• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct Application of Martin’s Axiom on Cardinal Invariants

    2019-11-19 08:26:16ZHUHuilingZHENGFudan

    ZHU Huiling, ZHENG Fudan

    (1. School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, Guangdong;2. Three Gorges Mathematical Research Center, Three Gorges University, Yichang 443002, Hubei;3. Guangzhou College, South China University of Technology, Guangzhou 510800, Guangdong)

    Abstract:In this paper, we study Martin’s Axiom and various forcing partial orders and explain how Martin’s Axiom can be directly applied to affect the value of the cardinal invariants of real number sets.

    Keywords:Martin’s axiom; cardinal invariants; Cohen forcing; random forcing; local mathias forcing; Hechler forcing.

    1 Introduction

    In the modern era of set theory, forcing plays a significant role. Forcing was first developed by Cohen[1]to prove that Cantor’s continuum hypothesis is independent, in another word, unprovable from the usual axioms of set theory: the Zermelo-Fraenkel axiom system with the axiom of choice. Later, forcing was developed in depth by Solovay, Shelah, Woodin, Todorcevic, Magidor and many others. The reader is referred to Ref. Ref.[2] for the discovery of forcing, to Ref.[3] for the development of forcing, to Ref.[4] for elementary introduction to the techniques of forcing.

    Forcing axioms acts as black boxes for the application of forcing. The first forcing axiom, Martin’s axiom, was formulated by Martin and Solovay[5]as by-product of investigation of internal forcing. Often, mathematicians from other fields, in particular, topology, care little about the details of forcing but care much about the effect of different forcing axioms.

    There are many wonderful reference for Martin’s Axiom. For example, Ref.[6]. In particular, it was known that Martin’s Axiom trivialized almost all cardinal invariants. In this sense, this is not an open research problem. However, these results rely on the relationship among cardinal invariants. So it remains an open exposition problem. For each cardinal invariant, we attempt to find a forcing notion which can be directly applied in Martin’s Axiom.

    Notations are standard. The reader is referred to Ref.[7-8] for the set theoretic terminology which are not explained in the paper. The rest of this article is organised as follows: Section 2 introduces Martin’s Axiom and Cohen forcing, Section 3 studies the cardinal invariants on the Baire space, Section 4 studies the cardinal invariants about the ideal of Lebesgue measure zero sets and first category sets. Section 5 studies the random forcing, Section 6 studies some properties of forcing which are stronger than the countable chain condition, Section 7 studies the local Mathias forcing, Section 8 studies the Hechler forcing, Section 9 discusses some problems for future study.

    2 Background

    In this section, we explain the background terminology which will be used throughout the paper.

    2.1Martin’sAxiom

    Martin’s Axiom, MA for short, is the following statement[5].

    Definition2.1MAIf (P,≤) satisfies countable chain condition, and if D is a collection of dense subsets of P with |D|

    Here, (P,≤) is a partial order. To avoid triviality, the partial orders in practice will satisfy the forking requirement: ?p∈P,?q≤p,?r≤psuch that there is nos, withs≤qands≤r. Usually, ifq≤p, we sayqis stronger thanp, orqis an extension ofp.

    Definition2.2We explain Definition 2.1 as follows:

    1)A?P is an antichain, if ?q,r∈A, eitherq=r, or there is nos, withs≤qands≤r. In other words, we sayAconsists of mutually incompatible elements.

    2) (P,≤) satisfies countable chain condition, if any antichainA?P is countable.

    3)D?P is a dense subset, if ?p∈P?q∈Dwithq≤p.

    4) c is the continuum, namely the cardinality of the collection of reals.

    5) ?≠G?Pis a filter, if (p∈G∧p≤q)→q∈Gandp,q∈G→?r∈G(r≤p∧r≤q).

    6)G?P is D-generic filter, if ?D∈D,G∩D≠?.

    2.2VariousCohenForcingCohen forcing is the most natural forcing to add a real. Cohen forcing is countable, and therefore has the countable chain condition. Since any two nontrivial countable forcing are equivalent(The reader is referred to Ref.[9] for the details of the fact), there is a variety of equivalent formulations of Cohen forcing. These formulation have the same logic strength in the sense that if one can solve a particular problem, then so can another. However, for a specific problem, we have to carefully select the right formulation so as to reduce the complexity of the presentation of the solution.

    2.3CardinalInvariantsCardinal invariants, also called cardinal characteristics of the continuum, have been studied even before the age of forcing. The reader is referred to Ref.[10] for a survey on cardinal invariants. Research work on cardinal invariants are plentiful and are still active. Most notably, Ref.[11] proved the identity of two cardinal invariants p and t.

    3 Reals on the Baire space

    In this section, we study four cardinal invariants: the dominating number d, the refining number r, the ultrafilter number u and the independence number i. We define each of the four and apply a variation of Cohen forcing to the equality with the continuum under the assumption of Martin’s Axiom. For each forcing, the generic object is on the Baire spaceωωor [ω]ω.

