佟鍇,楊立軍,宋記鋒,杜小澤,楊勇平
聚光太陽(yáng)能集熱場(chǎng)先進(jìn)技術(shù)綜述
佟鍇1,楊立軍1,宋記鋒2,杜小澤1,楊勇平1
(1.華北電力大學(xué)能源動(dòng)力與機(jī)械工程學(xué)院,北京市 昌平區(qū) 102206;2.華北電力大學(xué)可再生能源學(xué)院,北京市 昌平區(qū) 102206)
聚光太陽(yáng)能熱發(fā)電技術(shù)因其穩(wěn)定性、可控性,以及高裝機(jī)容量成為太陽(yáng)能熱利用方式的重要形式。太陽(yáng)能集熱場(chǎng)的集熱效率是影響聚光太陽(yáng)能熱電站發(fā)電容量和光電效率的重要因素。針對(duì)近期太陽(yáng)能集熱場(chǎng)提高光熱轉(zhuǎn)化性能的關(guān)鍵技術(shù),從光學(xué)結(jié)構(gòu)、集熱器結(jié)構(gòu)以及流體工質(zhì)3個(gè)方面進(jìn)行綜述,總結(jié)了先進(jìn)的集熱器優(yōu)化策略和性能提升技術(shù),并指出相應(yīng)優(yōu)化方法的局限性,在此基礎(chǔ)上對(duì)集熱場(chǎng)技術(shù)未來(lái)的發(fā)展提出展望。
聚光太陽(yáng)能熱發(fā)電;太陽(yáng)能集熱場(chǎng);輻照能流分布;傳熱流體工質(zhì);納米顆粒
隨著當(dāng)今社會(huì)的發(fā)展,電能的需求也在急速增長(zhǎng)。太陽(yáng)能因其綠色環(huán)保、分布廣泛和可持續(xù)利用的特點(diǎn)成為極具競(jìng)爭(zhēng)力的一種可再生能源。相對(duì)于其他太陽(yáng)能發(fā)電技術(shù)而言,聚光太陽(yáng)能發(fā)電技術(shù)具有裝機(jī)規(guī)模大、電能輸出穩(wěn)定和根據(jù)需求易于調(diào)度的特點(diǎn)。據(jù)估計(jì)在2030年之前,聚光太陽(yáng)能電站的發(fā)電量將達(dá)到世界發(fā)電總量的7%;在2050年之前將達(dá)到25%[1]。聚光太陽(yáng)能電站主要由集熱場(chǎng)、汽輪機(jī)和發(fā)電機(jī)組成,其中集熱場(chǎng)的功能為通過反射鏡將太陽(yáng)光匯聚加熱流體工質(zhì),從而為汽輪機(jī)一側(cè)的蒸汽發(fā)生器提供熱源或直接提供蒸汽,集熱場(chǎng)是決定聚光電站光電轉(zhuǎn)化效率和發(fā)電容量的重要組成。如圖1所示,集熱場(chǎng)的類型主要分為槽式集熱場(chǎng)、碟式集熱場(chǎng)、塔式集熱場(chǎng)和線性菲涅爾式集熱場(chǎng)。由于線性菲涅爾式集熱場(chǎng)除反射鏡場(chǎng)的布置和控制技術(shù)外,與槽式集熱場(chǎng)的研究?jī)?nèi)容極其相似,因此本文主要對(duì)前3種集熱場(chǎng)技術(shù)進(jìn)行探討。
1)拋物槽式太陽(yáng)能集熱場(chǎng)的反射鏡場(chǎng)由平行排列拋物槽反射鏡陣列組成,通過該結(jié)構(gòu)使單軸的反射鏡在一天中跟蹤太陽(yáng)軌跡,為接收器提供持續(xù)的聚光輻照,幾何聚光比可達(dá)直射輻射的70~100倍。接收器主要由涂有吸收涂層的不銹鋼吸熱管和高硼硅玻璃制的外罩組成,吸熱管內(nèi)填充有流體工質(zhì),其類型包括有機(jī)導(dǎo)熱油、水和熔融鹽等,其運(yùn)行溫度可達(dá)400℃[2]。吸熱管與玻璃外罩之間一般抽成真空來(lái)減少熱量耗散。集熱場(chǎng)輸出的高溫導(dǎo)熱油可以在換熱器中加熱給水產(chǎn)生蒸汽,從而驅(qū)動(dòng)汽輪機(jī)帶動(dòng)發(fā)電機(jī)組輸出電能,整個(gè)過程的光電轉(zhuǎn)化效率約為15%[3]。
a—槽式集熱場(chǎng);b—碟式集熱場(chǎng);c—塔式集熱場(chǎng);d—菲涅爾式集熱場(chǎng)
