邸志剛,楊路華,茍萬里,王金毅
薄壁微噴帶噴灑寬度模型構建
邸志剛1,2,楊路華1※,茍萬里1,王金毅1
(1. 天津農(nóng)學院,天津 300384;2. 中國農(nóng)業(yè)節(jié)水與農(nóng)村供水技術協(xié)會,北京 100053)
為了更好指導微噴帶在農(nóng)業(yè)灌溉系統(tǒng)中規(guī)劃與設計,在天津市農(nóng)業(yè)水利技術工程中心開展了薄壁微噴帶噴灑水滴直徑試驗與噴灑寬度試驗,考慮了微噴帶噴灑水滴運動過程中受空氣阻力、重力、浮力等因素,建立了基于牛頓力學與流體力學理論的微噴帶噴灑水滴運動數(shù)學模型,推導了微噴帶噴灑寬度理論計算式,確定了計算式中的參數(shù),并對微噴帶噴灑寬度影響因素進行分析。結果表明:微噴帶噴灑寬度計算公式計算結果與實測數(shù)據(jù)吻合較好,對于不同型號微噴帶相對誤差均小于10%。理論計算公式及試驗結果均反映微噴帶噴灑寬度隨著噴孔仰角呈先增加后減小變化,且當噴孔仰角為40°左右噴灑寬度達到最大。微噴帶噴灑寬度理論計算公式精度較高,可廣泛應用于噴灑寬度的計算,為微噴帶灌溉系統(tǒng)規(guī)劃設計提供理論依據(jù)。
灌溉;流量;模型;微噴帶;噴灑寬度;工作壓力;噴孔直徑;噴孔仰角
微噴帶是一種多孔出流薄壁塑料軟管,能在一定工作壓力下利用噴孔噴水進行灌溉。微噴帶灌溉技術結合了噴灌和微灌的技術特點,是一種灌水均勻,灌水效率高的節(jié)水灌溉方式,在地區(qū)農(nóng)業(yè)用水資源節(jié)約上起著舉足輕重的作用[1-4]。由于微噴帶具有灌水效果好、抗堵塞性能強、對作物和土壤沖擊力小等突出優(yōu)點,近年來在中國得到了廣泛推廣與發(fā)展[5-9]。但目前中國微噴帶生產(chǎn)市場混亂,缺乏統(tǒng)一技術標準,無法將該技術納入《微灌工程技術規(guī)范》[10]。因此通過試驗確定微噴帶噴灑寬度計算公式,對微噴帶灌溉系統(tǒng)規(guī)劃設計具有重要意義。
國內外很多學者對微噴帶噴灑寬度等進行了研究,Deboer等[11]通過對單噴頭開展水力試驗研究,運用彈道模型研究了噴頭噴灑水滴運動軌跡,并研究了噴頭水滴平均直徑和水滴動能。Sayyadi等[12]利用低壓折射式噴頭開分析工作壓力、噴嘴直徑和安裝高度等因素對噴頭噴灑寬度影響研究。脫云飛等[13]在無風有空氣阻力假定條件下,基于牛頓力學與水力學理論,推導了噴頭噴灑寬度理論公式,并與試驗值進行對比分析。王建軍等[14]通過試驗研究了工作壓力與噴射角度對微噴帶單孔噴灑特性的影響,發(fā)現(xiàn)當微噴帶噴射仰角度為30°時單孔噴灑寬度達到最大。周斌等[15]研究分析了微噴帶單孔水量分布與濕潤區(qū)面積、干燥區(qū)寬度、濕潤區(qū)寬度等各因素之間的關系,發(fā)現(xiàn)微噴帶噴射角度為40°左右時噴灑寬度最大。盡管國內外對微噴帶噴灑寬度有所研究,但均采用試驗研究,多是對試驗數(shù)據(jù)進行分析總結,缺少一個適用于微噴帶噴灑寬度的理論計算公式。故本文開展微噴帶噴灑寬度試驗,基于牛頓力學與流體力學理論建立微噴帶噴灑水滴運動數(shù)學模型,推導微噴帶噴灑寬度理論計算公式,確定公式的參數(shù),并對微噴帶噴灑寬度理論計算公式影響因素進行分析。
通過市場調研,收集了中國農(nóng)業(yè)中常見的6種微噴帶,其中微噴帶試樣的折徑、孔徑由生產(chǎn)廠家提供,測量出微噴帶孔邊距、橫向孔間距,結合折徑利用弧長公式確定出微噴帶的噴孔仰角。為便于不同類型的微噴帶對比分析,對微噴帶式樣進行了編號。具體參數(shù)見表1。并繪制微噴帶結構式樣圖,如圖1所示。
圖1 微噴帶結構式樣圖
表1 試驗微噴帶試樣具體參數(shù)表
注:NY/T44-0.8-3代表微噴帶型號,其中44代表折徑,0.8代表噴孔直徑,3代表噴孔數(shù)。以此類推。
Note: NY/T44-0.8-3 stands for the type of micro-sprinkling hose, of which 44 stands for the folding width, 0.8 stands for the nozzle diameter, and 3 stands for the number of nozzles. And so on.
