• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genome-Wide Association Analysis and Allelic Mining of Grain Shape-Related Traits in Rice

    2019-11-13 00:36:18LvYangWangYueyingNoushinJahanHuHaitaoChenPingShangLianguangLinHaiyanDongGuojunHuJiangGaoZhenyuQianQianZhangYuGuoLongbiao
    Rice Science 2019年6期

    Lv Yang, Wang Yueying, Noushin Jahan, Hu Haitao, Chen Ping, Shang Lianguang, Lin Haiyan, Dong Guojun, Hu Jiang, Gao Zhenyu, Qian Qian, Zhang Yu, 2, Guo Longbiao

    Research Paper

    Genome-Wide Association Analysis and Allelic Mining of Grain Shape-Related Traits in Rice

    Lv Yang1, #, Wang Yueying1, #, Noushin Jahan1, Hu Haitao1, Chen Ping1, Shang Lianguang1, Lin Haiyan1, Dong Guojun1, Hu Jiang1, Gao Zhenyu1, Qian Qian1, Zhang Yu1, 2, Guo Longbiao1

    (#)

    Excavating single nucleotide polymorphisms (SNPs) significantly associated with rice grain shape and predicting candidate genes through genome-wide association study (GWAS) can provide a theoretical basis for discovery and utilization of excellent genetic resources in rice. Based on 16 352 SNPs, 161 naturalrice varieties with various grain sizes in southern China were used for GWAS of grain shape-related traits, referring to grain length (GL), grain width (GW), 1000-grain weight (TGW), and grain length/width (GLW). Phenotypic statistics showed that coefficient of variation values for these four traits GL, GW, TGW and GLW were 9.92%, 9.09%, 20.20% and 16.38%, respectively. Each trait showed a normal distribution, and there was a certain correlation between these traits. Through general linear model correlation analysis, a total of 38 significant loci were identified, and a range of 100 kb upstream and downstream of the significant loci was identified as the candidate interval. On chromosome 3,andwere found to regulate GL. On chromosome 6,andwere found to regulate TGW. Also, some QTLs related to grain shape were found on chromosomes 5 and 9. Besides that, using sequenced 3K-germplasm resources, we found that there are 22 overlapped varieties between these two natural populations. Twenty-six SNPs and fourteen haplotypes were identified in five regions ofgenes. The detection of multiple candidate genes/QTLs within the candidate interval is beneficial for further excavation of superior rice genetic resources.

    candidate gene; grain shape; genome-wide association study; haplotype;rice; single nucleotide polymorphism

    Rice (L.) is one of the most important food crops in the world. More than 65% population in China treats rice as their staple food (Zhu, 2007). Rice Grain shape is an important component of rice yield, which determines the level of yield and quality (Li et al, 2008). It is a complex comprehensive trait that is directly affected by multiple factors, referring to grain length (GL), grain width (GW), grain length/width (GLW) and 1000-grain weight (TGW) (Yang et al, 2001; Wu et al, 2002; Huang and Qian, 2017; Liu et al, 2018). Grain weight is an important determinant of rice silage capacity and yield. It is a comprehensive index related to grain length and grain width, and is mainly controlled by the additive effects of multiple genes (Shi and Shen, 1995). Grain length/width is also an important index to measure rice grain shape (Fu and Wang, 1994). So far, through a large number of genetic analyses and map-based cloning methods, a batch of genes/QTLs related to rice grain shape have been cloned, explaining their molecular mechanisms successfully (Rabiei et al, 2004). With the development of DNA molecular marker technology, genes(Hu et al, 2015),(Song et al, 2007),(Fan et al, 2006),(Gao et al, 2015),/(Prasad et al, 2010),/(Wan et al, 2008),(Li et al, 2011),(Ishimaru et al, 2013),(Wang et al, 2015),(Wang et al, 2012),(Zhao et al, 2018) controlling grain shape have been identified or cloned.

    Risch and Merikangas (1996) found that association analysis is more advantageous than linkage analysis in the study of complex human diseases, and thus proposed the concept of genome-wide association study (GWAS). Recent years, with the application of GWAS in the field of plants, re-sequencing technology and single nucleotide polymorphism (SNP) chip technology have become more and more mature, and GWAS has also begun to be widely used in excellent rice gene mining gradually (Huang and Han, 2014). GWAS analysis to elucidate the mechanism of genetic control of rice grain shape has important implications for the excavation of excellent genetic resources and the improvement of rice yield. Huang et al (2010) used 373rice varieties to perform association analysis of 14 rice agronomic traits, and identified a total of 80 related sites. Then, Huang et al (2012) identified a total of 32 heading date sites and 20 grain type sites using 950 rice varieties. Zhao et al (2011) used 413 rice varieties from 82 countries to perform GWAS on 34 traits, and totally 234 associated sites were detected.(Fan et al, 2006) and(Wan et al, 2008), which regulate grain shape, and(Yano et al, 2016), which regulates heading date, and(Sasaki et al, 2002), which regulates plant height, were found by GWAS. Zuo et al (2014) used a total of 315 rice varieties from the International Core Rice Germplasm Bank to perform GWAS analysis on five panicle traits, and a total of 36 candidate associated regions were detected. Si et al (2016) used the GWAS method to clonegene controlling rice grain size. The cloning of this gene further confirms the reliability of the GWAS method.

    Rice grain shapes are closely related to the yield and quality. GWAS can be applied more efficiently and reliably to the excavation of superior rice alleles and improve the breeding level. The objective of this study was to detect the SNP loci and determine related candidate genes affecting the rice grain shape significantly to reveal its genetic basis and molecular mechanism, and lay a foundation for the marker- assisted selection in high-yielding breeding of rice (Guo et al, 2014).