2)塔式太陽(yáng)能集熱場(chǎng)主要由反射鏡場(chǎng)、位于鏡場(chǎng)中心的塔架和位于塔架頂部的集熱器組成。當(dāng)前塔式太陽(yáng)能集熱場(chǎng)的元器件設(shè)計(jì)并未制定嚴(yán)格的標(biāo)準(zhǔn),定日鏡的尺寸并不固定,面積范圍可達(dá)1~178m2[4];而根據(jù)鏡場(chǎng)的設(shè)計(jì)面積不同,接收器上輻照能流強(qiáng)度在200~1000kW/m2之間,可以提供較高的輸出溫度,因此塔式集熱場(chǎng)中的流體工質(zhì)主要為熔融鹽、空氣以及水或水蒸氣等。較高的流體工質(zhì)溫度使塔式太陽(yáng)能電站的光電轉(zhuǎn)化效率約為20%~35%[4],其效率的高低由諸多因素決定,如定日鏡場(chǎng)、集熱器的設(shè)計(jì)等。
3)碟式太陽(yáng)能集熱場(chǎng)通過拋物碟型反射鏡將輻照匯聚在接收器上,同時(shí)輔以雙軸跟蹤系統(tǒng)進(jìn)行太陽(yáng)追跡。與槽式、塔式集熱場(chǎng)不同之處在于:由于碟式集熱場(chǎng)一個(gè)單元裝機(jī)容量較小(0.01~ 0.5MW),斯特林電機(jī)或布萊頓電機(jī)常放置于集熱器處,適合發(fā)展分布式能源。在碟式集熱場(chǎng)中反射鏡開口半徑為4~10m,反射鏡表面積可達(dá)40~120m2,焦點(diǎn)處的平均聚光比約為2000,工質(zhì)的出口溫度可達(dá)700~750℃,工作壓強(qiáng)約為 20MPa,其光電轉(zhuǎn)化效率在25%~30%之間[1]。
由此可見,盡管3種太陽(yáng)能電站已經(jīng)進(jìn)入商業(yè)化階段,但光電轉(zhuǎn)化效率低下的問題仍然存在,所以集熱場(chǎng)側(cè)尚需改進(jìn),從而提高光熱效率和運(yùn)行穩(wěn)定性,最終提升整個(gè)系統(tǒng)的光電轉(zhuǎn)化效率。本文主要從光學(xué)結(jié)構(gòu)、集熱管結(jié)構(gòu)以及流體工質(zhì)3個(gè)方面介紹當(dāng)今提高集熱場(chǎng)熱效率、降低集熱器損壞風(fēng)險(xiǎn)的先進(jìn)技術(shù),包括聚光輻照能流分布的檢測(cè)和仿真,集熱器換熱效率提高的策略,流體工質(zhì)的選擇和改進(jìn)等,并對(duì)未來(lái)集熱場(chǎng)技術(shù)的發(fā)展進(jìn)行了展望。
太陽(yáng)能集熱場(chǎng)光學(xué)結(jié)構(gòu)主要包括反光鏡/定日鏡、跟蹤系統(tǒng)以及接收器3個(gè)部分,優(yōu)化方向主要包括太陽(yáng)跟蹤技術(shù)、輻照能流分布的檢測(cè)與計(jì)算以及鏡面形貌的探測(cè)與校正技術(shù)。其主要目的是提高太陽(yáng)能集熱場(chǎng)的光學(xué)效率,并維持其在高光學(xué)效率下運(yùn)行的穩(wěn)定性。
槽式集熱場(chǎng)跟蹤系統(tǒng)根據(jù)運(yùn)行方式分為東西軸向跟蹤、南北軸向跟蹤、平行地軸跟蹤以及雙軸跟蹤[1]。其特點(diǎn)包括:機(jī)械結(jié)構(gòu)原理簡(jiǎn)單,而對(duì)跟蹤系統(tǒng)機(jī)械結(jié)構(gòu)的可靠性要求較高,百米級(jí)的集熱單元陣列導(dǎo)致驅(qū)動(dòng)扭矩較大,以及旋轉(zhuǎn)角度范圍較大。由于結(jié)構(gòu)簡(jiǎn)單,其跟蹤誤差可控制在0.5°以內(nèi)[5],達(dá)到商業(yè)化的水平。由于單軸跟蹤的方案無(wú)法避免余弦效應(yīng),雙軸跟蹤系統(tǒng)的熱效率更高,相對(duì)于固定式可提高46.46%[6],最高可達(dá)75%[7],但雙軸跟蹤系統(tǒng)機(jī)械結(jié)構(gòu)復(fù)雜,管路系統(tǒng)設(shè)計(jì)復(fù)雜,以及結(jié)構(gòu)剛度較低的缺點(diǎn)限制了其大規(guī)模化的應(yīng)用,而多用于小尺寸的實(shí)驗(yàn)平臺(tái);大型應(yīng)用的場(chǎng)景主要集中在催化制氫以及海水淡化[8],大型的槽式雙軸電站僅Helioman 3/32一例[2]。