    3.1Thedominatingnumber

    Definition3.1Define the dominating number as follows:

    1) Forf,g∈ωω,fis dominated byg, if ?m∈ω,?n≥m,f(n)≤g(n). Denote this statement byf≤*g;

    2) A family F?ωωis a dominating family, if ?f∈ωω,?g∈F,f≤*g;

    3) The dominating number, denoted by d, is the least cardinality of a dominating family.

    Theorem3.2Martin’s Axiom implies d=c.

    ProofAssumeκ

    Dα,m={p|?n∈dom(p),n>m,p(n)>fα(n)}.

    We show thatDα,mis dense. Givenq∈P, letn=max{m+1,dom(q)}, extendqtopsuch thatp(n)=fα(n)+1. Thenp≤qandp∈Dα,m.

    Similarly, forl∈ω, letEl={p|l∈dom(p)}. EachElis dense.

    By Martin’s Axiom, letGbe {Dα,m,El|α<κ,m<ω,l<ω}-generic. Letg=∪G. Theng∈ωω, andgis not dominated by anyfα. Hence d>κ, we conclude that d=c.

    3.2Therefiningnumberandtheultrafilternumber

    Definition3.3Forp∈[ω]≤ω,q∈[ω]<ω, saypend extendsq, and denotep?eqif eitherp=q, orp?qandmin(pq)>max(q).

    Definition3.4Define the refining number and the ultrafilter number as follows:

    1) SupposeA,B∈[ω]ω, sayBsplitsA, if bothA∩BandABare infinite;

    2) A={Aα|α<κ}?[ω]ωis unsplittable, if for anyB, there is someAαnot split byB;

    3) The refining number, r, is the least cardinality of an unsplittable family;

    4) An ultrafilter base is some A={Aα|α<κ}?[ω]ωsuch that {X∈[ω]ω| ?α,C?Aα} is an ultrafilter onω;

    5) The ultrafilter number, u, is the least cardinality of an ultrafilter base.

    Lemma3.5An ultrafilter base is an unsplittable family, so u≥r.

    ProofLet A={Aα|α<κ} be an ultrafilter base. For anyB, there is anα, eitherB?Aα, orωB?Aα, soBdoes not split A.

    Theorem3.6Martin’s Axiom implies that r=u=c.

    ProofAssumeκ

    Let P=([ω]<ω,?e). Forα<κ,m<ω, letDα,m={p:|Aα∩p|>m},Eα,m={p:|(Aα∩max(p))p|>m}. These are dense subsets of P. For instance, we show thatEα,mis dense. Givenq∈P, sinceAαis infinite, leta0max(q), and letp=q∪{a}. Thenp

    By Martin’s Axiom, letGbe generic over these dense sets, and letg=∪G. Theng∈[ω]ωandgsplits eachAα. To see thatAαgis infinite, for anym<ω, letp∈Eα,m∩G, theng?ep. SoAαg?(Aα∩max(p),|Aαg|>m.

    3.3Theindependencenunber

    Definition3.7Define the independence number as follows:

    1) A family A={Aα|α<κ}?[ω]ωis an independent family, if for any finite family {α1,α2,…,αm;β1,β2,…,βn}∈[κ]m+n,

    is infinite.

    2) An independent family is maximal, if it is not properly contained in any other independent family.

    3) The independence number, denoted by i, is the least cardinality of a maximal independent family.

    Theorem3.8Martin’s Axiom implies that i=c.

    ProofAssumeκ

    Consider P=([ω]<ω,?e). For anyB, let

    DB,l={p∈P:|p∩B|>l∧|B∩(max(p)p)|>l}.

    Since A is independent, eachDB,lis dense. There are |κ<ω×κ<ω×ω|=κmany such dense subsets of P. By Martin’s Axiom, letGbe generic over these dense sets, and letg=∪G. Theng∈[ω]ωA and A ∪{g} is independent. Therefore, i >κ.

    4 The meager ideal and the null ideal

    Let B, L denote the collection of meager sets and null sets, respectively. In our applications, it does not matter which formulation of the reals is used. Both B and L areσ-ideals.

    Definition4.1For any ideal I, define four cardinal invariants about I:

    1) The additivity of I, denoted byadd(I), is the least cardinality of some X?I, such that ∪X ?I.

    2) The uniformity of I, denoted bynon(I), is the least cardinality of someA?R, such thatA?I.

    3) A covering family from I is some X?I, such that ∪X=R.

    4) The covering number for I, denoted bycov( I), is the least cardinality of a covering family from I.

    5) A basis for I is some X ?I, such that ?B∈I ,X∈X,B?X.

    6) The cofinality of I, denoted bycof(I), is the least cardinality of a basis for I.

    It is easy to have the following.

    Lemma4.2If I is an ideal containing all singletons, thenadd(I)≤cov(I)≤cof(I) andadd(I)≤non(I)≤cof(I).