    MATERIALS AND METHODS

    Rice materials

    A total of 161 naturalrice varieties with various grain sizes collected from 11 provinces in southern China were used (Supplemental Table 1). All varieties were stored at the China National Rice Research Institute (CNRRI), Hangzhou City, Zhejiang Province, China.

    Field trials and phenotypic data collection

    All experiments were conducted in the experimental field of CNRRI, Hangzhou, China, and a randomized complete block design was applied. Seeds with uniform germination were directly sown under a spacing of 20 cm × 20 cm (6 line × 6 rows for each variety). When ripening, 10 plants were selected in each variety. After threshing, 30 spikelets were randomly selected from each plant. The grain length and grain width were measured with a ruler, and grain length/width was calculated. Finally, 1000-grain weight was weighed and recorded by an electronic balance.

    Statistical analysis

    Excel 2014 and SAS 9.4 were employed for data compilation, and the mean, standard deviation and coefficient of variation of each trait were calculated. Correlation analysis was performed for the four grain traits (GL, GW, GLW and TGW).

    DNA extraction and SNP genotyping

    Genomic DNA from the samples was isolated from three to five leaves of 21-day-old plants per line using the CTAB method and finally diluted to 50 ng/μL. The 60 K SNP chip of Illumina (Wright et al, 2010) was applied in SNP genotyping, and markers with a minimum allele frequency (MAF) less than 0.03 were deleted.

    Population structure

    Genetic diversity and distance measures were estimated using the PowerMarker (Liu and Muse, 2005). The model-based program Popgene (Glaubitz, 2010) was used to infer population structure and to assign individual varieties into subpopulation. SAS 9.4 was used to perform statistical analysis on the relative kinship between the combinations.

    Genome-wide association analysis and allele mining

    Association analyses were performed with and without correcting for population structure. General linear model (GLM) approach implemented in TASSEL was used to correlate the grain shape and the corresponding SNP loci, and a Manhattan map was generated by using the R language. Significant marker trait associations were determined based on a threshold of -lg() as 4. Adjacent significant SNP associated with the same trait within a physical distance of 200 kb were regarded as a candidate region. Candidate genes were screened through the Rice Genome Annotation Project Database (http://www.ricedata.cn/gene/), and haplotype analyses of candidate genes were performed in combination with the rice 3K Resource Sequencing Library data (http://www.rmbreeding.cn/Index/).

    RESULTS

    Statistical analysis of four phenotypes related to grain shape

    A total of 161rice varieties were evaluated for GL, GW, TGW and GLW. The mean values of GL, GW, TGW and GLW were 8.37 mm, 2.97 mm, 26.05 g and 2.87, respectively (Table 1). CV value ranged from 9.09% to 20.20%, indicating that the grain shape was rich in genetic variation. The distribution pattern of each trait showed a significant normal distribution, and the correlation result revealed that there were a positive correlation between GL with GLW and TGW, and a weak negative correlation with GW. GW was positively correlated with TGW and negatively correlated with GLW (Fig. 1).

    Table 1. Statistical analysis of grain shape related traits.

    GL, Grain length; GW, Grain width; TGW, 1000-grain weight; GLW, Grain length/width; SD, Standard deviation (= 3); Max, Maximum value; Min, Minimum value; CV, Coefficient variance.

    Basic statistics of SNP markers

    Based on the genomic sequencing results, the set of marker available for GWAS after filtering the minor allele frequency consisted of 16 352 SNPs (4.2 SNP sites per 100 kb on average). Sites are distributed on all 12 chromosomes of rice, with a number of SNP markers per chromosome ranging from 708 to 2 120, PIC values of different chromosome markers ranging from 0.11 to 0.70. The results showed that the selected SNP markers were polymorphic and can perform GWAS analysis covering the entire rice genome.

    Fig. 1. Statistical analysis of four grain shape traits.

    TGW, 1000-grain weight; GL, Grain length; GW, Grain width; GLW, Grain length/width.

    The green lines represent the correlation coefficient, and the red lines represent the correlation trend.

    Analysis of population structure

    According to the genetic distance analysis, the neighbor-joining tree identified these varieties into two major groups (cluster I, 45 varieties; cluster II, 116 varieties) (Fig. 2-A). The phylogenetic value ranged from 0 to 0.5311 with the mean of 0.2720 and the data fluctuation value was small. The results showed that only 0.3% of the phylogenetic value was greater than 0.50, and 0.2% of the phylogenetic value was smaller than 0.05 (Fig. 2-B). Therefore, the relationship between varieties was relatively long and the varieties were suitable for GWAS analysis.

    Genome-wide association analysis

    The GLM approach was used to analyze the grain shape of rice materials. The results showed that with -lg() > 4 as the screening threshold, 38 significantly associated loci for the four traits were identified and distributed on 12 rice chromosomes (Fig. 3). The highest number (9) was distributed on chromosome 3, and the maximum number of -lg() was of 13.38, suggesting that the target candidate genes/QTLs are likely to be present on chromosome 3 (Table 2). There were 8, 9, 20 and 1 SNP loci that were significantly associated with GL, GW, TGW and GLW, respectively, and 11 sites were associated with two or more grain shape traits at the same time, suggesting that there may be a trait correlation or a pleiotropic effect.