為在保持傳統(tǒng)大規(guī)模槽式集熱場(chǎng)優(yōu)勢(shì)的同時(shí)提高效率,降低余弦效應(yīng)的影響,文獻(xiàn)[9]中基于LS3平臺(tái)首次提出了一種通過底部的滑軌使集熱器陣列可在一定的角度范圍(約30°)旋轉(zhuǎn)的結(jié)構(gòu),實(shí)現(xiàn)與雙軸跟蹤系統(tǒng)相似的效果,其陣列長(zhǎng)度可達(dá)100~150m,具有大型化應(yīng)用前景。文獻(xiàn)[10]中實(shí)際建設(shè)該實(shí)驗(yàn)平臺(tái),其一次能源效率和?效率分別可達(dá)74.74%和48.83%,光電轉(zhuǎn)化效率可達(dá)23.67%。該系統(tǒng)的缺陷在于滑軌的旋轉(zhuǎn)結(jié)構(gòu)成本較高;對(duì)于底面的強(qiáng)度和平整度有較高的要求,同時(shí)土地利用率更低;跟蹤系統(tǒng)升級(jí)的性價(jià)比一般,根據(jù)文獻(xiàn)[11]的研究,該系統(tǒng)相對(duì)于南北軸向單軸跟蹤系統(tǒng)的年效率提升約為4%。
對(duì)吸熱管壁面輻照能流的檢測(cè)和計(jì)算可以為集熱管正常運(yùn)行的維護(hù)以及換熱性能的分析提供信息和依據(jù)。
1.2.1 槽式太陽(yáng)能集熱場(chǎng)
槽式集熱場(chǎng)中,對(duì)于吸熱管壁面輻照能流分布的分析始于Jeter等[12]對(duì)該分布特性半解析 解,隨后研究者分析了邊緣角、對(duì)準(zhǔn)誤差、跟蹤誤差、端頭效應(yīng)以及太陽(yáng)形狀模型等使集熱場(chǎng)偏離運(yùn)行工況的參數(shù)對(duì)吸熱管壁面輻照能流分布的影響[13-15]。由于非理想狀態(tài)下光線傳輸?shù)膹?fù)雜性,光路追跡法成為主要的輻照模擬方法,主要分為有限單元光路追跡法(FEM)和蒙特卡羅光路追跡法(MCRT)。其策略是通過模擬海量的光路使接收器上的輻照能流分布收斂于穩(wěn)定值,通過標(biāo)準(zhǔn)化處理將所得分布轉(zhuǎn)化為所需的輻照能流分布。該方法的優(yōu)勢(shì)在于容易處理復(fù)雜工況和異形結(jié)構(gòu),其缺點(diǎn)在于需要對(duì)大量的光線進(jìn)行追跡,耗費(fèi)的計(jì)算時(shí)間和資源龐大。根據(jù)文獻(xiàn)[16]中的研究,采用MCRT時(shí)為保證足夠的精度,需要模擬5′107個(gè)以上的光線,而在文獻(xiàn)[17]中的研究,采用FEM方法得到的標(biāo)準(zhǔn)差為輻照強(qiáng)度的30%,該情況下需要對(duì)8′105個(gè)有限單元進(jìn)行求解。因此降低光路追跡法計(jì)算時(shí)間,并拓展該簡(jiǎn)化算法的適用性成為一個(gè)研究熱點(diǎn)。其基本原理是利用了在忽略端頭效應(yīng)影響的情況下,吸熱管上輻照能流分布軸向保持一致的特性,將計(jì)算復(fù)雜度減少一維,在保證相同計(jì)算精度的條件下,計(jì)算速度提高了數(shù)百倍[18],且該方法已經(jīng)應(yīng)用于非理想條件下的輻照能流分布預(yù)測(cè)方面的研究[19-20]。
1.2.2 碟式太陽(yáng)能集熱場(chǎng)
由于碟式集熱場(chǎng)點(diǎn)聚焦的幾何結(jié)構(gòu)特征,其接收器上的輻照能流分布的非均勻性更為顯著,由此引發(fā)的熱效率下降和熱應(yīng)力上升威脅著集熱器的穩(wěn)定運(yùn)行。研究者通過CCD相機(jī)對(duì)接收器入口平面處非均勻的輻照能流進(jìn)行測(cè)試,其原理是通過測(cè)量朗伯靶反射的光強(qiáng)分布,對(duì)其接收的輻照能流分布進(jìn)行間接測(cè)量[21-22],其結(jié)果如 圖2(a)所示。與槽式集熱器相似,數(shù)值模擬方法也被應(yīng)用于計(jì)算不同結(jié)構(gòu)下集熱器上輻照能流分布。文獻(xiàn)[23]中采用光路追跡法對(duì)圓柱體、穹頂型、橢球體、球體以及椎體接收器壁面的輻照能流進(jìn)行了模擬,其結(jié)果如圖2(b)所示。文獻(xiàn)[24]為了解決接收面上的輻照分布不均,在接收器上設(shè)計(jì)了二次混合聚光器。對(duì)于體型集熱器,文 獻(xiàn)[25]對(duì)半透明的多孔介質(zhì)中的輻照分布進(jìn)行數(shù)值模擬,其結(jié)果如圖2(c)所示。