試驗場地選在天津市農(nóng)業(yè)水利技術工程中心試驗基地完成。主要開展微噴帶水滴直徑、噴灑寬度試驗。主要的試驗設備有水泵、穩(wěn)壓裝置、調壓閘閥、電磁流量計、精密壓力表、堵頭、集水桶、量筒、精密天平(精度10-4)、濾紙等。
1)噴灑寬度的測量。根據(jù)《農(nóng)業(yè)灌溉設備非旋轉式噴頭技術要求和試驗方法》(GB/T 18687—2012)[16]中規(guī)定,噴灑寬度是指測出灌水強度為某數(shù)值的那個點距噴頭中心線的距離。對于流量等于或小于75 L/h的噴頭,該點的噴灑強度為0.13 mm/h。
試驗中待測微噴帶樣本長度選取5 m,有效試驗數(shù)據(jù)取中間2.5 m,以保證消除邊界影響。工作壓力在0.03~0.06 MPa分4個等級。微噴帶正面向上鋪設,保證微噴帶兩側噴灑均勻。集水桶布置在微噴帶一側,垂直微噴帶方向布置5條射線,射線間距50 cm,射線上雨量桶布置間距50 cm。測試時間15 min,用量筒測量集水桶中噴灑水量。每個壓力處理試驗重復3次。
2)水滴直徑的測量。采用改進濾紙法測量水滴直徑,首先利用精密天平稱濾紙質量,然后用濾紙在沿微噴帶噴射水流首端、中部、末端接取水滴[17-19],并迅速利用精密天平再次測量其質量,最后數(shù)出濾紙上的水痕數(shù)量。由于噴灌蒸發(fā)損失較小,所以一般不考慮蒸發(fā)損失,將水滴在運動過程中視為球體[20-22],則利用質量差與水滴數(shù)求出水滴直徑,并將不同部位接取水滴直徑平均值作為微噴帶水滴直徑。每個壓力處理試驗重復3次。
根據(jù)牛頓萬有引力定律,水滴重力1為
式中為水滴質量,kg;為水滴直徑,m;ρ為水的密度,kg/m3;為重力加速度,m/s2。
由于水滴占一定的體積,在空氣中將受到浮力作用,則浮力2為
式中ρ為空氣的密度,kg/m3。
根據(jù)流體力學理論,當運動物體的雷諾數(shù)很大時,則阻力與速度的2次方成正比[23]。對于微噴帶噴孔噴出的水流,雷諾數(shù)較大,所以處于阻力平方區(qū),阻力3可以表示為
式中為水滴摩擦系數(shù);為水滴速度,m/s。
2.2.1 水滴運動方程建立
對水滴在空氣中運動所受的力進行分析,根據(jù)牛頓第二定律,在垂直于微噴帶鋪設方向的豎直平面內建立水滴運動方程。
在方向
在方向
初始邊界條件
上升時初始條件
下降時初始條件
式中為水滴在豎直方向的合加速度,m/s2;v和v為分別為水滴在運動過程中任一時間點時在、軸投影的速度,m/s;0為噴孔出口處水流速度,m/s;為微噴帶任一噴孔與水平地面間夾角,(°);1max為上升最大高度,m。
2.2.2 水滴位移公式與總時間求解
1)水平方向運動
將邊界條件式(6)代入式(9),整理并積分可得
2)豎直方向運動
對水滴進行受力分析可知,在豎直向上與豎直向下時受力不同,引力總是豎直向下,浮力豎直向上,但空氣阻力與運動方向相反。所以將豎直方向運動分為豎直向上和豎直向下。
豎直向上時運動方程為
將邊界條件式(7)代入公式(13),整理并積分可得
通過分析可知當水滴運動到最高點時,此時速度為0,運動時間為1,將v=0代入式(14)得
將1代入式(15)最大上升高度1max為
豎直向下時運動方程為
同理,將邊界條件式(8)代入得式(18)
對于水滴下降時,當引力與浮力合力等于阻力時,此時加速度為0,即達到極限速度。由于水滴質量較小,所以下降時很快達到極限速度,此后將以極限速度做勻速運動[13]。為了簡化計算,則下降全過程認為是做勻速運動。經(jīng)分析,極限速度為
時間2可得
則可知總時間
通過前面計算分析,將總時間代入到式(11)即得到微噴帶任一噴孔噴灑寬度公式
對于同一條微噴帶有不同噴孔,就有不同噴孔仰角,對應不同噴灑寬度則取最大噴灑寬度作為微噴帶噴灑寬度。則微噴帶噴灑寬度為
水滴直徑是指落在地面或者作物葉面上的水滴直徑。水滴直徑沿著噴灑半徑方向呈增加趨勢,噴灑半徑末端一般出現(xiàn)最大水滴直徑[24-27]。試驗數(shù)據(jù)見表2。
表2 微噴帶噴灑水滴直徑試驗數(shù)據(jù)
利用軟件結合模型利用表2中的數(shù)據(jù)進行多元線性回歸處理。結果顯示,模型相關系數(shù)平方2=0.962,相伴概率值<0.001,均方根誤差RMSE=0.099。經(jīng)回歸擬合后,通過計算推導得出水滴直徑計算公式