    4.1Thecardinalinvariantsofthemeagerideal

    Theorem4.3Martin’s Axiom implies thatcov(B)=cof(B)=c.

    ProofAssume0≤κ

    ?α<κ, letDα={p|p∩Xα=?}. Givenq∈P,q° is an open interval and nonempty, sinceXαis nowhere dense, there is a nonempty open setΩ?q°,Ω∩Xα=?. ?p∈P,p?Ω. Sop∈Dαandp≤q. Hence, eachDαis dense.

    LetGbe {Dα|α<κ}-generic, and letg=∩G. Sincegis the intersection of a sequence of nested intervals,g≠?. Butg∩∪=?. So ∪≠R andcov(B)>κ.

    4.2Thecardinalinvariantsofthenullideal

    Theorem4.4Martin’s Axiom implies thatnon(L)=cof(L)=c.

    ProofAssumeκ0, there is an open set with measure ≤which coversY.

    Consider the following partial order P: a conditionpis a union of open intervals with rational endpoints andμ(p)<, whereμdenotes the Lebesgue measure;p≤qiffp?q. P is countable, and is a form of Cohen forcing.

    For eachα,Dα={p|yα∈p} is dense. By Martin’s Axiom, letGbe generic over these dense sets andg=∪G. ThenY?gandgis an open set. To complete the proof, we show thatμ(g)≤. Since P is countable,g=∪i<ωpi, with eachpi∈G. By definition, ?l<ω,∪i≤lpiis a lower bound forp0,p1,…,pl, soμ(∪i≤lpi)<. Therefore,μ(g)≤.

    Remark4.5The partial order above is closely related to the amoeba forcing, which is used to prove a stronger statement:MAadd(L)=c [5]. It was more complicated to check the countable chain condition there.

    We explained how Cohen forcing can be adopted for the application of Martin’s Axiom on cardinal invariants of the real line. However, the power of Martin’s Axiom can not be fully demonstrated by countable forcing. Moreover, the generic objects added by Cohen forcing have certain properties which preserves the value of some cardinal invariants. For instance, as the Cohen real is not dominating over the ground model, the unbounding number remains the same. We have to move on to find uncountable partial orders which have countable chain condition. Fortunately, there are many such forcing partial order, as we will see in the following sections.

    5 Random forcing

    The random forcing[12]P consists of Borel sets with positive measure,p≤qiffp?q. To simplify notation, we consider the interval (0,1) instead of R. Recall thatμdenotes the Lebesgue measure.

    Lemma5.1Random forcing satisfies countable chain condition.

    ProofIfX?P is an antichain, then ?p,q∈X, eitherp=q, orp∩q=?. LetXn={p∈X:μ(p)>1/n}. Since the measure of (0,1) is 1,Xnhas less thannelements. Therefore,X=∪n<ωXnis countable.

    For eachn<ω, consider a partition:

    whereZnis a finite set of rationals.

    Theorem5.2Martin’s Axiom implies thatcov(L)=c.

    ProofAssumeκ

    LetGbe generic overDα’s andEn’s, and letrgbe the random real decided byG.G∩Dα≠? guarantees thatrg?Aα, sorg?∪A. Therefore,cov(L)>κ.

    6 Stronger properties

    In this section, we investigate some properties which help to verify the countable chain condition. Then we can apply Martin’s Axiom to forcing satisfying these properties.

    Definition6.1Given a forcing P and a subsetW:

    1)Wis linked, if every two elements ofWare compatible;

    2)Wis centered, if any finite many elements fromWhas a common lower bound;

    3) P isσ-linked, if P=∪i<ωWi, eachWiis linked;

    4) P isσ-centered, if P=∪i<ωWi, eachWiis centered.

    Lemma6.2Anyσ-centered forcing isσ-linked; anyσ-linked forcing has the countable chain condition.

    ProofThe first statement is obviously true. To prove the second, letA?Pbe an antichain, then for eachi,A∩Wihas at most one element. SoAis countable.

    7 Local Mathias forcing

    The local Mathias forcing was used to prove p=c underMA. Details can be found in Ref.[10]. We adopt it here to decide the cardinal invariants t, s and a.

    7.1Definitionandproperties

    Definition7.1A family A?[ω]ωhas strong finite intersection property, if for any nonempty F?A, ∩ F is infinite.

    This forcing is called the local Mathias forcing (with respect to A). The original Mathias forcing (The reader is referred to Ref.[13-14] for the details) has nothing to do with A; it requires only thatSis infinite. The stronger intersection property of A guarantees that P has countable chain condition.

    Lemma7.2P isσ-linked. (In fact, P isσ-centered.)

    ProofGiven (s,S) and (s,S′), (s,S∩S′) is a condition and is a common extension of them. So the forcing P can be partitioned into countable many pieces, conditions in the same piece have the sames.

    Definition7.3DenoteX?*YifXYis finite.