圖2 碟式集熱場(chǎng)集熱器輻照能流分布
1.2.3 塔式太陽(yáng)能集熱場(chǎng)
在塔式集熱場(chǎng)中,需要對(duì)接收器上的輻照能流分布進(jìn)行分析,得到集熱器接受的輻照量,從而計(jì)算集熱器的年效率,驗(yàn)證該系統(tǒng)的經(jīng)濟(jì)性;此外,對(duì)集熱器上的非均勻輻照分布進(jìn)行求解可以對(duì)集熱器進(jìn)行溫度與熱應(yīng)力分布的分析,并進(jìn)行相應(yīng)的結(jié)構(gòu)優(yōu)化,從而降低熱應(yīng)力對(duì)集熱器安全運(yùn)行的威脅。雖然能流仿真的基本原理相似,但由于鏡場(chǎng)光學(xué)結(jié)構(gòu)的復(fù)雜度遠(yuǎn)高于槽式反射鏡,因此對(duì)塔式集熱場(chǎng)能流分析的算法更加復(fù)雜。對(duì)于塔式集熱場(chǎng)光學(xué)性能的分析主要分為2種:一是通過分析定日鏡朝向、遮擋作用、占地面積、設(shè)備成本等因素分析定日鏡場(chǎng)年效率;二是通 過光路追跡得到集熱器上具體的輻照能流分布情況和影響因素。文獻(xiàn)[26-27]中,采用光路追跡方法對(duì)腔式集熱器內(nèi)非均勻的輻照能流進(jìn)行分析,得到了跟蹤誤差與集熱效率的關(guān)系;文獻(xiàn)[28-29]對(duì)表面式接收器上的輻照能流進(jìn)行分析,發(fā)現(xiàn) 其曲線近似高斯分布。文獻(xiàn)[30-31]對(duì)體積式集熱器上非均勻的輻照能流進(jìn)行分析。現(xiàn)階段對(duì)于 常規(guī)類型的定日鏡和吸熱器構(gòu)成的集熱場(chǎng),科 研機(jī)構(gòu)已經(jīng)編寫了可商用的工具軟件進(jìn)行可行性研究以及熱效率分析,如表1所示。在這些工具軟件中,已經(jīng)編寫了圖形用戶界面(graphical user interface,GUI)界面,使其更容易被研究者入手,同時(shí)設(shè)有與其他常用工具軟件或常用代 碼的接口,便于內(nèi)部參數(shù)的設(shè)置和仿真結(jié)果的后處理。
表1 塔式太陽(yáng)能集熱場(chǎng)輻照分析軟件
鏡面形貌的探測(cè)技術(shù)主要是針對(duì)由于長(zhǎng)期的風(fēng)載荷和重力載荷導(dǎo)致界面變形,進(jìn)而導(dǎo)致集熱場(chǎng)效率下降的問題提出的,其主要包含3種方法:激光掃描法、疊柵偏折法和攝影測(cè)量法[32]。其中攝影測(cè)量法因?yàn)槠溥m合大尺寸物體測(cè)量的特性,最適用于大型槽式反射鏡表面形貌的探測(cè)研究。該方法的基本原理為:通過位于鏡面上方空間位置已知的多個(gè)相機(jī)對(duì)被測(cè)物體上的標(biāo)記物進(jìn)行拍照,通過視覺關(guān)系換算出標(biāo)記點(diǎn)的空間位置信息,從而擬合出鏡面特征[33]。根據(jù)所得的信息可以對(duì)鏡面形貌的探測(cè)評(píng)估集熱效率的衰減,從而做出相應(yīng)的矯正維護(hù)方案。
對(duì)于碟式太陽(yáng)能集熱場(chǎng)中的反射鏡,其理想的形貌應(yīng)為整塊拋物碟型反射鏡[34]。文獻(xiàn)[35]中總結(jié)了碟式反射鏡效率的影響因素,包括鏡面材料、鏡面單元面型、碟式反光鏡尺寸、反射鏡面積、太陽(yáng)輻照度、焦距、集熱器開口面積和反射鏡邊緣角等。然而在實(shí)際工程中,由于成本以及工藝方面的原因,研究者通過增加鏡子數(shù)量、減小鏡子面積、更改鏡面形狀的方法降低制造難度。根據(jù)鏡面面型一般分為平面鏡、球面鏡、旋轉(zhuǎn)拋物面鏡和拋物面鏡等;根據(jù)鏡面的排布方式分為單一鏡面式、多鏡面式以及菲涅爾式。表2中總結(jié)了現(xiàn)已建成的碟式集熱場(chǎng)及其反射鏡形式。由于碟式集熱場(chǎng)反射鏡系統(tǒng)的集熱結(jié)構(gòu)比較簡(jiǎn)單,跟蹤控制方式多為傳統(tǒng)雙軸跟蹤方式,而反射鏡結(jié)構(gòu)大型化,因此相關(guān)報(bào)道多關(guān)于反射鏡的成形以及固定方式等工程問題。