式中為水滴直徑,mm;為噴孔直徑,mm;為工作壓力,MPa。
水滴在空氣中運動的摩擦系數(shù)的確定公式有很多,本文采用斯托克斯阻力公式得
式中C為摩擦阻力系數(shù);A為與水滴運動方向垂直的水滴迎風的投影面積,mm2,A=π24;ρ為空氣密度,kg/m3,ρ取1.29 kg/m3。C主要依據(jù)噴孔出口的雷諾數(shù)來確定,根據(jù)文獻[28]可知,微噴帶噴灑水滴摩擦系數(shù)計算中C取0.44。
薄壁微噴帶在噴孔處可以近似認為勢能全部轉化為動能[29],利用能量守恒原理可知微噴帶噴孔初始流速
式中0為噴孔水流初始流速,m/s;為工作壓力,MPa;為流量系數(shù),對于不同型號微噴帶流量系數(shù)不同,通過試驗測得流量系數(shù)取值范圍為0.95~0.99,本文取0.97。
對噴灑水滴在豎直方向進行受力分析,發(fā)現(xiàn)不管在上升過程還是下降過程,重力方向始終向下,浮力始終向上,則合加速度見式(29)。
經(jīng)計算分析可知,噴灑水滴在空氣中受到浮力為重力的千分之一,在計算中可以不考慮空氣浮力[30],合加速度,近似等于重力加速度。
通過推導得出微噴帶理論噴灑寬度計算公式,利用理論公式計算同一微噴帶試樣的不同噴孔仰角噴灑寬度,取最大值作為微噴帶噴灑寬度,然后與試驗數(shù)據(jù)進行驗證,結果見表3。由表3可知,利用薄壁微噴帶噴灑寬度理論計算公式獲得結果較為精確。對于6種不同型號微噴帶的24組對比結果中,相對誤差均小于10%。其中相對誤差在5%以內的占比為70.83%,相對誤差在5%~10%占比為29.17%。
表3 薄壁微噴帶噴灑寬度理論計算結果與試驗結果對比
前面對微噴帶噴灑寬度理論計算公式進行詳細推導,現(xiàn)對噴灑寬度理論計算公式進行分析。公式適用于任何型號微噴帶,為了直觀反映微噴帶噴灑寬度影響因素,以NY/T63-0.6-7為例,在同一工作壓力、噴射仰角下分析不同噴孔直徑下的微噴帶噴灑寬度(圖2a);在同一噴射仰角、噴孔直徑下分析不同工作壓力下的微噴帶噴灑寬度(圖2b);在同一工作壓力、噴孔直徑下分析不同噴射仰角下的微噴帶噴灑寬度(圖2c)。通過分析圖2與表3可知,對于同一工作壓力、同一噴孔仰角,噴灑寬度隨噴孔直徑增加而增加;對于同一噴孔直徑、同一噴孔仰角微噴帶,噴灑寬度隨著工作壓力增加而增加,且增加速率逐漸減小;對于同一工作壓力、噴孔直徑下,微噴帶噴灑寬度隨著噴孔仰角增加呈先增加后減小的變化趨勢,且變化速率先減小后增加,且在40°左右取得最大值。
注:圖2a中工作壓力為0.05 MPa,噴孔仰角為31.43°;圖2b中噴孔仰角為31.43°,噴孔直徑為0.6 mm;圖2c中工作壓力為0.05 MPa,噴孔直徑為0.6 mm。
本文通過開展薄壁微噴帶噴灑水滴直徑試驗與噴灑寬度試驗,推導了微噴帶噴灑寬度理論計算公式,該公式能夠為微噴帶生產(chǎn)廠家提供一定設計依據(jù),為微噴帶田間布設提供一定理論依據(jù)。具體結論如下:
1)微噴帶噴灑水滴直徑試驗表明,微噴帶噴灑水滴直徑與噴孔直徑呈負相關,與工作壓力呈正相關,工作壓力越大,噴灑水滴直徑越小。
2)通過開展微噴帶噴灑寬度試驗,利用牛頓力學與流體力學理論,考慮噴灑水滴在空氣中受到重力、浮力與空氣阻力,建立了微噴帶噴灑水滴運動模型,推導了微噴帶噴灑寬度理論計算公式。利用實測數(shù)據(jù)對微噴帶噴灑寬度理論公式進行驗證,結果表明理論計算公式與實測值吻合程度較好,誤差均小于10%,可以廣泛應用于微噴帶噴灑寬度計算。
3)對噴灑寬度計算公式進行影響因素分析可知,微噴帶噴灑寬度隨噴孔仰角增加呈先增加后減小,且在40°附近時噴灑寬度取得最大值;在一定工作壓力范圍內,噴灑寬度與工作壓力呈正相關;在一定噴孔直徑范圍內,噴灑寬度與噴孔直徑呈正相關。