    Theorem7.4Martin’s Axiom implies that if A={Aα|α<κ} has strong finite intersection property andκ

    ProofDefine the local Mathias forcing as above, forα<κ, letDα={(s,S)|Aα?S}.Dαis dense. Similarly,En={(s,S):|s|>n} is dense for eachn<ω. By Martin’s Axiom, letGbe generic over theseDα’s andEn’s. Letg=∪{s|?S, (s,S)∈G}.G∩Enimplies that |g|>n, sogis infinite. Fixα, let (s,S)∈Dα∩G, thenS?Aα. We show thatgs?S. Ifm∈gs, thenm∈s′ for some (s′,S′)∈G. With out loss of generality, we may assume that (s′,S′)≤(s,S). Thenm∈s′s?S. Therefore,gs?Aα.

    7.2Applications

    Now we apply the local Mathias forcing to the almost disjointness number a, the tower number t and the splitting number s.

    Definition7.5Define the almost disjointness number as follows:

    1)X,Y∈[ω]ωare almost disjoint, ifX∩Yis finite.

    2) An almost disjoint family is some A={Aα|α<κ}?[ω]ω, such that any two members are almost disjoint.

    3) A maximal almost disjoint family is an almost disjoint family A such that any A′?A is not almost disjoint.

    4) The almost disjointness number, denoted by a, is the least cardinality of a maximal almost disjoint family.

    Lemma7.6If A={Aα|α<κ} is an almost disjoint family, then A′={ωAα|α<κ} has strong finite intersection property.

    Corollary7.7Martin’s Axiom implies that a=c.

    ProofLet A={Aα|α<κ} be an almost disjoint family, whereκ

    Definition7.8Define the tower number as follows:

    1) A tower is a sequence T=〈Tα:α<γ〉 from [ω]ω, such that ifα<β<γ, thenTβ?*Tα.

    2) A tower Tis extendible, if there is some tower T′ which properly extends |T|.

    3) The tower number, denoted by t, is the least cardinality of a tower which is not extendible.

    Lemma7.9A tower has strong finite intersection property.

    ProofLetα1<α2<…<αn<γ. ThenTαn?*Tαifor 1≤i

    is infinite.

    Corollary7.10Martin’s Axiom implies that t=c.

    ProofGiven a tower T=〈Tα:α<γ〉 , whereγ

    Definition7.11Define the splitting number as follows:

    1) A splitting family is some A={Aα|α<κ}?[ω]ωsuch that for anyB∈[ω]ω, there is someAαwhich splitsB, namely that bothB∩AαandBAαare infinite.

    2) The splitting number, denoted by s, is the least cardinality of a splitting family.

    The following lemma shows that a splitting family will be converted into an unextendible tower with the same length. As a corollary, Martin’s Axiom implies that s=c.

    Lemma7.12t≤s.

    ProofGiven a family A={Aα|α<κ}, withκ

    8 Hechler Forcing

    Hechler forcing[15]is also called dominating forcing, which adds a dominating real in a natural way.

    8.1DefinitionandpropertiesHechler forcing P consists of pairs (h,H), whereh∈ω<ω,H∈ωωandHagree withhon the domain ofh. (h′,H′)≤(h,H) ifh′ end extendsh, ?l∈ω,H′(l)≥H(l) and ?l∈dom(h′)dom(h),h′(l)≥H(l).

    Lemma8.1Hechler forcing satisfies countable chain condition.

    ProofActually, it isσ-centered, for our purpose, we show that it is isσ-linked.P can be divided into countable many piece, each piece has the sameh. Now (h,H) and (h,H′) have a common lower bound (h,max(H,H′)), wheremax(H,H′) is defined pointwisely.

    8.2TheunboundingnumberDefine the unbounding number:

    1) A family F ?ωωis an unbounded family, if ?g∈ωω?f∈Ff≤/*g.

    2) The unbounding number, denoted by b, is the least cardinality of an unbounded family.

    Theorem8.3Martin’s Axiom implies that b=c.

    ProofSuppose F={fα|α<κ} withκ

    As a result, we can show the following:

    Corollary8.4Martin’s Axiom implies thatnon(B)=c.

    9 Discussion

    Many cardinal invariants have been involved in previous sections, for the purpose of future study, we record known results on connections between cardinal invariants in the following diagram:

    It was proved in Ref.[5] thatadd(L)=c by applying amoeba forcing in Martin’s Axiom, are there alternative forcing for this statement It was proved in Ref.[16] that by a two-step iteration of Hechler forcing, Martin’s Axiom is able to show thatadd(B)=c. Is there a natural way to prove this statement?

    What are the correct forcing for the cardinal invariants h, g and e? Is it possible to develop a classification theory of cardinal invariants for the applications of Martin’s Axiom, or other forcing axioms?