表2 商業(yè)化碟式集熱場(chǎng)反光鏡類型
如圖3所示,集熱管中主要包括3種傳熱方式:熱傳導(dǎo)、對(duì)流換熱和輻射換熱。為了維持較高的光熱轉(zhuǎn)換效率,需要提高導(dǎo)熱油與吸熱管內(nèi)壁面的傳熱性能,同時(shí)抑制吸熱管外壁面對(duì)外部環(huán)境的熱耗散。從集熱管結(jié)構(gòu)的改進(jìn)出發(fā)提高 集熱管效率,改進(jìn)其運(yùn)行穩(wěn)定性成為近期的研究熱點(diǎn)。
圖3 集熱器傳熱過程機(jī)理圖
集熱管結(jié)構(gòu)優(yōu)化策略如表3所示。其中,在管外壁面的翅片設(shè)置是提高光學(xué)效率的重要方法。文獻(xiàn)[43]在小尺寸吸熱管外壁面覆蓋了黑色翅片來(lái)提高接收管的吸收率,其光熱效率可達(dá)67%。波紋管是提高管內(nèi)壁換熱性能的另一種重要方法。文獻(xiàn)[44]中研究者采用了對(duì)稱外波紋管結(jié)構(gòu),通過管壁面起伏加強(qiáng)了湍流強(qiáng)度,從而加強(qiáng)吸熱管內(nèi)壁面與導(dǎo)熱油之間的換熱性能,最高可達(dá)48%,同時(shí)該結(jié)構(gòu)的熱應(yīng)力比傳統(tǒng)直管低26.8%。文獻(xiàn)[45]中采用數(shù)值方法研究了非均勻分布的對(duì)稱外波紋管的傳熱性能,得到了更優(yōu)化的波紋分布構(gòu)型。此外,在集熱管中插入填充物從而提高集熱管換熱效率,采用實(shí)驗(yàn)或者仿真的方法進(jìn)行驗(yàn)證和填充結(jié)構(gòu)的優(yōu)化成為研究的熱點(diǎn)。文獻(xiàn)[46]中介紹了螺旋波紋管的換熱性能,并通過數(shù)值與實(shí)驗(yàn)方法研究了殼-管換熱器結(jié)構(gòu)。在吸熱管中插入1個(gè)螺旋葉片是其中一種提高集熱管換熱性能的重要方法,其原理也是加強(qiáng)吸熱管內(nèi)的湍流效應(yīng),降低層流邊界層厚度,從而提高流體工質(zhì)與吸熱管內(nèi)壁面的換熱性能。文獻(xiàn)[47-49]中測(cè)試了若干種螺旋葉片,其實(shí)物圖如圖4所示,包括(a)直葉片、(b)螺旋葉片和(c)鋸齒葉片。文 獻(xiàn)[50]中在管壁面設(shè)置翅片,通過提高換熱面積的方法提高吸熱管內(nèi)壁面的換熱性能。文獻(xiàn)[51]通過實(shí)驗(yàn)研究了金屬泡沫填充物對(duì)吸熱管傳熱效率的影響,發(fā)現(xiàn)該方法對(duì)集熱效率的提升約為3%。然而管內(nèi)填充物的作用并不一定是有利的,其主要缺點(diǎn)是會(huì)引起吸熱管壓損上升。
表3 集熱管結(jié)構(gòu)優(yōu)化策略
文獻(xiàn)[52]中采用了?分析的方法發(fā)現(xiàn)當(dāng)管道內(nèi)雷諾數(shù)高于閾值時(shí),采用螺旋葉片反而會(huì)使集熱管效率下降,使填充物喪失性價(jià)比。文獻(xiàn)[52]中研究者設(shè)置了縱向渦發(fā)生器使熱損降低了13%,但管道壓損翻了一倍。通過總結(jié)各項(xiàng)研究可以發(fā)現(xiàn),優(yōu)化后吸熱管的熱損和壓損不僅和填充物有關(guān),還與集熱管運(yùn)行參數(shù)(如入口流量等因素)相關(guān),通過優(yōu)化相應(yīng)工況,或是針對(duì)相應(yīng)需求采用合理的結(jié)構(gòu)或是將結(jié)構(gòu)改型,可以實(shí)現(xiàn)相應(yīng)填充結(jié)構(gòu)集熱效率提升的最大化。塔式太陽(yáng)能集熱場(chǎng)中,管式集熱器以水/水蒸氣、熔融鹽等作為流體流體工質(zhì)的策略已經(jīng)得到商業(yè)化應(yīng)用,并已經(jīng)在文獻(xiàn)[3]中詳細(xì)總結(jié),其工作原理與槽式集熱場(chǎng)相似,而其性能被管材料的導(dǎo)熱性能所局限。為解決該問題,對(duì)于管式集熱器管內(nèi)換熱性能加強(qiáng)的方式方法與槽式集熱器中的方法和原理相似,包括波紋管[52]、設(shè)置換熱翅片等,本文將不再贅述。