[1] 董志強,張麗華,李謙,等. 微噴灌模式下冬小麥產(chǎn)量和水分利用特性[J]. 作物學報,2016,42(5):725-733. Dong Zhiqiang, Zhang Lihua, Li Qian, et al. Grain yield and water use characteristics of winter wheat under micro-sprinkler irrigation[J]. Acta Agronomica Sinica, 2016, 42(5): 725-733. (in Chinese with English abstract)
[2] 徐袁博. 不同微噴帶布置間距與灌水量對冬小麥的影響[D]. 楊凌:西北農(nóng)林科技大學,2017. Xu Yuanbo. The Effect of Different Spacing of Micro-Sprinkling Hose and Irrigation Amount on Winter Wheat[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[3] 袁壽其,李紅,王新坤. 中國節(jié)水灌溉裝備發(fā)展現(xiàn)狀、問題、趨勢與建議[J]. 排灌機械工程學報,2015,33(1):78-92. Yuan Shouqi, Li Hong, Wang Xinkun. Status, problems, trends and suggestions for water-saving irrigation equipment in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 78-92. (in Chinese with English abstract)
[4] 李敬庫. 微噴帶灌溉技術研究及應用進展[J]. 東北水利水電,2017,35(1):53-56. Li Jingku. Progress in research and application of micro-spray irrigation technology[J]. Water Resources & Hydropower of Northeast China, 2017, 35(1): 53-56. (in Chinese with English abstract)
[5] 張學軍,吳政文,丁小明. 微噴帶水量分布特性試驗分析[J].農(nóng)業(yè)工程學報,2009,25(4):66-69. Zhang Xuejun, Wu Zhengwen, Ding Xiaoming, et al. Experimental analysis of water distribution characteristics of micro-sprinkling hose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 66-69. (in Chinese with English abstract)
[6] 張碩. 微噴帶水力性能及水量分布試驗研究[D]. 楊凌:西北農(nóng)林科技大學,2017. Zhang Shuo. Experimental Study on Hydraulic Performance and Water Distribution of Micro Jet[D]. Yangling: Northwest A&F University, 2017. (in Chinese with English abstract)
[7] 程維國. 微噴灌技術在大田作物中的應用[J]. 北京農(nóng)業(yè),2013(27):175. Cheng Weiguo. Application of micro sprinkler irrigation technology in field crops[J]. Beijing Agriculture, 2013(27): 175. (in Chinese with English abstract)
[8] 茍萬里,楊路華,邸志剛,等. 薄壁微噴帶沿程水頭損失試驗研究[J]. 灌溉排水學報,2019,38(5):79-83. Gou Wanli, Yang Luhua, Di Zhigang, et al. Experimental study on water head loss along thin-wall spray-irrigation pipe[J]. Journal of Irrigation and Drainage, 2019, 38(5): 79-83. (in Chinese with English abstract)