    接受日期:2018-12-20

    韩国精品一区二区三区| 十八禁网站网址无遮挡| 欧美精品啪啪一区二区三区| 99精品久久久久人妻精品| 免费观看人在逋| 男女床上黄色一级片免费看| 两个人免费观看高清视频| 亚洲第一av免费看| 欧美性长视频在线观看| e午夜精品久久久久久久| 国产野战对白在线观看| 三上悠亚av全集在线观看| 9热在线视频观看99| 我要看黄色一级片免费的| 最新美女视频免费是黄的| 色综合欧美亚洲国产小说| 欧美精品一区二区免费开放| 大香蕉久久成人网| 汤姆久久久久久久影院中文字幕| 在线永久观看黄色视频| 国产日韩欧美亚洲二区| 男女无遮挡免费网站观看| 丝袜在线中文字幕| 国产亚洲一区二区精品| 精品少妇内射三级| 久久热在线av| 两人在一起打扑克的视频| 最新的欧美精品一区二区| 亚洲av日韩精品久久久久久密| 久久久国产欧美日韩av| 热re99久久精品国产66热6| 欧美乱码精品一区二区三区| 精品一区二区三区av网在线观看 | 十八禁高潮呻吟视频| 精品卡一卡二卡四卡免费| 一级片'在线观看视频| 国产黄色免费在线视频| 亚洲国产欧美一区二区综合| 国产欧美亚洲国产| 国产精品香港三级国产av潘金莲| 丰满饥渴人妻一区二区三| 亚洲专区字幕在线| 久久影院123| 国产成人欧美在线观看 | 99在线人妻在线中文字幕 | 国产亚洲一区二区精品| 欧美精品啪啪一区二区三区| svipshipincom国产片| 777米奇影视久久| 免费人妻精品一区二区三区视频| 欧美精品人与动牲交sv欧美| 人人妻人人爽人人添夜夜欢视频| 精品亚洲乱码少妇综合久久| 国产精品国产高清国产av | 亚洲精华国产精华精| 久久久国产精品麻豆| 精品亚洲乱码少妇综合久久| 999久久久精品免费观看国产| 亚洲午夜理论影院| 午夜久久久在线观看| 国产亚洲欧美精品永久| 一级片'在线观看视频| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲综合一区二区三区_| 99re6热这里在线精品视频| 波多野结衣av一区二区av| 动漫黄色视频在线观看| 一区二区三区激情视频| 日韩中文字幕欧美一区二区| 精品国产乱子伦一区二区三区| 日日摸夜夜添夜夜添小说| 丁香六月欧美| 精品国产国语对白av| 亚洲欧洲精品一区二区精品久久久| 一进一出抽搐动态| 天天操日日干夜夜撸| 国产欧美日韩精品亚洲av| 91成人精品电影| 国产男靠女视频免费网站| 国产欧美日韩一区二区三区在线| 99国产精品一区二区三区| 亚洲中文日韩欧美视频| 精品欧美一区二区三区在线| 国产成人av教育| 这个男人来自地球电影免费观看| 人成视频在线观看免费观看| 国产精品自产拍在线观看55亚洲 | 蜜桃国产av成人99| 天堂俺去俺来也www色官网| 天天躁日日躁夜夜躁夜夜| 久久ye,这里只有精品| 国产精品免费大片| 最黄视频免费看| 热99re8久久精品国产| 亚洲人成电影观看| 亚洲五月婷婷丁香| 国产一区二区三区在线臀色熟女 | 国产一区二区 视频在线| 欧美黄色淫秽网站| 老司机福利观看| 波多野结衣一区麻豆| 成人黄色视频免费在线看| 一区二区三区精品91| 99国产精品一区二区蜜桃av | 午夜福利免费观看在线| 男女床上黄色一级片免费看| 99re在线观看精品视频| 精品一品国产午夜福利视频| 精品亚洲乱码少妇综合久久| 纯流量卡能插随身wifi吗| 欧美精品啪啪一区二区三区| 人人妻人人添人人爽欧美一区卜| 国产男女内射视频| 亚洲国产av新网站| 日本av免费视频播放| 久久天躁狠狠躁夜夜2o2o| 久久久久国内视频| 国产精品自产拍在线观看55亚洲 | 丝袜喷水一区| 亚洲国产看品久久| av天堂在线播放| 亚洲精品在线观看二区| 午夜两性在线视频| 一二三四在线观看免费中文在| 女人被躁到高潮嗷嗷叫费观| 啦啦啦在线免费观看视频4| 最新美女视频免费是黄的| 丁香六月天网| 成人av一区二区三区在线看| 精品国产亚洲在线| 麻豆成人av在线观看| 一级黄色大片毛片| 精品国产国语对白av| 美国免费a级毛片| 一区二区三区国产精品乱码| 夫妻午夜视频| 人妻久久中文字幕网| 日韩大片免费观看网站| 免费在线观看黄色视频的| 国产精品欧美亚洲77777| 欧美人与性动交α欧美软件| 午夜福利视频在线观看免费| 亚洲美女黄片视频| h视频一区二区三区| 国产欧美日韩精品亚洲av| 日韩欧美三级三区| 精品少妇黑人巨大在线播放| 亚洲国产看品久久| 国产欧美日韩一区二区三| 国产av一区二区精品久久| 国产日韩欧美在线精品| 国产不卡一卡二| 国产欧美日韩一区二区三| 国产真人三级小视频在线观看| 日韩欧美三级三区| 亚洲,欧美精品.