與槽式集熱器不同的是點(diǎn)聚焦集熱器的管陣列分布的類型多種多樣,通過優(yōu)化吸熱管陣列分布、排布方式以及改變吸熱單元本身結(jié)構(gòu)來(lái)提高集熱器效率成為管式集熱器研究的基本方向。
為了降低高溫引起的熱損,碟式集熱器多采用腔式結(jié)構(gòu)設(shè)計(jì)。由于碟式聚光系統(tǒng)與塔式聚光系統(tǒng)的基本原理相似,都為點(diǎn)聚焦方式;且聚光比、工作溫度都相近,因此二者集熱器結(jié)構(gòu)的設(shè)計(jì)和優(yōu)化理念也相似。文獻(xiàn)[59]中研究螺旋管集熱管成型形貌對(duì)光學(xué)和換熱效率的影響,如圓錐體、球體和柱體等,發(fā)現(xiàn)柱形的能流分布最為均勻,所以熱應(yīng)力最小,如圖5(a)所示。文獻(xiàn)[60] 采用實(shí)驗(yàn)和模擬的方法對(duì)以導(dǎo)熱油作為流體工質(zhì)的圓柱體和棱柱體腔式集熱器進(jìn)行了集熱效率的研究,發(fā)現(xiàn)二者的平均集熱效率分別為56.44%和54.14%。文獻(xiàn)[27]中對(duì)碟式集熱場(chǎng)中腔式集熱器進(jìn)行了能量和?分析,發(fā)現(xiàn)在穩(wěn)定狀態(tài)下其熱效率約為60%;當(dāng)出口溫度達(dá)到550℃時(shí),其?效率峰值約為23%,且當(dāng)進(jìn)出口溫差增大時(shí),?效率下降。
為提高光學(xué)效率,文獻(xiàn)[61]設(shè)計(jì)了一種片狀集熱器,如圖5(b)所示。該結(jié)構(gòu)采用菱形管時(shí),吸收率可達(dá)0.92。對(duì)于改變吸熱單元結(jié)構(gòu)而言,微流道集熱器成為一個(gè)提高換熱面積的重要方法,如圖5(c)所示。該方法是通過在平板接收器中設(shè)置許多微小的流道來(lái)實(shí)現(xiàn)提高工質(zhì)與吸熱器換熱面積的,同時(shí)包絡(luò)面結(jié)構(gòu)減小了該集熱器與環(huán)境空氣的接觸面積,降低了由于對(duì)流換熱和輻照換熱引起的熱損。文獻(xiàn)[62]設(shè)計(jì)的微流道集熱器采用CO2作為工質(zhì),當(dāng)輻照強(qiáng)度達(dá)到500kW/m2時(shí),出口溫度可達(dá)700℃,集熱效率可達(dá)90%。
對(duì)于腔式集熱器,在其內(nèi)部填充多孔介質(zhì)作為吸熱器成為一個(gè)通過改變吸熱單元結(jié)構(gòu)提高換熱面積的重要方式。其原理是利用多孔介質(zhì)較大的空氣接觸面積提升換熱性能,從而加熱流經(jīng)多孔介質(zhì)的空氣[63]。文獻(xiàn)[64]中對(duì)小容量的多孔集熱器(3kW)進(jìn)行熱效率分析,流體工質(zhì)為空氣時(shí),其出口溫度可達(dá)553℃,熱效率可達(dá)77%;當(dāng)流體工質(zhì)為氦氣時(shí),最高出口溫度為620℃,此時(shí)熱效率為78%。為了提高多孔介質(zhì)上溫度分布的均勻性從而降低熱應(yīng)力,多孔介質(zhì)的結(jié)構(gòu)也進(jìn)行了相應(yīng)的改進(jìn)。文獻(xiàn)[65]中提出了一種雙層多孔介質(zhì),研究發(fā)現(xiàn)隨流體方向孔隙率下降的多孔介質(zhì)結(jié)構(gòu)可以降低進(jìn)出口的溫差。文獻(xiàn)[66]中優(yōu)化了多孔介質(zhì)孔隙率下降曲線,發(fā)現(xiàn)采用幾何平均(geometric-averaged,GA)分布的孔隙率比線性分布的孔隙率的多孔介質(zhì)溫度分布更為均勻。