    Allelic mining and haplotype analysis

    Six candidate genes/QTLs were screened out in association with 92 genes/QTLs. The results showed that two grain shape-related QTLs were detected on chromosomes 5 and 9 asand, respectively (Table 2). Two candidate regions, chr03_17302647 and chr03_19320570 on chromosome 3, were associated withandgenes.negatively regulates grain size and encodes a cysteine-rich domain protein of the TNFR/NGFR family.encodes a protein phosphatase that contains a Kelch repeat domain and positively regulates rice grain length. Two candidate regions of chromosome 6, chr06_24170016 and chr06_26025122, were associated withandgenes, respectively, which code for indole-3-acetic acid (IAA)-glucohydrolase and histone acetyltransferase, respectively.

    Fig. 2. Population genetic relationship evolution analysis.

    A, Population structure based on neighbor-joining method. B, Frequency distribution of kinship between varieties.

    Fig. 3. Manhattan plots for grain length (A), grain width (B), grain length/width (C), and 1000-grain weight (D) by genome-wide association study.

    The significance threshold -log10() is 4.

    A total of 22 rice varieties (overlapped varieties between these two natural populations, Supplemental Table 2) in this study were consistent with the 3K rice resource sequencing database (http://www.rmbreeding.cn/Index/). The haplotype analysis of() and() genes was performed using the Halpoview software combined with 3K resource sequencing library (Fig. 4). Twenty-six SNP loci were detected in five exons of, and 22 varieties were divided into 14 haplotypes. There were differences in the grain traits of different haplotypes. CX145 (Supplemental Table 1) with grain length longer than 9.6 mm belongs to the dominant haplotype of GS3-11, and the grain size of the haplotype CX79 is also longer than 9 mm. Based on exon differences, 22 varieties ofwere divided into five haplotypes. A total of 11 varieties had excellent haplotype T-G-G, and the mean grain width of these is 3.19 mm. Allelic effect analysis revealed that when the upstream SNP site (chr06_25094225, upstream 0.98 kb) changed from T to G, the TGW6-1 dominant haplotype varieties increased by 23%, and the increase in grain width exceeded 0.4 mm (Supplemental Table 2). There was a significant correlation between this locus and grain width traits.

    Table 2. Thirty-eight single nucleotide polymorphisms (SNPs) significantly associated with grain size by genome-wide association study.

    Position of all SNPs is based on Rice Rap2.

    Chr, Chromosome; MAF, Minimum allele frequency; QTL, Quantitative trait locus; GL, Grain length; GW, Grain width; GLW, Grain length/width; TGW, 1000-grain weight.

    DISCUSSION

    Strengthening genetic research on rice grain shape has important implications for improving the level of yield and quality (Qiu, 2013). At present, the genetic research of rice grain shape has made great progress (Wei et al, 2009; Xuan et al, 2010). The extensive application of GWAS in the plants field also provides an efficient and reliable method for the excavation of excellent genetic resources (Ishimaru et al, 2013).

    GWAS analysis showed that 38 significant SNP sites were detected for four rice grain shape traits. In the range of 100 kb upstream and downstream, a number of related genes/QTLs are associated within the candidate interval, includingand, which regulate grain length, andand, which regulate grain weight, indicating the results of this experiment are very reliable. Moreover, in this study, chr3_17302647 locus on chromosome 3 showed different correlations for different grain shape traits, which may be caused by a pleiotropic effect or closely linked genes. The highest -lg() value was 13.38, which is associated with the. The gene controls grain length and grain weight of rice by regulating the cysteine domain and VWFC module proteins of the TNFR/NGFR family (Zhang et al, 2004). Two QTLs associated with grain shape on chromosomes 5 and 9 wereand, respectively. Clonal QTL regulation is an indispensable process in breeding. In addition, some new sites with significant significance were also detected, such as chr01_12869918and chr01_15765545 on chromosome 1, chr06_1764762on chromosome 6, chr08_3681009 and chr08_12028646on chromosome 8, chr11_12028646 and chr11_14891499 on chromosome 11. The -lg() values of these sites are relatively large, and they should be further fine mapped.

    Fig. 4. Gene structure andsingle nucleotide polymorphism analysis of(A) and(B) haplotype.

    Rice is rich in genetic resources and can produce a series of allelic variations. Different allelic variations have different adaptability and functions. Some alleles have been widely used in production., a major gene with a wide grain size, encodes an E3 ubiquitin ligase that negatively regulates cell division. A 1 bp deletion causes mutations in the large-grainedgene, accelerating cell division and increasing grain width and grain weight (Song et al, 2007).gene on chromosome 7 encodes a TRM protein and contains two tandem repeats of GL7-S1/S2, which can significantly increase grain length and decrease grain width (Wang et al, 2015). The A/C variation of exon 2 ofgene has a significant effect on rice grain length and grain quality, and Fan et al (2009) developed a functional marker SF28 based on this mutation. In this study, we detected 14 haplotypes of thegene by combining the sequencing information of different cultivars. The grain length of the GS3-11 haplotype was significantly greater than that of the other haplotypes G-G is the dominant haplotype of thegene. In general, compared with previous studies (Redo?a and Mackill, 1998; Lin and Wu, 2003; Mao et al, 2010), there are few numbers of SNP site were obtained in this study. However, using the GWAS analysis method to correlate multiple reported genes/QTLs within the candidate interval, the correlation results are more reliable, the accuracy of the GWAS association was verified. Based on the significant association SNP loci, the sequence differences ofandgene with Minghui 63 as a recurrent parent, Yang et al (2010) used thegene and other superior genes for polymerization and breeding to achieve rice quality improvement, Lang (2015) found that deletion of the G base in position 313 of the nucleic acid did not result in increased production of thegene in Kasalath. Thus, by mining alleles and using the differences in these SNP sites, it is possible to effectively use the grain shape-related genes in crop breeding.