| 亚洲熟妇熟女久久| 欧美激情 高清一区二区三区| 日韩欧美一区二区三区在线观看 | 一区二区三区乱码不卡18| 国产成人精品久久二区二区免费| 啦啦啦视频在线资源免费观看| 国产在线精品亚洲第一网站| 成人影院久久| 免费久久久久久久精品成人欧美视频| 天堂8中文在线网| 99国产精品99久久久久| 亚洲专区字幕在线| 女性被躁到高潮视频| 国产精品98久久久久久宅男小说| netflix在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 手机成人av网站| 香蕉久久夜色| 一边摸一边做爽爽视频免费| 一二三四在线观看免费中文在| 岛国在线观看网站| 一边摸一边做爽爽视频免费| 精品久久久精品久久久| 久久人人爽av亚洲精品天堂| 色视频在线一区二区三区| 国产成人啪精品午夜网站| 人妻久久中文字幕网| 首页视频小说图片口味搜索| 夜夜夜夜夜久久久久| 大片电影免费在线观看免费| 亚洲精品国产一区二区精华液| 久久ye,这里只有精品| 欧美精品av麻豆av| 久久99热这里只频精品6学生| 亚洲色图综合在线观看| 女人爽到高潮嗷嗷叫在线视频| 99久久99久久久精品蜜桃| 97人妻天天添夜夜摸| 亚洲专区国产一区二区| 亚洲少妇的诱惑av| 在线观看人妻少妇| 亚洲精品美女久久久久99蜜臀| 19禁男女啪啪无遮挡网站| 久久久久久久精品吃奶| 中亚洲国语对白在线视频| 桃红色精品国产亚洲av| 欧美乱妇无乱码| 别揉我奶头~嗯~啊~动态视频| 一本—道久久a久久精品蜜桃钙片| 日韩中文字幕视频在线看片| 人人澡人人妻人| 日日爽夜夜爽网站| 老司机亚洲免费影院| 欧美日韩精品网址| 天堂俺去俺来也www色官网| 精品国产亚洲在线| 国产精品香港三级国产av潘金莲| 18禁国产床啪视频网站| 国产欧美日韩精品亚洲av| 老司机影院毛片| 纵有疾风起免费观看全集完整版| 男女边摸边吃奶| 久9热在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 丝袜在线中文字幕| 99精品欧美一区二区三区四区| 国产黄色免费在线视频| 中文字幕最新亚洲高清| 精品高清国产在线一区| 久久久久久免费高清国产稀缺| 欧美 日韩 精品 国产| 亚洲成人国产一区在线观看| 国产精品二区激情视频| 国产三级黄色录像| 少妇裸体淫交视频免费看高清 | 一个人免费看片子| 极品教师在线免费播放| 精品一区二区三区四区五区乱码| 岛国在线观看网站| 国产男靠女视频免费网站| 香蕉丝袜av| 亚洲欧洲精品一区二区精品久久久| 中文字幕制服av| 日韩欧美免费精品| 成人18禁在线播放| 亚洲国产欧美日韩在线播放| 色94色欧美一区二区| 久久精品国产99精品国产亚洲性色 | 亚洲av成人不卡在线观看播放网| 欧美激情高清一区二区三区| 正在播放国产对白刺激| 在线亚洲精品国产二区图片欧美| 日本a在线网址| 久久久久久久久免费视频了| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人| 高清在线国产一区| 大型黄色视频在线免费观看| 一夜夜www| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 婷婷丁香在线五月| 天堂俺去俺来也www色官网| 午夜福利免费观看在线| 免费av中文字幕在线| 久久人人97超碰香蕉20202| 免费女性裸体啪啪无遮挡网站| 制服人妻中文乱码| 久久人人97超碰香蕉20202| 久久亚洲真实| 精品少妇内射三级| 久久久精品免费免费高清| 18在线观看网站| 亚洲 欧美一区二区三区| 啦啦啦免费观看视频1| 久久精品91无色码中文字幕| 91大片在线观看| 韩国精品一区二区三区| 精品福利永久在线观看| 高潮久久久久久久久久久不卡| www.自偷自拍.com| 狠狠婷婷综合久久久久久88av| 亚洲国产中文字幕在线视频| 激情在线观看视频在线高清 | 欧美黑人欧美精品刺激| 18禁黄网站禁片午夜丰满| 女性被躁到高潮视频| 精品少妇黑人巨大在线播放| 成年女人毛片免费观看观看9 | 国产人伦9x9x在线观看| 国产成人欧美| 久久精品人人爽人人爽视色| 老司机福利观看| 亚洲精品在线美女| 亚洲中文av在线| 欧美日韩亚洲国产一区二区在线观看 | 交换朋友夫妻互换小说| 亚洲国产毛片av蜜桃av| 国产无遮挡羞羞视频在线观看| 波多野结衣av一区二区av| 国产欧美日韩一区二区三| 99riav亚洲国产免费| 成人国语在线视频| 一本久久精品| 十八禁高潮呻吟视频| 欧美激情 高清一区二区三区| 满18在线观看网站| 欧美精品一区二区大全| 色婷婷av一区二区三区视频| 两个人看的免费小视频| 激情在线观看视频在线高清 | 午夜日韩欧美国产| 成人国产一区最新在线观看| 久久中文看片网| 国产精品成人在线| 色综合欧美亚洲国产小说| 丰满少妇做爰视频| 国产成人系列免费观看| 免费观看人在逋| bbb黄色大片| 真人做人爱边吃奶动态| 一区二区三区激情视频| 成年动漫av网址| 黄频高清免费视频| 操出白浆在线播放| 天天躁日日躁夜夜躁夜夜| 在线亚洲精品国产二区图片欧美| 蜜桃在线观看..