decreases with increasingm.The distance has become a lot smaller when the embedding dimensionm≥17,18,17,and 17,which are the saturated values of the four attractors,respectively.Their corresponding correlation dimensionD,respectively,is 2.81,2.86,2.95,and 2.48;and everyDvalue is a non-integer.Therefore,the effective degree of freedom for the dynamical system described by the four time-series,respectively,is 17,18,17,and 17.Moreover,to describe the temperature,precipitation,relative humidity,and evaporation dynamics,at least three independent variables at the daily scale are required.

    These results show the four attractors all possess a fractal structure,but their complexity is obviously different.To be specific,the highest factor is evaporation,next is temperature,the third is precipitation,and last is relative humidity.By comparison,the fourDvalues of the white noise(namely,a purely random system)do not converge with increasingm,so the dynamic behavior of the climatic process is different from that of white noise;therefore,the dynamic behavior in temporal variation has both obviously deterministic and random characteristics.It further illustrates that the four climatic-factor series all possess chaotic characteristics or chaotic attractors.

    Figure 3 The change of E1 and E2 of average daily temperature(a),precipitation(b),relative humidity(c),and evaporation(d)in the Tarim River Basin

    Figure 4 The trend of a correlation integral according to various embedding dimensions m,and the change of correlation dimension and white noise with m values for the time-series of average daily temperature(a1)and(a2),precipitation(b1)and(b2),relative humidity(c1)and(c2),and evaporation(d1)and(d2)

    4.3 Largest Lyapunov exponent

    For the average daily temperature,precipitation,relative humidity,and evaporation time-series,their Lyapunov exponentλ1can be calculated from the formula method mentioned.They(i)-icurves under cir-cumstances thatτ=8 andm=17,τ=5 andm=18,andτ=11 andm=17 are shown in Figure 5.Figure 5 shows slight differences among them;but overall,the slope of the"average"liney(i)values increases with increase in the value of time steps forward in the trajectoryi.Besides that,all the slope ranges ofy(i)-icurves become smaller and smaller,that is to say,they(i)change has a very good convergence.The largest Lyapunov exponentλ1can be obtained by the leastsquares method(LSM)to fit these curves;the fitting results are 0.0658,0.0594,0.0824,and 0.0744,respectively.Anyλ1value is greater than zero,which allows us to further contend that the four climatic-factor systems have chaotic characteristics,or a chaotic attractor.The order of the degree of complexity in the climatic-factor system is relative humidity >temperature >precipitation=evaporation.In other words,the divergent extent of the near orbit and the general chaotic level system of the four dynamic systems decrease in that order.Moreover,their maximum predictive time scales are 17 days,17 days,16 days,and 16 days,if considered separately.

    In addition,the maximum time span of forecast of the four climatic-factor systems approximately equals the correlation dimension (attractor dimension)D.This aspect still needs further research.

    Figure 5 The calculated result of largest Lyapunov exponent using the Rosenstein algorithm for the time-series of average daily temperature(a),precipitation(b),relative humidity(c),and evaporation(d)

    Figure 6 indicatesK2versusm+1 of the four timeseries using G-P algorithms.The fourK2values all exhibit a decreasing trend,withm+1 increasing untilm+1=18,19,18,and 18(namelym=17,18,17,and 17),respectively.Kolmogorov entropy reaches saturation and converges toK.In this instance,Kseparately is equal to 0.091,2.184,0.518,and 0.092(>0),further illustrating all four climatic processes are chaotic,that is,there is a chaos attractor in every nonlinear climatic system.What's more,the Kolmogorov entropyKof the precipitation time-series is much greater than that of the other three,which suggests the complexity of the precipitation system is much greater than the other three systems.The reason is that precipitation is affected by more external factors and defined by local influence of climate process.And it even is influenced by the common background of the global climate,which to a great extent affects temperature,humidity and evaporation.Moreover,the Kolmogorov entropyKof both the temperature and evaporation time-series is approximately equal to 0,but still greater than zero.The pattern indicates the chaotic characteristic is weaker in the nonlinear temperature and evaporation systems.And the predictability of these two systems is better and the degree of complexity less than those of the other two.That may be because their influencing factors are of relatively smaller magnitude,so the complexity of these two climatic factors is significantly lower.