[9] 王鳳民,張麗媛. 微噴灌技術在設施農(nóng)業(yè)中的應用[J]. 地下水,2009,31(6):115-116. Wang Fengmin, Zhang Liyuan. Application of micro sprinkler irrigation technology in facility agriculture[J]. Ground Water, 2009, 31(6): 115-116. (in Chinese with English abstract)
[10] 中華人民共和國國家質量監(jiān)督檢驗檢疫總局. 微灌工程技術規(guī)范:GB/T50485-2009[S]. 北京:中國標準出版社,2009.
[11] Deboer D W, Monnens M J. Estimation of drop size and kinetic energy from a rotating-plate sprinkler[J]. Transactions of ASAE, 2001, 44(6): 1571-1580.
[12] Sayyadi H, Gazemi A H, Sadraddini A. Characterising droplets and precipitation profiles of a fixed spray-plate sprinkler[J]. Biosystems Engineering, 2014, 119: 13-24
[13] 脫云飛,楊路華,柴春嶺,等. 噴頭射程理論公式與試驗研究[J]. 農(nóng)業(yè)工程學報,2006,22(1):23-26. Tuo Yunfei, Yang Luhua, Chai Chunling, et al. Experimental study and theoretical formula of the sprinkler range[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 23-26. (in Chinese with English abstract)
[14] 王建軍,楊筠晴,蔡九茂,等. 工作壓力及噴射角度對微噴帶單孔噴水特性影響的試驗研究[J]. 節(jié)水灌溉,2018(3):35-38. Wang Jianjun, Yang Yunqing, Cai Jiumao, et al. Experimental study on the influence of working pressure and spraying angle on the single-hole spray characteristics of micro-sprinkling hose[J]. Water Saving Irrigation, 2018(3): 35-38. (in Chinese with English abstract)
[15] 周斌,封俊,張學軍,等. 微噴帶單孔噴水量分布的基本特征研究[J]. 農(nóng)業(yè)工程學報,2003,19(4):101-103. Zhou Bin, Feng Jun, Zhang Xuejun, et al. Characteristics and indexes of water distribution of punched thin-soft tape for spray[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(4): 101-103. (in Chinese with English abstract)
[16] 中華人民共和國國家質量監(jiān)督檢驗檢疫總局. 農(nóng)業(yè)灌溉設備-非旋轉式噴頭技術要求和試驗方法:GB/T 18687—2012[S]. 北京:中國標準出版社,2013.