| 满18在线观看网站| 成人国产av品久久久| 亚洲精品在线美女| 国产免费av片在线观看野外av| 亚洲av电影在线进入| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 亚洲全国av大片| 精品人妻熟女毛片av久久网站| 麻豆国产av国片精品| 香蕉久久夜色| 国产高清激情床上av| 久久中文字幕一级| 99热网站在线观看| 国产成人免费无遮挡视频| 一区二区三区激情视频| 日韩欧美三级三区| 国产黄频视频在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲 欧美一区二区三区| 黄色 视频免费看| 人人妻人人澡人人爽人人夜夜| 99香蕉大伊视频| 老熟妇乱子伦视频在线观看| 亚洲 国产 在线| 久久毛片免费看一区二区三区| 一边摸一边抽搐一进一小说 | 如日韩欧美国产精品一区二区三区| 国产高清国产精品国产三级| 婷婷成人精品国产| 91麻豆精品激情在线观看国产 | 女性被躁到高潮视频| 精品视频人人做人人爽| 精品久久久久久久毛片微露脸| 99久久国产精品久久久| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 亚洲成人国产一区在线观看| 亚洲精品自拍成人| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 中文字幕人妻丝袜一区二区| 亚洲av国产av综合av卡| 午夜久久久在线观看| 国产精品免费视频内射| 91精品三级在线观看| 香蕉国产在线看| 免费在线观看日本一区| 天堂俺去俺来也www色官网| 亚洲精品粉嫩美女一区| 免费在线观看黄色视频的| 欧美久久黑人一区二区| 免费在线观看影片大全网站| 19禁男女啪啪无遮挡网站| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av国产精品国产| www.自偷自拍.com| 国产精品一区二区在线观看99| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 一级黄色大片毛片| 精品乱码久久久久久99久播| 国产黄频视频在线观看| 国产亚洲精品一区二区www | 亚洲国产欧美日韩在线播放| 99国产精品免费福利视频| 麻豆国产av国片精品| 久久精品亚洲精品国产色婷小说| 午夜福利视频在线观看免费| 免费看十八禁软件| 精品国产国语对白av| 免费黄频网站在线观看国产| 国产成人精品久久二区二区91| 伦理电影免费视频| 建设人人有责人人尽责人人享有的| 老司机影院毛片| 在线av久久热| 超碰成人久久| 国产淫语在线视频| 亚洲av第一区精品v没综合| 成年女人毛片免费观看观看9 | 国产一区二区在线观看av| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠躁躁| 亚洲性夜色夜夜综合| 国产精品一区二区在线不卡| 激情视频va一区二区三区| 国产一区二区激情短视频| 久久久精品国产亚洲av高清涩受| av电影中文网址| 国产一卡二卡三卡精品| 人人妻人人澡人人看| 欧美性长视频在线观看| 欧美黄色片欧美黄色片| 99热国产这里只有精品6| 男男h啪啪无遮挡| 国产在线观看jvid| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看 | kizo精华| 午夜精品久久久久久毛片777| 一区二区三区国产精品乱码| 午夜福利视频在线观看免费| cao死你这个sao货| 丰满迷人的少妇在线观看| 精品亚洲成国产av| 老鸭窝网址在线观看| 两个人看的免费小视频| 美女国产高潮福利片在线看| 亚洲成人国产一区在线观看| 性少妇av在线| 精品福利观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲少妇的诱惑av| 一级片免费观看大全| 啦啦啦视频在线资源免费观看| 国产成人系列免费观看| 欧美日韩成人在线一区二区| 精品久久久精品久久久| 十八禁网站网址无遮挡| 欧美一级毛片孕妇| 成人国产一区最新在线观看| 久久亚洲真实| 黄色a级毛片大全视频| 亚洲美女黄片视频| 99热国产这里只有精品6| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯 | 国产人伦9x9x在线观看| 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 91精品国产国语对白视频| 