    Acknowledgements

    This study was supported by the Natural Science Foundation of China (Grant Nos. 31461143014, 31771778 and 31801336), the National Key Research and Development Program of China (Grant No. 2016YFD0100902-07), the China Postdoctoral Science Foundation (Grant No. 2018M641556) and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LGN19C130006).

    supplemental data

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/ journal/16726308; http://www.ricescience.org.

    Supplemental Table 1. One hundred and sixty-onerice varieties from 11 provinces in China.

    Supplemental Table 2. Phenotype and genotype classification of 22 rice varieties.

    Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. 2006., a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein., 112(6): 1164–1171.

    Fan C C, Yu S B, Wang C R, Xing Y Z. 2009. A causal C-A mutation in the second exon ofhighly associated with rice grain length and validated as a functional marker., 118(3): 465–472.

    Fu F H, Wang F. 1994. Genetic analysis of grain characters in hybrid rice., 20(1): 39–45. (in Chinese with English abstract)

    Gao X Y, Zhang X J, Lan H X, Huang J, Wang J F, Zhang H S. 2015. The additive effects ofandon rice grain length regulation revealed by genetic and transcriptome comparisons., 15(1): 156.

    Gao Z Q, Zhan X D, Liang Y S, Cheng S H, Cao L Y. 2011. Research advances on the inheritance of rice grain shape traits and related gene mapping and cloning., 33(4): 314–321. (in Chinese with English abstract)

    Glaubitz J C. 2010. CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages., 4(2): 309–310.

    Gong L H, Gao Z Y, Ma B J, Qian Q. 2011. Advances in research on rice grain size genetics., 46(6): 597–605. (in Chinese with English abstract)

    Guo L B, Ye G Y. 2014.Use of major quantitative trait loci to improve grain yield of rice.,21(2): 65–82.

    Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong D J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. 2015. A rare allele ofenhances grain size and grain yield in rice., 8(10): 1455–1465.

    Huang H X, Qian Q. 2017. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good qualityrice., 31(6): 665–672. (in Chinese with English abstract)

    Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, Li J Y, Han B.2010. Genome-wide association studies of 14 agronomic traits in rice landraces., 42: 961–967.

    Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Zhang L, Qian Q, Zhang Q F, Li J Y. 2012. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm., 44: 32–39.

    Huang X H, Han B. 2014. Natural variations and genome-wide association studies in crop plants., 65(1): 531–551.

    Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. 2013. Loss of function of the IAA-glucose hydrolase geneenhances rice grain weight and increases yield., 45(6): 707–711.

    Lang Y L. 2015. A preliminary analysis of genetic effects of seven rice genotypes [MS Thesis]. Nanjing: Nanjing Agricultural University. (in Chinese with English abstract)

    Li M M, Xu L, Liu C W, Cao G L, He H H, Han L Z. 2008. Advances in rice grain shape inheritance and QTLs mapping., 10(1): 34–42. (in Chinese with English abstract)

    Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu L J, Li X H, Xiao J H, He Y Q, Zhang Q F. 2011. Natural variation inplays an important role in regulating grain size and yield in rice., 43(12): 1266–1269.

    Lin L H, Wu W R. 2003. QTL mapping of grain shape and grain weight in rice., 1(3): 337–342. (in Chinese with English abstract)

    Liu K, Muse S V. 2005. PowerMarker: An integrated analysis environment for genetic marker analysis., 21(9): 2128–2129.

    Liu X, Mou C L, Zhou C L, Cheng Z J, Jiang L, Wan J M. 2018. Research progress on cloning and regulation mechanism of rice grain shape genes., 32(1): 1–11. (in Chinese with English abstract)

    Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C Q, Li X H, Zhang Q F. 2010. Linking differential domain functions of theprotein to natural variation of grain size in rice., 107: 19579–19584.

    Prasad K, Parameswaran S, Vijayraghavan U. 2010., a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an earlyacting regulator of inner floral organs., 43(6): 915–928.

    Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L, Gao J P, Lin H X. 2012. The novel quantitative trait locuscontrols rice grain size and yield by regulating Cyclin-T1: 3., 22(12): 1666–1680.

    Qiu X J. 2013. Identification and identification of a major gene

    Rabiei B, Valizadeh M, Ghareyazie B, Moghaddam M, Ali A J. 2004. Identification of QTLs for rice grain size and shape of Iranian cultivars using SSR markers., 137(3): 325–332.

    Redo?a E D, Mackill D J. 1998. Quantitative trait locus analysis for rice panicle and grain characteristics., 96: 957–963.

    Risch N, Merikangas K. 1996. The future of genetic studies of complex human diseases., 273: 1516–1517.

    Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. 2002. Green revolution: A mutant gibberellin-synthesis gene in rice., 416: 701–702.

    Shi C H, Shen Z T. 1995. Genetics and improvement of early grain shape., 9(1): 27–32. (in Chinese with English abstract)

    Si L Z, Chen J Y, Huang X H, Gong H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shang G Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. 2016.controls grain size in cultivated rice., 48: 447–456.

    Song X J, Huang W, Shi M, Zhu M Z, Lin H X. 2007. A QTL for rice grain width and weight encodes a previously unknown RING-typeubiquitin ligase., 39(5): 623–630.

    Wan X Y, Weng J F, Zhai H Q, Wang J K, Lei C L, Liu X L, Guo T, Jiang L, Su N, Wan J M. 2008. Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele, 179(4): 2239–2252.

    Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. 2012. Control of grain size, shape and quality by, 44(8): 950–954.

    Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. 2015. Copy number variation at thelocus contributes to grain size diversity in rice., 47(8): 944–948.

    Wei X H, Yuan X P, Yu H Y, Wang Y P, Xu Q, Tang S X. 2009. Analysis of genetic variation of main rice varieties in China., 23(3): 237–244. (in Chinese with English abstract)

    Wright M H, Tung C W, Zhao K, ReynoldsA,McCouchS R, Bustamante C D. 2010. ALCHEMY: A reliable method for automated SNP genotype calling for small batch sizes and highly homozygous populations., 26(23): 2952–2960.

    Wu C M, Sun C Q, Chen L, Li Z C, Wang X K. 2002. Analysis QTL of grain shape by using of RFLP map in rice., 27(5): 3–7. (in Chinese with English abstract)

    Xuan Y S, Jiang W S, Liu X H, Cheng H Z, Hee-Jong Koh, Yuan D L. 2010. Genetic diversity of main rice cultivars in northeast China., 11(2): 206–212. (in Chinese with English abstract)

    Yang L S, Bai Y S, Xu C W, Hu X M, Wang W M, She D H, Chen G Z. 2001. Advances in research on rice grain shape and its inheritance., 29(2): 164–167. (in Chinese with English abstract)

    Yang T F, Zeng R Z, Zhu H T. 2010. Effect of rice grain length geneon polymerization breeding., 8(1): 59–66.

    Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P C, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M. 2016. Genome- wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice., 48(8): 927–934.

    Zhang G H, Zhang G P, Qian Q, Xu L P, Zeng D L, Teng S, Bao J S. 2004. Analysis of QTLs for quantitative traits of rice grain under different environmental conditions., 18(1): 16–22. (in Chinese with English abstract)

    Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. 2018.acts as a transcriptional activator to regulate rice grain shape and appearance quality., 9(1): 1240.

    Zhao K Y, TungC W, Eizenga G C, Wright M H, Ali L M, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. 2011. Genome-wide association mapping reveals a rich genetic architecture of complex traits in., 2(1): 467.

    Zhu L H. 2007. My opinion about high yield rice breeding in China., 30(1): 129–135. (in Chinese with English abstract)

    Zuo S M, Kang H X, Li Q Q, Chen Z X, Zhang Y F, Liu W D, Wang G L, Chen H Q, Pan X B. 2014. Genome-wide association analysis and utilization of gene related to ear traits in introduced rice germplasm., 28(6): 649–658. (in Chinese with English abstract)

    10 July 2018;

    21 September 2018

    GUO Longbiao (guolongbiao@caas.cn); ZHANG Yu (zhangyu08@caas.cn)

    Copyright ? 2019, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2018.09.002

    (Managing Editor: Wang Caihong)