    Figure 6 The calculated results of Kolmogorov entropy K of the time-series of the average daily temperature(a),precipitation(b),relative humidity(c),and evaporation(d)

    5 Conclusions

    Based on the temperature,precipitation,relative humidity, and evaporation daily time-series in the Tarim River Basin from 1961 to 2011,their three characteristic quantities—the largest Lyapunov exponentλ1,Kolmogorov entropyK,and the correlation dimensionD—were analysed using chaos theory.The main findings are as follow:

    (1)All results in the four series show obvious chaotic and fractal characteristics,which are the result of the evolution of nonlinear chaotic dynamic systems.The climatic process in the Tarim River Basin also has deterministic and stochastic characteristics.

    (2)The correlation dimensionDof the four nonlinear climatic systems,respectively,is 2.81,2.86,2.95,and 2.48.To describe the temperature,precipitation,relative humidity,and evaporation dynamics,at least three independent variables at the daily scale are needed.Moreover,the four attractors all have fractal structures.The order of their complexity is evaporation>temperature>precipitation>relative humidity.

    (3)The largest Lyapunov exponentλ1of the four nonlinear climatic systems is 0.0658,0.0594,0.0824,and 0.0744(>0),respectively.The finding allows us to further contend that the four climatic-factor systems all have chaotic characteristics,or chaotic attractors.The order of their degree of complexity is relative humidity>temperature>precipitation ≈evaporation.Their possible maximum prediction time scales are 17 days,17 days,16 days,and 16 days,if figured separately.

    (4)The Kolmogorov entropyKof the four nonlinear climatic systems separately equals 0.091,2.184,0.518,and 0.092,which illustrates they all have chaotic characteristics and chaos attractors.What's more,the complexity of the nonlinear precipitation system is much larger than that of the other three systems,which may be explained by the local influence of climatological-hydrological processes in the Tarim River Basin,and even influenced by the common background of the global climate,which to a great extent affects temperature,humidity,and evaporation.Moreover,the temperature and evaporation systems exist weaker chaotic characteristics;and their predictability is better and the degree of complexity less than those of the other two.

    The climatic process is an open,complex dynamic system with very strong nonlinear characteristics.Climate change is affected by many factors,such as geographical location,physics,chemistry,biology,meteorology,and human activities.Therefore,the system is one of the objects of fractal and chaos research.Chaos theory is applied to the one-dimensional time-series of a climatic factor,which can better reflect the intrinsic motion mechanism of the sequence and reveal the complex motion law and evolution process of the dynamic system.

    According to chaos theory,the motion orbital divergence of the chaotic system is small in the short term,so the method realizes the possibility of shortterm prediction for climatic processes.At present,the forecast-measure problem of climate change needs further study,which is mainly reflected in the unpredictability in the long term and the improvement of forecasting accuracy in the short term.

    Acknowledgments:

    This work is supported by the China Postdoctoral Science Foundation(2016M600515),Postdoctoral Preferred Fund of Jiangxi Province(2017KY48),the Jiangxi Postdoctoral Daily Fund Project(2016RC25),the Opening Fund of Key Laboratory of Poyang Lake Wetland and Watershed Research (Jiangxi Normal University),Ministry of Education(PK2017002),the Open Research Fund of Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing(2016WICSIP012),the National Natural Science Foundation of China(61703199),and the Science and Technology Research Project of Jiangxi Provincial Education Department(GJJ180926).