久久狼人影院| 制服诱惑二区| 手机成人av网站| 99国产综合亚洲精品| 亚洲中文日韩欧美视频| 日韩欧美一区二区三区在线观看 | 视频区欧美日本亚洲| 国产亚洲欧美精品永久| 精品人妻1区二区| 人人妻人人澡人人看| 久久久久久久国产电影| 中文字幕人妻熟女乱码| 老司机靠b影院| 久久香蕉激情| 国产精品亚洲一级av第二区| 高清黄色对白视频在线免费看| 午夜免费鲁丝| 天天影视国产精品| 无人区码免费观看不卡 | 免费女性裸体啪啪无遮挡网站| 久久人人爽av亚洲精品天堂| 亚洲欧美色中文字幕在线| 午夜精品久久久久久毛片777| 精品少妇一区二区三区视频日本电影| 国产精品一区二区在线观看99| 亚洲 欧美一区二区三区| 久久狼人影院| 女警被强在线播放| 成人特级黄色片久久久久久久 | 99久久国产精品久久久| 亚洲国产欧美日韩在线播放| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| av在线播放免费不卡| 桃花免费在线播放| 国产精品久久久久久精品古装| 国产黄色免费在线视频| 一区二区三区乱码不卡18| 老汉色av国产亚洲站长工具| 国产精品免费大片| 99re在线观看精品视频| 精品国产一区二区久久| 嫩草影视91久久| 香蕉国产在线看| 亚洲欧美激情在线| 最近最新中文字幕大全免费视频| 窝窝影院91人妻| 欧美激情 高清一区二区三区| av又黄又爽大尺度在线免费看| 在线亚洲精品国产二区图片欧美| 中文欧美无线码| 美女国产高潮福利片在线看| 亚洲欧美一区二区三区黑人| 久久国产亚洲av麻豆专区| 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 好男人电影高清在线观看| 久久精品亚洲av国产电影网| 美女国产高潮福利片在线看| 天天添夜夜摸| 国产1区2区3区精品| 啦啦啦 在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 男女无遮挡免费网站观看| 日韩一卡2卡3卡4卡2021年| 老熟妇仑乱视频hdxx| 最新的欧美精品一区二区| 国产精品国产高清国产av | 老司机影院毛片| 黄色怎么调成土黄色| a级片在线免费高清观看视频| 2018国产大陆天天弄谢| 免费黄频网站在线观看国产| 99久久精品国产亚洲精品| 欧美成人午夜精品| 性高湖久久久久久久久免费观看| 极品人妻少妇av视频| 午夜两性在线视频| 老鸭窝网址在线观看| 精品少妇一区二区三区视频日本电影| 电影成人av| 久久国产精品人妻蜜桃| 色在线成人网| 最黄视频免费看| 99久久99久久久精品蜜桃| 久久毛片免费看一区二区三区| 欧美成人免费av一区二区三区 | 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 免费av中文字幕在线| 国产xxxxx性猛交| 日韩一卡2卡3卡4卡2021年| 午夜视频精品福利| 亚洲色图 男人天堂 中文字幕| 在线观看免费视频日本深夜| 纵有疾风起免费观看全集完整版| 香蕉久久夜色| 国产精品av久久久久免费| 美女福利国产在线| 黄色视频不卡| 精品少妇内射三级| 女人久久www免费人成看片| 国产一区二区 视频在线| 久久天堂一区二区三区四区| 国产男女内射视频| 精品一区二区三卡| 日韩大片免费观看网站| 黑人巨大精品欧美一区二区蜜桃| 制服诱惑二区| 丝袜在线中文字幕| 国产成人影院久久av| 亚洲三区欧美一区| 一边摸一边抽搐一进一小说 | 黑人操中国人逼视频| 国产精品一区二区在线观看99| 久久国产亚洲av麻豆专区| av有码第一页| 亚洲 欧美一区二区三区| 深夜精品福利| 久久热在线av| 国产欧美亚洲国产| 啦啦啦视频在线资源免费观看| 十八禁网站网址无遮挡| 我的亚洲天堂| 亚洲精品粉嫩美女一区| 两个人看的免费小视频| 国产91精品成人一区二区三区 | 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 99re在线观看精品视频| 人妻久久中文字幕网| h视频一区二区三区| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 成人影院久久| 亚洲成人国产一区在线观看| 国产人伦9x9x在线观看| 欧美老熟妇乱子伦牲交| 最新美女视频免费是黄的| 欧美激情 高清一区二区三区| 久久热在线av| 国产在线视频一区二区| 一级毛片精品| 久久精品人人爽人人爽视色| 少妇猛男粗大的猛烈进出视频| 俄罗斯特黄特色一大片| 五月天丁香电影| 久久精品国产亚洲av高清一级| 色老头精品视频在线观看| 久久亚洲真实| 国产一区二区三区视频了| 国产欧美日韩综合在线一区二区| 亚洲少妇的诱惑av| 精品欧美一区二区三区在线| 大型黄色视频在线免费观看|