    嫁个100分男人电影在线观看| 国产亚洲午夜精品一区二区久久| 一区二区三区乱码不卡18| 亚洲av男天堂| 国产精品久久久久久精品古装| 一本—道久久a久久精品蜜桃钙片| 日韩视频一区二区在线观看| 丝袜在线中文字幕| 欧美乱码精品一区二区三区| 人成视频在线观看免费观看| 美女中出高潮动态图| 国产亚洲精品第一综合不卡| 一边摸一边抽搐一进一出视频| 亚洲av片天天在线观看| 日日摸夜夜添夜夜添小说| 麻豆乱淫一区二区| 午夜视频精品福利| 成人免费观看视频高清| 亚洲人成电影免费在线| 亚洲欧美一区二区三区久久| 91成人精品电影| 久久久水蜜桃国产精品网| 国产成人精品在线电影| 丁香六月天网| 涩涩av久久男人的天堂| 亚洲专区中文字幕在线| 在线十欧美十亚洲十日本专区| netflix在线观看网站| netflix在线观看网站| 热99国产精品久久久久久7| 一区二区av电影网| 欧美日韩一级在线毛片| 青草久久国产| 日本一区二区免费在线视频| 首页视频小说图片口味搜索| 精品熟女少妇八av免费久了| 人妻一区二区av| 久久精品国产亚洲av香蕉五月 | 欧美黑人精品巨大| 黄片小视频在线播放| 精品视频人人做人人爽| 国产精品国产av在线观看| 涩涩av久久男人的天堂| 午夜免费观看性视频| 精品国产一区二区三区四区第35| 中文字幕制服av| 狠狠精品人妻久久久久久综合| 国产精品熟女久久久久浪| 一本大道久久a久久精品| 一二三四在线观看免费中文在| 高清欧美精品videossex| 国产成人a∨麻豆精品| 欧美国产精品一级二级三级| 国产av国产精品国产| 免费一级毛片在线播放高清视频 | 黄色 视频免费看| 脱女人内裤的视频| 一区二区三区四区激情视频| 男女高潮啪啪啪动态图| 欧美一级毛片孕妇| 国产精品久久久久成人av| 亚洲成人免费av在线播放| 亚洲精品国产精品久久久不卡| 后天国语完整版免费观看| 久久久久久久精品精品| 国产精品影院久久| 中文字幕人妻丝袜制服| √禁漫天堂资源中文www| 9热在线视频观看99| 久久精品熟女亚洲av麻豆精品| 国产成人精品无人区| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美精品.| 日韩大码丰满熟妇| 丁香六月欧美| 在线观看一区二区三区激情| cao死你这个sao货| 久久人人爽av亚洲精品天堂| 欧美+亚洲+日韩+国产| 国产在线免费精品| 日韩大片免费观看网站| a 毛片基地| h视频一区二区三区| 最近中文字幕2019免费版| 91精品三级在线观看| 久久久国产精品麻豆| 他把我摸到了高潮在线观看 | 亚洲av美国av| 成年人免费黄色播放视频| www.av在线官网国产| 日韩熟女老妇一区二区性免费视频| 美女高潮到喷水免费观看| 十八禁人妻一区二区| 99热网站在线观看| 高清欧美精品videossex| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品一区二区三区在线| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 亚洲精品国产精品久久久不卡| 国产精品秋霞免费鲁丝片| 亚洲欧美一区二区三区久久| 亚洲欧美色中文字幕在线| 满18在线观看网站| 亚洲情色 制服丝袜| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| 少妇被粗大的猛进出69影院| 日本一区二区免费在线视频| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 中亚洲国语对白在线视频| 色精品久久人妻99蜜桃| 十八禁网站网址无遮挡| 一个人免费在线观看的高清视频 | 欧美日韩一级在线毛片| 成人黄色视频免费在线看| 各种免费的搞黄视频| 首页视频小说图片口味搜索| 亚洲国产精品一区三区| 欧美精品av麻豆av| 别揉我奶头~嗯~啊~动态视频 | 免费在线观看影片大全网站| 久久久国产欧美日韩av| 两个人免费观看高清视频| 精品人妻1区二区| 男人添女人高潮全过程视频| 精品少妇黑人巨大在线播放| 精品视频人人做人人爽| 精品视频人人做人人爽| 免费高清在线观看日韩| 国产精品 国内视频| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影| 亚洲国产日韩一区二区| 日本vs欧美在线观看视频| 无限看片的www在线观看| 巨乳人妻的诱惑在线观看| 交换朋友夫妻互换小说| 淫妇啪啪啪对白视频 | 亚洲黑人精品在线| 亚洲色图综合在线观看| 欧美在线黄色| 一进一出抽搐动态| 欧美激情久久久久久爽电影 | 国产色视频综合| 久久青草综合色| 新久久久久国产一级毛片| 天天操日日干夜夜撸| 老司机午夜福利在线观看视频 | 日本wwww免费看| 亚洲欧洲精品一区二区精品久久久| 久久99热这里只频精品6学生| 久热爱精品视频在线9| 少妇精品久久久久久久| 日韩熟女老妇一区二区性免费视频| 男女下面插进去视频免费观看| 狂野欧美激情性xxxx| 亚洲国产精品一区三区| 国产精品久久久久久精品电影小说| 欧美 日韩 精品 国产| 黄片小视频在线播放| 亚洲欧美精品自产自拍| 中文字幕人妻熟女乱码| 国产欧美日韩综合在线一区二区| 国产激情久久老熟女| 美女扒开内裤让男人捅视频| 欧美另类一区| 午夜91福利影院| 悠悠久久av| 国产91精品成人一区二区三区 | 国产精品影院久久| 久久久久久免费高清国产稀缺| 国产深夜福利视频在线观看| 一本一本久久a久久精品综合妖精| 性高湖久久久久久久久免费观看| 日韩熟女老妇一区二区性免费视频| 免费高清在线观看视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产免费视频播放在线视频| 欧美精品亚洲一区二区| 久久久久久久大尺度免费视频| 青春草视频在线免费观看| 日韩欧美一区视频在线观看| 国产三级黄色录像| 国产欧美日韩一区二区精品| 日本撒尿小便嘘嘘汇集6| 男男h啪啪无遮挡| 又黄又粗又硬又大视频| 成人av一区二区三区在线看 | 最黄视频免费看| 国产精品欧美亚洲77777| 黄色怎么调成土黄色| 不卡一级毛片| 国产真人三级小视频在线观看| 国产伦理片在线播放av一区| 欧美xxⅹ黑人| 欧美成狂野欧美在线观看| 女人精品久久久久毛片| 