由于塔式集熱器運(yùn)行溫度較高,其向大氣和天空的熱損也比較大,為了緩解這個(gè)問題,文 獻(xiàn)[67]設(shè)計(jì)了一種混合接收器結(jié)構(gòu),如圖6所示,其原理與省煤器相似,將多個(gè)管路仿照多孔介質(zhì)的形式放置在腔式集熱器內(nèi),而腔式集熱器開口端直接與大氣相通,使開路氣流可以流經(jīng)吸熱管路的表面被加熱,然后被用于驅(qū)動(dòng)汽輪機(jī)或者預(yù)熱導(dǎo)熱流體管路,其熱效率提升達(dá)到20%。文 獻(xiàn)[68]采用數(shù)值計(jì)算的方法根據(jù)集熱器中的溫度場(chǎng)和速度場(chǎng)對(duì)管路結(jié)構(gòu)進(jìn)行優(yōu)化,同時(shí)建議在輻照入口處添加石英窗來(lái)提高熱空氣的出口溫度,降低集熱管的溫度梯度。該類型集熱器的缺點(diǎn)在于需要設(shè)計(jì)雙流體工質(zhì)通路,系統(tǒng)更加復(fù)雜,成本更高。
圖6 混合型集熱器示意圖
太陽(yáng)能集熱場(chǎng)中常用的流體工質(zhì)包括導(dǎo)熱油、水/水蒸氣、熔融鹽以及納米流等。流體工質(zhì)的選擇需要針對(duì)集熱系統(tǒng)的特點(diǎn)尤其是工作的溫度,從而提高整個(gè)系統(tǒng)的集熱效率。導(dǎo)熱油是目前最常用的流體工質(zhì),這是由于其使用壽命較長(zhǎng),熱穩(wěn)定性較好,飽和蒸氣壓較低。商業(yè)化的導(dǎo)熱油的型號(hào)包括VP-1,Syltherm 800,Marlotherm SH,Santotherm 59和herminol D12等。其中,Syltherm 800因其較廣的工作溫度范圍、較低的毒性和揮發(fā)性、較高的比熱容成為最為理想的導(dǎo)熱油。導(dǎo)熱油的缺點(diǎn)在于一旦泄漏,有機(jī)油脂會(huì)造成環(huán)境污染,有機(jī)物油有引起火災(zāi)的風(fēng)險(xiǎn),同時(shí)溫度過高會(huì)導(dǎo)致導(dǎo)熱油的分解,限制了其工作溫度。水/水蒸氣是最早被用于槽式太陽(yáng)能集熱場(chǎng)的工質(zhì),可以直接轉(zhuǎn)化成水蒸氣被汽輪機(jī)利用(直接蒸汽發(fā)生器),大大簡(jiǎn)化了槽式電站結(jié)構(gòu),降低了成本。相對(duì)于導(dǎo)熱油而言,水蒸氣作為流體工質(zhì)方案可以輸出更高溫度的流體(500℃以上),同時(shí)泄漏不會(huì)造成火災(zāi)和污染隱患。文獻(xiàn)[69]中通過?分析的方法對(duì)比了導(dǎo)熱油、水/水蒸氣、熔融鹽作為工質(zhì)的槽式集熱場(chǎng),發(fā)現(xiàn)采用水作為工質(zhì)具有最高的效率。水作為工質(zhì)的缺陷在于由于沸點(diǎn)較低,不適合作為儲(chǔ)熱物質(zhì);水/水蒸氣組成的兩相流對(duì)輸運(yùn)和控制系統(tǒng)要求更高,導(dǎo)致系統(tǒng)復(fù)雜度上升;由于水蒸氣密度較低,導(dǎo)致管路壓降上升。熔融鹽作為流體工質(zhì),其優(yōu)勢(shì)為較高熱穩(wěn)定性使其可以滿足較高的工作溫度需求(550℃以上),較高比熱容使其可作為儲(chǔ)熱物質(zhì),較低的蒸氣壓降低了管道壓降。而熔融鹽工質(zhì)的缺點(diǎn)為較高的熔點(diǎn)(220~240℃)使其有凝固的風(fēng)險(xiǎn)[70]。
在流體中添加納米顆粒從而改善流體工質(zhì)的傳熱特性成為當(dāng)前的研究熱點(diǎn),其原理為:通過添加納米顆粒可以增加導(dǎo)熱流體的導(dǎo)熱系數(shù),降低邊界層的厚度。如表4所示,納米流中流體包括水、導(dǎo)熱油和熔融鹽,添加的納米顆粒主要包括氧化鋁、氧化銅納米顆粒以及碳納米管等。根據(jù)文獻(xiàn)[71]中的研究,通過提高納米流中顆粒物的濃度會(huì)使顆粒物與流體碰撞頻率增大,提升其粘度,同時(shí)會(huì)降低其熱容、提升其導(dǎo)熱系數(shù)。隨著顆粒物尺寸的增大,其布朗運(yùn)動(dòng)會(huì)減弱,從而引起納米流導(dǎo)熱系數(shù)的下降。納米流的缺點(diǎn)在于穩(wěn)定性較差,高濃度的納米顆粒在流動(dòng)中可能發(fā)生沉降或積累;同時(shí)隨著濃度升高,納米流的粘度上升導(dǎo)致管路壓降上升,對(duì)輸油泵的功率提出更高的要求。