[17] 張林,惠鑫,陳俊英. 坡地噴灌水滴直徑與動能強度分布規(guī)律研究[J]. 農(nóng)業(yè)機械學報,2018,49(6):263-270. Zhang Lin, Hui Xin, Chen Junying. Droplet diameter and kinetic energy intensity distribution regularities for sprinkler irrigation on sloping land[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 263-270. (in Chinese with English abstract)
[18] 劉興發(fā). 全射流噴頭水滴分布特性試驗研究[D]. 鎮(zhèn)江:江蘇大學,2016. Liu Xingfa. Droplets Distribution Characteristic Study on Complete Fluidic Sprinkler[D]. Zhenjiang: Jiangsu University, 2016. (in Chinese with English abstract)
[19] 徐紅,龔時宏,賈瑞卿,等. 新型ZY系列搖臂旋轉式噴頭水滴直徑分布規(guī)律的試驗研究[J]. 水利學報,2010,41(12):1416-1422. Xu Hong, Gong Shihon, Jia Ruiqing, et al. Study ondroplet size distribution of ZY sprinkler head[J]. Journal of Hydraulic Engineering, 2010, 41(12): 1416-1422. (in Chinese with English abstract)
[20] Lima D, Torfs J F, Singh V P. A mathematical model for evaluating the effect of wind on downward spraying rainfall simu-lators[J]. Catena, 2001, 46(4): 221-241.
[21] Heermann D F, Kohl R A. Fluid Dynamics of Sprinkler Systems[M]∥Jensen M E. Design and Operation of Farm Irrigation Systems. Michigan: ASAE, 1980: 583-618.
[22] 黃修橋. 有風時的噴灑水滴運動規(guī)律及風對噴頭射程的影響[J]. 灌溉排水學報, 1992,11(2):1-7. Huang Xiuqiao. Moving of spray droplet under wind condition and the effect of wind on spray distance of nozzle[J]. Journal of Irrigation and Drainage, 1992, 11(2): 1-7. (in Chinese with English abstract)
[23] 汪志明. 流體力學[M]. 北京:石油工業(yè)出版社,2006.
[24] 劉海軍,龔時宏. 噴灌水滴的蒸發(fā)研究[J]. 節(jié)水灌溉,2000(2):16-19. Liu Haijun, Gong Shihong. Study on evaporation of sprinkler droplets[J]. Water Saving Irrigation, 2000(2): 16-19. (in Chinese with English abstract)
[25] 朱興業(yè),劉興發(fā),劉俊萍,等. 基于LPM的搖臂式噴頭水滴分布試驗研究[J]. 排灌機械工程學報,2015,33(10):908-914. Zhu Xingye, Liu Xingfa, Liu Junping, et al. Droplets distribution research of impact sprinkler based on Laser precipitation monitor[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(10): 908-914. (in Chinese with English abstract)
[26] 嚴海軍,肖建偉,李文穎,等. 圓形噴灌機低壓阻尼噴頭水滴直徑分布規(guī)律的試驗研究[J]. 水利學報,2014,45(4):467-473. Yan Haijun, Xiao Jianwei, Li Wenying, et al. Droplet size distribution of low-press damping sprinklers used in center-pivot irrigation systems[J]. Journal of Hydraulic Engineering, 2014, 45(4): 467-473. (in Chinese with English abstract)
[27] 白更,嚴海軍. 空氣阻力系數(shù)對水滴運動及蒸發(fā)的影響[J]. 水利學報,2011,42(4):448-453. Bai Geng, Yan Haijun. Effect of air drag coefficient on motion and evaporation of water droplet[J]. Journal of Hydraulic Engineering, 2011, 42(4): 448-453. (in Chinese with English abstract)
[28] 崔謨慎,孫家駿. 高壓水射流技術[M]. 北京:煤炭工業(yè)出版社,1993.