亚洲综合色网址| 黄色毛片三级朝国网站| 亚洲精品第二区| 色94色欧美一区二区| 国产精品 欧美亚洲| 老司机靠b影院| 亚洲欧美精品自产自拍| 国产成人影院久久av| 正在播放国产对白刺激| av电影中文网址| 黑人巨大精品欧美一区二区蜜桃| www.av在线官网国产| 黄片大片在线免费观看| 成年女人毛片免费观看观看9 | 久久久久久人人人人人| 国产伦理片在线播放av一区| 51午夜福利影视在线观看| 欧美成狂野欧美在线观看| 国产精品秋霞免费鲁丝片| 精品免费久久久久久久清纯 | 亚洲av成人不卡在线观看播放网 | 亚洲av成人一区二区三| av在线老鸭窝| 人成视频在线观看免费观看| 亚洲精品国产色婷婷电影| 精品福利观看| 人妻 亚洲 视频| 亚洲精品久久久久久婷婷小说| 欧美久久黑人一区二区| 热re99久久精品国产66热6| 十八禁网站网址无遮挡| 精品久久久久久电影网| 亚洲自偷自拍图片 自拍| h视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲欧洲日产国产| 99热全是精品| 久久久久精品人妻al黑| 青草久久国产| 啦啦啦视频在线资源免费观看| 飞空精品影院首页| 99精国产麻豆久久婷婷| 最新在线观看一区二区三区| 久久久久网色| 国产一卡二卡三卡精品| 久久性视频一级片| 在线观看免费高清a一片| av天堂在线播放| 亚洲欧美精品自产自拍| 亚洲精品国产一区二区精华液| 国产精品免费视频内射| 午夜福利,免费看| 在线观看免费午夜福利视频| 美女福利国产在线| 婷婷色av中文字幕| 国产在线免费精品| 午夜老司机福利片| 女人爽到高潮嗷嗷叫在线视频| 国产真人三级小视频在线观看| 美女大奶头黄色视频| 久久影院123| 中文字幕制服av| 久久中文字幕一级| 久久久国产一区二区| 又紧又爽又黄一区二区| 国产一卡二卡三卡精品| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| 欧美中文综合在线视频| 精品少妇一区二区三区视频日本电影| 亚洲成av片中文字幕在线观看| 国产欧美日韩综合在线一区二区| 99九九在线精品视频| 在线观看免费视频网站a站| 亚洲美女黄色视频免费看| 黄色毛片三级朝国网站| av在线app专区| cao死你这个sao货| 久久ye,这里只有精品| 国产视频一区二区在线看| 人妻一区二区av| 精品熟女少妇八av免费久了| 99国产精品99久久久久| 精品亚洲成国产av| 日韩人妻精品一区2区三区| 久久久精品94久久精品| 国产精品一二三区在线看| 国产在线视频一区二区| 99热国产这里只有精品6| 亚洲自偷自拍图片 自拍| 国产精品香港三级国产av潘金莲| 久久免费观看电影| 成人18禁高潮啪啪吃奶动态图| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频 | 国产老妇伦熟女老妇高清| 美女高潮喷水抽搐中文字幕| 久久久国产成人免费| 精品卡一卡二卡四卡免费| 亚洲欧美色中文字幕在线| 久久精品成人免费网站| 色视频在线一区二区三区| 午夜免费成人在线视频| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 亚洲成人免费电影在线观看| 久久中文看片网| 一区二区av电影网| 国产老妇伦熟女老妇高清| 欧美激情 高清一区二区三区| 国产极品粉嫩免费观看在线| 欧美精品啪啪一区二区三区 | 亚洲av日韩在线播放| 国产av国产精品国产| 少妇精品久久久久久久| 18在线观看网站| 男女高潮啪啪啪动态图| 久久久久久久大尺度免费视频| 五月开心婷婷网| 成年女人毛片免费观看观看9 | 亚洲九九香蕉| 亚洲精品国产一区二区精华液| 欧美 日韩 精品 国产| 国产成人精品在线电影| 久久久久视频综合| 曰老女人黄片| 精品人妻熟女毛片av久久网站| 69精品国产乱码久久久| 国产成+人综合+亚洲专区| 亚洲精品一区蜜桃| 日韩大码丰满熟妇| 99久久99久久久精品蜜桃| 青春草视频在线免费观看| 制服诱惑二区| 国产在视频线精品| 精品亚洲乱码少妇综合久久| 19禁男女啪啪无遮挡网站| 两人在一起打扑克的视频| 欧美激情久久久久久爽电影 | 婷婷成人精品国产| 国产有黄有色有爽视频| 亚洲精品国产色婷婷电影| 亚洲专区中文字幕在线| 免费观看av网站的网址| 欧美另类一区| 成年av动漫网址| 亚洲一码二码三码区别大吗| 一级毛片女人18水好多| 少妇精品久久久久久久| 国产色视频综合| 国产亚洲精品一区二区www | 高清av免费在线| 国产亚洲一区二区精品| 国产精品一区二区在线观看99| 国产激情久久老熟女| 国产精品一区二区精品视频观看| 日韩,欧美,国产一区二区三区| 国产精品亚洲av一区麻豆| 97精品久久久久久久久久精品| 亚洲中文av在线| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 精品国产乱码久久久久久男人| 多毛熟女@视频| 18禁观看日本| 大型av网站在线播放| 色视频在线一区二区三区| 人人妻,人人澡人人爽秒播| 亚洲av欧美aⅴ国产| 人妻久久中文字幕网| 亚洲精品国产av蜜桃| 国产成人影院久久av| 天天躁日日躁夜夜躁夜夜| 热99久久久久精品小说推荐| 国产精品秋霞免费鲁丝片| 一级黄色大片毛片| 亚洲九九香蕉| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| a在线观看视频网站| 精品久久久精品久久久| 亚洲第一青青草原| 成人国产av品久久久| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 一区二区三区乱码不卡18| 午夜福利乱码中文字幕| 国产精品偷伦视频观看了| 午夜福利影视在线免费观看| 亚洲精品美女久久久久99蜜臀| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 欧美日韩亚洲综合一区二区三区_| 50天的宝宝边吃奶边哭怎么回事| 亚洲全国av大片| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 一区福利在线观看| 精品国产一区二区久久| 一二三四在线观看免费中文在| 午夜福利免费观看在线| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区蜜桃| 一级片免费观看大全| 窝窝影院91人妻| 日本欧美视频一区| 国产精品成人在线| 日韩免费高清中文字幕av| 国产又色又爽无遮挡免| 两人在一起打扑克的视频| 中文字幕制服av| 1024视频免费在线观看| 丁香六月欧美| 欧美午夜高清在线| 日韩中文字幕视频在线看片| www.