    午夜视频国产福利| 村上凉子中文字幕在线| 久久99热这里只有精品18| 超碰av人人做人人爽久久 | 久久精品国产亚洲av涩爱 | 久久中文看片网| 制服丝袜大香蕉在线| 午夜精品在线福利| 久久人妻av系列| h日本视频在线播放| 99国产极品粉嫩在线观看| АⅤ资源中文在线天堂| 麻豆成人午夜福利视频| 九色国产91popny在线| 亚洲色图av天堂| 成人三级黄色视频| 午夜亚洲福利在线播放| 性欧美人与动物交配| 亚洲国产欧美网| 一进一出抽搐gif免费好疼| 97超视频在线观看视频| 青草久久国产| 怎么达到女性高潮| 1000部很黄的大片| 色吧在线观看| 男人和女人高潮做爰伦理| 欧美成人免费av一区二区三区| 久久精品国产综合久久久| 伊人久久大香线蕉亚洲五| 亚洲国产欧洲综合997久久,| 日韩欧美精品免费久久 | 黄色日韩在线| 搡老岳熟女国产| av在线天堂中文字幕| bbb黄色大片| 一级毛片女人18水好多| 麻豆久久精品国产亚洲av| 黄片小视频在线播放| 国模一区二区三区四区视频| 最近最新中文字幕大全电影3| 国语自产精品视频在线第100页| 亚洲国产精品999在线| 舔av片在线| 非洲黑人性xxxx精品又粗又长| 高潮久久久久久久久久久不卡| 99视频精品全部免费 在线| 啦啦啦免费观看视频1| 免费大片18禁| 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 国产野战对白在线观看| 亚洲欧美一区二区三区黑人| 久久久国产成人精品二区| 91九色精品人成在线观看| 国产男靠女视频免费网站| 国产一区二区三区在线臀色熟女| 国产视频内射| 天天一区二区日本电影三级| 热99在线观看视频| 十八禁人妻一区二区| 国产精品久久电影中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 国内揄拍国产精品人妻在线| 中国美女看黄片| 欧美另类亚洲清纯唯美| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 日韩欧美精品免费久久 | 亚洲中文字幕日韩| 国产91精品成人一区二区三区| 午夜福利在线观看吧| 久久伊人香网站| 国产精品99久久99久久久不卡| 国内揄拍国产精品人妻在线| 嫁个100分男人电影在线观看| 国产高清三级在线| 国产99白浆流出| 波多野结衣高清作品| 好男人在线观看高清免费视频| 国产成人av激情在线播放| 久久精品91蜜桃| 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 亚洲欧美日韩高清在线视频| 精品电影一区二区在线| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 国产精品一区二区三区四区免费观看 | 男女之事视频高清在线观看| 99久国产av精品| 成人国产综合亚洲| 亚洲激情在线av| 午夜免费激情av| 99热这里只有是精品50| 一进一出抽搐gif免费好疼| 国产三级黄色录像| 国产97色在线日韩免费| 成人永久免费在线观看视频| 一a级毛片在线观看| 欧美黑人巨大hd| www.熟女人妻精品国产| av在线蜜桃| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 老司机深夜福利视频在线观看| 亚洲国产精品999在线| 欧美激情在线99| 久久伊人香网站| 国产精品久久久久久久电影 | 在线观看舔阴道视频| 久久国产乱子伦精品免费另类| 亚洲七黄色美女视频| 蜜桃久久精品国产亚洲av| 黄色成人免费大全| 国产精品一区二区三区四区久久| 国内精品久久久久久久电影| 欧美精品啪啪一区二区三区| 免费av毛片视频| 国产精华一区二区三区| 高清毛片免费观看视频网站| 亚洲avbb在线观看| 亚洲国产高清在线一区二区三| 亚洲18禁久久av| 国产美女午夜福利| 日韩国内少妇激情av| avwww免费| 亚洲精品久久国产高清桃花| 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| 国产亚洲欧美在线一区二区| 成人鲁丝片一二三区免费| 又黄又爽又免费观看的视频| 97超视频在线观看视频| 国产日本99.