[29] 鄭迎春. 微噴帶水力性能試驗研究[D]. 保定:河北農(nóng)業(yè)大學,2009. Zheng Yingchun. Experimental Study on Hydraulic Characteristics of Micro-Spraying Hose[D]. Baoding: Agricultural University of Hebei, 2009. (in Chinese with English abstract)
[30] 王波雷,馬孝義,范嚴偉,等. 旋轉式噴頭射程的理論計算模型[J]. 農(nóng)業(yè)機械學報,2008,39(1):41-45. Wang Bolei, Ma Xiaoyi, Fan Yanwei, et al. Modeling and experiment validation on the rotational sprinkler nozzle range[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(1): 41-45. (in Chinese with English abstract)
Model establishment of spraying width of thin-walled micro-sprinkling hose
Di Zhigang1,2, Yang Luhua1※, Gou Wanli1, Wang Jinyi1
(1.,,300384,; 2.,,100053,)
China is the biggest agricultural production country in the world and the agriculture is related to its stability and development. With the development in water-saving irrigation technology, micro-sprinkling hose has been widely promoted and applied in China in recent years as an improved equipment duo to its efficiency in water-saving. To facilitate production and upgrading, as well as guide planning and design of the micro-sprinkling hose in irrigation, we experimentally studied the spray width in the hose at Tianjin Agricultural Water Saving Technology Engineering Center (39°N, 116°E). After literature review and market research, we selected six common micro-sprinkling hoses available in the market, and measured and calculated their folding width, nozzle diameter and nozzle elevation angle in the spray width test. The length of the sample in the test was 5 m and the working pressure varied from 0.03 to 0.06 MPa. The micro-sprinkling hose was laid at the upfront to ensure uniform spraying on both sides of the hose. The water collecting bucket was on one side of the hose and five rays spaced 50 cm were arranged in the vertical direction of the hose, with the collecting bucket on the ray spaced 50 cm. At the end of the experiment, the amount of water in the bucket was measured and the spraying width was determined. In the meantime, we also measured the diameter of the spraying droplets using filter paper method. The quality of the paper was measured by a precision balance, and the water droplets were connected to the paper at the head, middle and end of the spray stream along the hose. The quality of the paper was measured again quickly by the precision balance prior to counting the number of water marks on it, which, along with mass balance, was used to calculate the diameter of the water droplets. The average diameter of the water droplets at different locations was taken as the diameter of the water droplets in the hose. Considering the factors such as air resistance, gravity and buoyancy that act on the water droplets, a model for water droplet moving in the hose was proposed based on the Newtonian fluid mechanics. We also derived a formula for the spray width, determined the parameters in the formula, validated them against experimental data, and analyzed the factors that affect the accuracy of the formula. The results show that the derived formula for spray width in the hose agreed well with both analytical values and experiment data, and, compared with the experimental data, its relative error for the six selected hoses was less than 10%. Both the experimental data and theoretical analysis of the formula reveal that the spray width in the hose increases with the elevation angle of the nozzle before declining after it peaked when the nozzle elevation angle was approximately 40°. The spray width increases with both working pressure and nozzle diameter within certain ranges. It was also found that the derived formula was accurate and can be used to calculate the spray width, offering a theoretical tool for planning and designing micro-sprinkling hose irrigation system.
irrigation; flow; model; micro-sprinkling hose; spray width; working pressure; nozzle diameter; nozzle elevation angle
2019-04-14
2019-07-10
水利部海河水利委員會資助項目(TNHP2018001)
邸志剛,研究方向為節(jié)水灌溉理論與技術。Email:562610819@qq.com
楊路華,博士,教授,研究方向為農(nóng)業(yè)節(jié)水灌溉理論與技術。Email:yangluhua@tjau.edu.cn
10.11975/ j.issn.1002-6819.2019.17.004
S275.5
A
1002-6819(2019)-17-0028-07
邸志剛,楊路華,茍萬里,王金毅. 薄壁微噴帶噴灑寬度模型構建[J]. 農(nóng)業(yè)工程學報,2019,35(17):28-34. doi:10.11975/ j.issn.1002-6819.2019.17.004 http://www.tcsae.org
Di Zhigang, Yang Luhua, Gou Wanli, Wang Jinyi. Model establishment of spraying width of thin-walled micro-sprinkling hose[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(17): 28-34. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.17.004 http://www.tcsae.org