自偷自拍.com| 久久九九热精品免费| 9热在线视频观看99| 精品国产一区二区三区久久久樱花| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| av福利片在线| 99热全是精品| 亚洲精品中文字幕一二三四区 | 丝袜美足系列| 成年动漫av网址| 十分钟在线观看高清视频www| 少妇粗大呻吟视频| 99国产精品一区二区蜜桃av | 精品少妇一区二区三区视频日本电影| 精品卡一卡二卡四卡免费| 国产又色又爽无遮挡免| 欧美一级毛片孕妇| 国产深夜福利视频在线观看| 欧美成狂野欧美在线观看| 岛国在线观看网站| 国产亚洲欧美在线一区二区| 9色porny在线观看| avwww免费| 日韩大片免费观看网站| 欧美日韩亚洲高清精品| 汤姆久久久久久久影院中文字幕| 一本大道久久a久久精品| 欧美日韩中文字幕国产精品一区二区三区 | 777久久人妻少妇嫩草av网站| 午夜福利免费观看在线| 精品少妇久久久久久888优播| 亚洲精品一二三| 亚洲综合色网址| 精品人妻一区二区三区麻豆| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 久久99一区二区三区| 国产亚洲精品一区二区www | 建设人人有责人人尽责人人享有的| 人成视频在线观看免费观看| 一本综合久久免费| 国产在线视频一区二区| 国产人伦9x9x在线观看| 国产免费福利视频在线观看| 在线观看免费高清a一片| 高清视频免费观看一区二区| 高清av免费在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩视频精品一区| 侵犯人妻中文字幕一二三四区| 纵有疾风起免费观看全集完整版| netflix在线观看网站| 90打野战视频偷拍视频| 啦啦啦中文免费视频观看日本| 久久久国产欧美日韩av| 国产成人av教育| 黄色 视频免费看| 最新的欧美精品一区二区| 在线 av 中文字幕| 叶爱在线成人免费视频播放| 大片免费播放器 马上看| 亚洲国产日韩一区二区| 黄色a级毛片大全视频| 午夜免费观看性视频| 成人三级做爰电影| 免费少妇av软件| 色婷婷av一区二区三区视频| 亚洲伊人色综图| 亚洲色图 男人天堂 中文字幕| 亚洲欧美日韩另类电影网站| av网站免费在线观看视频| www日本在线高清视频| 99精国产麻豆久久婷婷| 看免费av毛片| 国产伦理片在线播放av一区| 久久影院123| 久久中文看片网| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频网站a站| 91麻豆av在线| 丁香六月天网| 国产97色在线日韩免费| 精品亚洲乱码少妇综合久久| 日韩一卡2卡3卡4卡2021年| 亚洲精品国产av蜜桃| 国产熟女午夜一区二区三区| 97精品久久久久久久久久精品| 一级,二级,三级黄色视频| 777久久人妻少妇嫩草av网站| 母亲3免费完整高清在线观看| 欧美激情久久久久久爽电影 | 久久精品熟女亚洲av麻豆精品| 免费久久久久久久精品成人欧美视频| www.自偷自拍.com| 热99re8久久精品国产| 亚洲少妇的诱惑av| 夜夜夜夜夜久久久久| 精品人妻1区二区| 国产区一区二久久| 久久国产精品男人的天堂亚洲| 久久久久国产一级毛片高清牌| 欧美97在线视频| 欧美少妇被猛烈插入视频| 欧美97在线视频| 欧美中文综合在线视频| 亚洲第一av免费看| 国产精品免费大片| 美女中出高潮动态图| 精品久久久久久电影网| 乱人伦中国视频| 香蕉国产在线看| 秋霞在线观看毛片| 国产色视频综合| 飞空精品影院首页| 成人黄色视频免费在线看| 国产视频一区二区在线看| 成年人黄色毛片网站| 欧美日韩亚洲高清精品| 中文字幕人妻熟女乱码| 亚洲中文字幕日韩| 最黄视频免费看| 亚洲伊人色综图| 99热国产这里只有精品6| 97在线人人人人妻| 成人国产av品久久久| 一个人免费看片子| 婷婷丁香在线五月| 精品亚洲成国产av| 免费观看a级毛片全部| 国产精品免费视频内射| 免费人妻精品一区二区三区视频| 欧美日韩黄片免| 久久九九热精品免费| 久久久久久久大尺度免费视频| 国产成人一区二区三区免费视频网站| 丝瓜视频免费看黄片| 成人国产av品久久久| 啦啦啦免费观看视频1| 大片电影免费在线观看免费| 日韩 欧美 亚洲 中文字幕| 欧美精品av麻豆av| 老汉色av国产亚洲站长工具| 午夜日韩欧美国产| 日韩欧美免费精品| 国产精品1区2区在线观看. | 亚洲精品在线美女| 在线观看免费午夜福利视频| 国产日韩欧美亚洲二区| 亚洲国产中文字幕在线视频| 亚洲成人国产一区在线观看| 窝窝影院91人妻| 国产有黄有色有爽视频| 下体分泌物呈黄色| 国产色视频综合| 嫩草影视91久久| 两人在一起打扑克的视频| av欧美777| 久久人人爽av亚洲精品天堂| 成年人免费黄色播放视频| 亚洲av成人一区二区三| 亚洲黑人精品在线| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| 午夜免费观看性视频| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 在线 av 中文字幕| 国产精品偷伦视频观看了| 狠狠精品人妻久久久久久综合| 亚洲免费av在线视频| 成年动漫av网址| 我的亚洲天堂| 国产欧美亚洲国产| 亚洲av成人一区二区三| 永久免费av网站大全| 999久久久精品免费观看国产| 精品一区二区三区四区五区乱码| 国产在线观看jvid| 亚洲国产av新网站| 巨乳人妻的诱惑在线观看| 91老司机精品| 久久人妻福利社区极品人妻图片| 亚洲午夜精品一区,二区,三区| 欧美精品一区二区免费开放| 日韩制服丝袜自拍偷拍| 欧美一级毛片孕妇| 人人妻人人爽人人添夜夜欢视频| 王馨瑶露胸无遮挡在线观看| 满18在线观看网站| 国产无遮挡羞羞视频在线观看| 国产麻豆69| 人妻 亚洲 视频| 91精品伊人久久大香线蕉|