免费观看| 国产亚洲精品一区二区www| 丁香欧美五月| 久久久久国内视频| 淫妇啪啪啪对白视频| 日韩免费av在线播放| 国产一区二区三区在线臀色熟女| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| 99久国产av精品| 在线观看免费视频日本深夜| 亚洲国产欧美人成| 欧美黄色淫秽网站| 日韩中文字幕欧美一区二区| 乱人视频在线观看| 色尼玛亚洲综合影院| 精品一区二区三区人妻视频| 深爱激情五月婷婷| 欧洲精品卡2卡3卡4卡5卡区| 国内少妇人妻偷人精品xxx网站| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 深爱激情五月婷婷| 在线播放国产精品三级| 日韩精品青青久久久久久| 国产伦人伦偷精品视频| 国产成人a区在线观看| 亚洲精品在线观看二区| 性色avwww在线观看| 成人欧美大片| 丁香欧美五月| 国产精华一区二区三区| 国产精品99久久久久久久久| 亚洲av美国av| 非洲黑人性xxxx精品又粗又长| 欧美日韩瑟瑟在线播放| 97超视频在线观看视频| 久久精品国产99精品国产亚洲性色| 婷婷亚洲欧美| 19禁男女啪啪无遮挡网站| 成年免费大片在线观看| 国产精品99久久99久久久不卡| 久久精品影院6| xxxwww97欧美| 亚洲国产高清在线一区二区三| 一个人免费在线观看的高清视频| www.熟女人妻精品国产| av天堂在线播放| 丝袜美腿在线中文| 亚洲av中文字字幕乱码综合| 五月伊人婷婷丁香| 麻豆成人午夜福利视频| 网址你懂的国产日韩在线| 老汉色av国产亚洲站长工具| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品久久久久久毛片| 免费高清视频大片| 国产精品久久电影中文字幕| 此物有八面人人有两片| 一区二区三区免费毛片| 啦啦啦观看免费观看视频高清| 无遮挡黄片免费观看| 国产精品久久视频播放| 国产伦在线观看视频一区| 国产蜜桃级精品一区二区三区| 亚洲人成电影免费在线| 亚洲av五月六月丁香网| 露出奶头的视频| 亚洲国产精品久久男人天堂| 久久久久亚洲av毛片大全| 欧美成人a在线观看| 啦啦啦韩国在线观看视频| 在线视频色国产色| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 麻豆国产97在线/欧美| 人妻久久中文字幕网| 亚洲精品在线美女| 亚洲国产精品成人综合色| 怎么达到女性高潮| 国产免费av片在线观看野外av| 欧美日韩福利视频一区二区| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯| 精品久久久久久久人妻蜜臀av| eeuss影院久久| 99在线视频只有这里精品首页| 日本熟妇午夜| 国产一区二区在线av高清观看| 亚洲男人的天堂狠狠| 一进一出抽搐gif免费好疼| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 3wmmmm亚洲av在线观看| 国产成人av教育| 免费无遮挡裸体视频| 亚洲精品国产精品久久久不卡| 色av中文字幕| 久久久久久九九精品二区国产| 国产伦人伦偷精品视频| 天堂av国产一区二区熟女人妻| 一a级毛片在线观看| 麻豆成人午夜福利视频| 熟女电影av网| 国产高清有码在线观看视频| 一区二区三区国产精品乱码| 国产高清视频在线观看网站| 国产精品亚洲av一区麻豆| 日本成人三级电影网站| 舔av片在线| 最新美女视频免费是黄的| 2021天堂中文幕一二区在线观| 高清毛片免费观看视频网站| 国内精品一区二区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲天堂国产精品一区在线| 3wmmmm亚洲av在线观看| 欧美日韩一级在线毛片| 熟女电影av网| 免费搜索国产男女视频| 国产精品亚洲美女久久久| 国产欧美日韩精品亚洲av| 欧美成人免费av一区二区三区| 免费av不卡在线播放| 日韩成人在线观看一区二区三区| 成人无遮挡网站| 亚洲久久久久久中文字幕| 欧美日韩瑟瑟在线播放| 亚洲av成人av| 国产精品久久电影中文字幕| 中文字幕av成人在线电影| 啪啪无遮挡十八禁网站| 国产激情偷乱视频一区二区| 男女做爰动态图高潮gif福利片| tocl精华| 伊人久久精品亚洲午夜| 国产成人福利小说| 国产精品亚洲av一区麻豆| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 午夜久久久久精精品| 美女大奶头视频| 久久性视频一级片| 内射极品少妇av片p| 亚洲av免费在线观看| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 国产精品香港三级国产av潘金莲| 狂野欧美白嫩少妇大欣赏| 欧美乱色亚洲激情| 国产精品av视频在线免费观看| 日韩有码中文字幕| 在线观看66精品国产| 露出奶头的视频| 国产精品永久免费网站| 国产三级在线视频| 俺也久久电影网| 9191精品国产免费久久| 97超视频在线观看视频| 精品日产1卡2卡| 久久精品91蜜桃| 香蕉丝袜av| 天堂网av新在线| 亚洲成人精品中文字幕电影| 可以在线观看的亚洲视频| 又黄又爽又免费观看的视频| 久久精品综合一区二区三区| 国产av一区在线观看免费| 国产乱人视频| www.www免费av| 国产精品亚洲美女久久久| 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 熟女人妻精品中文字幕| 国产亚洲精品久久久久久毛片| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 在线看三级毛片| 亚洲精品在线美女| 日韩av在线大香蕉| 亚洲无线观看免费| 亚洲av免费在线观看| 成熟少妇高潮喷水视频| 日本五十路高清| 成年人黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 国产黄a三级三级三级人| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人下体高潮全视频| 国产亚洲欧美98| 国产视频一区二区在线看| 亚洲av一区综合| 亚洲在线自拍视频| 少妇丰满av| 亚洲人成电影免费在线| 欧美日韩黄片免| 久久精品影院6| 精品一区二区三区视频在线 | 色吧在线观看| 女警被强在线播放| 在线观看66精品国产| 中文字幕熟女人妻在线| 国产色婷婷99| www日本黄色视频网| 麻豆国产av国片精品| 天天一区二区日本电影三级| 俄罗斯特黄特色一大片| 男女那种视频在线观看| 国产欧美日韩一区二区三| 美女高潮的动态| 欧美+亚洲+日韩+国产| 桃红色精品国产亚洲av| 少妇高潮的动态图| 99国产综合亚洲精品| 国产色婷婷99| 久久这里只有精品中国| 亚洲人成网站在线播| 成人国产一区最新在线观看| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 在线观看美女被高潮喷水网站 | 欧美丝袜亚洲另类 | 老司机午夜福利在线观看视频| 三级国产精品欧美在线观看| 国产欧美日韩一区二区精品| 99久久久亚洲精品蜜臀av| 欧美色视频一区免费| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 国产精品亚洲一级av第二区| 欧美乱妇无乱码| 亚洲国产高清在线一区二区三| 黄片大片在线免费观看| 欧美三级亚洲精品| 国产真实乱freesex| av天堂中文字幕网| 黄片大片在线免费观看| 国产极品精品免费视频能看的| 青草久久国产| 1000部很黄的大片| 少妇人妻精品综合一区二区 | 国产三级在线视频| aaaaa片日本免费| 神马国产精品三级电影在线观看| 97超级碰碰碰精品色视频在线观看| 日本五十路高清| 一级黄片播放器| 神马国产精品三级电影在线观看| 国产视频内射| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 久久婷婷人人爽人人干人人爱| 蜜桃久久精品国产亚洲av| 男人舔女人下体高潮全视频| 精品人妻一区二区三区麻豆 | 亚洲第一欧美日韩一区二区三区| eeuss影院久久| 亚洲人成网站在线播| 国产精品香港三级国产av潘金莲| 级片在线观看| 十八禁网站免费在线| 啦啦啦观看免费观看视频高清| 亚洲内射少妇av| 成人欧美大片| 欧美性猛交╳xxx乱大交人| 国产伦一二天堂av在线观看| 91在线精品国自产拍蜜月 | 亚洲欧美日韩无卡精品| 最近在线观看免费完整版| 三级国产精品欧美在线观看| 女警被强在线播放| 国产午夜精品久久久久久一区二区三区 | 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美| 人妻丰满熟妇av一区二区三区| 97超视频在线观看视频| 校园春色视频在线观看| 国产爱豆传媒在线观看| 嫁个100分男人电影在线观看| 中文字幕久久专区| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 69av精品久久久久久| 亚洲av中文字字幕乱码综合| 他把我摸到了高潮在线观看| 国产v大片淫在线免费观看| 精品人妻1区二区| 18禁裸乳无遮挡免费网站照片| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美人成| 国产在视频线在精品| 成人三级黄色视频| tocl精华| 亚洲成人免费电影在线观看| 51午夜福利影视在线观看| 久久人妻av系列| 国产不卡一卡二| 日本五十路高清| 一级作爱视频免费观看| av天堂中文字幕网| 男女之事视频高清在线观看| 午夜视频国产福利| 亚洲,欧美精品.| 法律面前人人平等表现在哪些方面| 97碰自拍视频| 午夜福利视频1000在线观看| 黄色日韩在线| 岛国在线免费视频观看| 欧美高清成人免费视频www| 美女高潮喷水抽搐中文字幕| 成熟少妇高潮喷水视频| 男人舔奶头视频| 亚洲成av人片免费观看| 成人特级黄色片久久久久久久| 美女cb高潮喷水在线观看| av在线蜜桃| 午夜激情欧美在线| 欧美av亚洲av综合av国产av| 九色国产91popny在线| 国产不卡一卡二| av片东京热男人的天堂| 色哟哟哟哟哟哟| 一边摸一边抽搐一进一小说| 在线天堂最新版资源| 人人妻,人人澡人人爽秒播| 久久久久性生活片| 欧美+亚洲+日韩+国产| 一本一本综合久久| 变态另类成人亚洲欧美熟女| 女人十人毛片免费观看3o分钟| 久久久久免费精品人妻一区二区| a级毛片a级免费在线| 午夜视频国产福利| 99在线人妻在线中文字幕| 欧美中文综合在线视频| 亚洲精品亚洲一区二区| 亚洲最大成人手机在线| www日本在线高清视频| 观看美女的网站| 一本综合久久免费| 国产一区二区亚洲精品在线观看| 高潮久久久久久久久久久不卡| www.色视频.com| 日韩欧美在线二视频| 少妇丰满av| 欧美一级毛片孕妇| 国产午夜精品久久久久久一区二区三区 | 国产高潮美女av| 国产亚洲精品久久久com| 欧美最新免费一区二区三区 | 久久久久久久久久黄片| 国产在视频线在精品| 精品国产美女av久久久久小说| 欧美日韩亚洲国产一区二区在线观看| 亚洲,欧美精品.| 精品久久久久久久人妻蜜臀av| 欧美成人性av电影在线观看| 国产亚洲精品久久久久久毛片| 别揉我奶头~嗯~啊~动态视频| 国产三级在线视频| 成人18禁在线播放| 波多野结衣高清作品| 国产熟女xx| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产高清在线一区二区三| 国内精品久久久久久久电影| 亚洲片人在线观看| 成人一区二区视频在线观看| 一个人免费在线观看电影| 三级男女做爰猛烈吃奶摸视频| 午夜精品久久久久久毛片777| 成人三级黄色视频| 国产色爽女视频免费观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲最大成人中文| 麻豆国产av国片精品| 国产野战对白在线观看| 制服人妻中文乱码| 琪琪午夜伦伦电影理论片6080| 日本熟妇午夜| 亚洲成av人片免费观看| 少妇人妻一区二区三区视频| 级片在线观看| 成人特级av手机在线观看| 亚洲最大成人中文| 久9热在线精品视频| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 黄色视频,在线免费观看| 国产精品99久久99久久久不卡| 久久久国产成人免费| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 综合色av麻豆| 国产精品乱码一区二三区的特点| 嫁个100分男人电影在线观看| 久久欧美精品欧美久久欧美| 亚洲国产中文字幕在线视频| 19禁男女啪啪无遮挡网站| 又黄又爽又免费观看的视频| 国产欧美日韩一区二区精品| www日本黄色视频网| 一级毛片女人18水好多| 欧美激情在线99| 日韩欧美 国产精品| 欧美一级毛片孕妇| 床上黄色一级片| 亚洲av五月六月丁香网| 国产麻豆成人av免费视频| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩精品一区二区| 一个人观看的视频www高清免费观看| 两个人的视频大全免费| 99久久综合精品五月天人人| 一二三四社区在线视频社区8| 国产免费男女视频| 国产精华一区二区三区| 搡老岳熟女国产| 99热精品在线国产| 欧美激情在线99| 99久久久亚洲精品蜜臀av| 欧美另类亚洲清纯唯美| 久久久国产精品麻豆| 一级黄色大片毛片| 免费在线观看成人毛片| 亚洲,欧美精品.| 久久精品国产亚洲av涩爱 | 精品一区二区三区av网在线观看| 少妇裸体淫交视频免费看高清| 女同久久另类99精品国产91| 欧美黄色淫秽网站| 长腿黑丝高跟| h日本视频在线播放| 一级黄片播放器| 免费电影在线观看免费观看| 亚洲一区二区三区不卡视频| 亚洲欧美日韩高清专用| 午夜福利欧美成人| 中文字幕av在线有码专区| 最后的刺客免费高清国语| 国产午夜精品久久久久久一区二区三区 | 国产精品99久久99久久久不卡| 99热6这里只有精品| 日韩欧美三级三区| 久久久久国产精品人妻aⅴ院| 国产美女午夜福利| 久久亚洲精品不卡| 中文字幕av在线有码专区| 高清毛片免费观看视频网站| 97人妻精品一区二区三区麻豆| 可以在线观看毛片的网站| 欧美成人a在线观看| 最好的美女福利视频网| 真实男女啪啪啪动态图| 亚洲av熟女| 久久久久亚洲av毛片大全| 国产高清三级在线| 亚洲欧美一区二区三区黑人| 亚洲 国产 在线| 国产又黄又爽又无遮挡在线| 91在线精品国自产拍蜜月 | 国产精品久久电影中文字幕| 亚洲狠狠婷婷综合久久图片| 国产一级毛片七仙女欲春2| 日韩欧美国产一区二区入口| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 制服丝袜大香蕉在线| 老汉色∧v一级毛片| 久久伊人香网站| 超碰av人人做人人爽久久 | 18禁裸乳无遮挡免费网站照片| 国产成人系列免费观看| 一级毛片高清免费大全| 禁无遮挡网站| avwww免费| 亚洲一区二区三区不卡视频| 一级作爱视频免费观看| 91麻豆精品激情在线观看国产| 特级一级黄色大片|