對(duì)于納米流不穩(wěn)定的特征,利用設(shè)置填充物產(chǎn)生漩渦的方法可以與納米流相輔相成,不僅可以提升集熱管的熱效率,還可以使納米顆 粒在流體中的分布更加均勻。如文獻(xiàn)[72]中將摻有銀顆粒的納米流與螺旋葉片填充方案相結(jié)合,使集熱效率提高了5%;而文獻(xiàn)[73]中將摻有碳納米 管的納米流與螺旋葉片填充方案相結(jié)合,使集熱效率提升了4.4%。此外在透明吸熱管中添加混 有納米顆粒的高壓氣體作為流體工質(zhì)成為另一種技術(shù)方案,與其他方法不同的是,該方案是通過輻照直接加熱鍍有吸收涂層的高濃度納米顆粒,而不是傳統(tǒng)的集熱管先通過輻照加熱集熱管,再通過對(duì)流換熱加熱流體工質(zhì),該方法的傳熱途徑更短,理論上可以獲得更高的熱效率,且氣體和顆粒物作為工質(zhì),可以適應(yīng)更高的溫度需求,尤其是聚光比較高的場(chǎng)合,如碟式、塔式太陽(yáng)能集熱場(chǎng)中。文獻(xiàn)[74]中將該方案應(yīng)用于槽式集熱場(chǎng)中,采用CuO納米顆粒,出口溫度可達(dá)180℃,平均熱效率約為65%。
表4 流體工質(zhì)納米顆粒添加物
對(duì)于流體工質(zhì)而言,現(xiàn)階段顆粒物接收器成為新的研究熱點(diǎn),其類型主要包括自由下落式、阻斷式、離心式和流化床式等;該技術(shù)的特點(diǎn)是顆粒物可以承受1000℃以上的高溫而不發(fā)生分解,在200℃以下也沒有凝固的風(fēng)險(xiǎn)。自由下落式接收器是通過輻照能流直接加熱從腔式集熱器頂部下落的顆粒物獲得熱能,通過頂部滑動(dòng)閥門控制流量得到所需的出口溫度,如圖7(a)所示。文獻(xiàn)[75]中對(duì)1MW的連續(xù)循環(huán)顆粒集熱器進(jìn)行了測(cè)試,其出口溫度可達(dá)700℃,光熱效率在50%~80%之間。文獻(xiàn)[76-77]中總結(jié)了風(fēng)向、風(fēng)速以及開口面積等因素對(duì)該類集熱器的影響。由于高開口面積會(huì)增加集熱器的散熱,但低開口面積會(huì)減少顆粒物接受輻照的時(shí)間,阻斷式集熱器就是在顆粒物下落路徑上添加阻擋物來(lái)延長(zhǎng)輻照時(shí)間,如圖7(b)所示。阻擋物的結(jié)構(gòu)多為多孔材料,包括金屬、陶瓷泡沫、不銹鋼交錯(cuò)網(wǎng)等,將出口顆粒物溫度提升到900℃[78];也包括螺旋滑軌等結(jié)構(gòu),采用該結(jié)構(gòu)30min內(nèi)可將顆粒物溫度加熱到650℃[83]。文獻(xiàn)[84]介紹了離心式接收器,如圖7(c)所示,其原理是通過旋轉(zhuǎn)的接收器產(chǎn)生的離心力使顆粒物沿接收器壁面運(yùn)動(dòng),提高了接受輻照的時(shí)間,平均輻照強(qiáng)度為300~700kW/m2,出口溫度可達(dá)900℃,光熱效率達(dá)到75%。流化床式集熱器起源于Sandia實(shí)驗(yàn)室19世紀(jì)七十年代的實(shí)驗(yàn),其原理是在垂直的透明管底部通入壓縮空氣和顆粒物混合物(硅砂、ZrO2、SiO2和耐火黏土等),在管頂部接受輻照。對(duì)于平均輻照能流密度為500kW/m2的集熱器,其硅砂顆粒物的溫度可達(dá)1200K,而二氧化硅顆粒物的溫度可達(dá)1400K,熱效率在20%~40%之間[85]。此外,流化床式集熱器也可以采用間接加熱的方式,通過輻照加熱不銹鋼集熱管,集熱管再對(duì)顆粒物氣流進(jìn)行加熱,文獻(xiàn)[86]中出口溫度可達(dá)750℃,管內(nèi)壁的換熱系數(shù)在質(zhì)量流量為10~45kg/(m2·s)的情況下可達(dá)420~1100W/(m2·K)。
圖7 自由下落顆粒物型集熱器示意圖
對(duì)于塔式、碟式集熱場(chǎng),液態(tài)金屬也可被用作流體工質(zhì),主要包括金屬鈉、鉀,以及鉀鈉合金,其優(yōu)勢(shì)在于:1)液態(tài)金屬可以在高溫下運(yùn)行,工作溫度可達(dá)650~850℃[87];2)液態(tài)金屬較高的熱導(dǎo)率可以提高集熱管壁面與導(dǎo)熱流體之間的換熱效率;3)液態(tài)金屬較高的熱導(dǎo)率可以降低集熱器溫差,從而降低管道熱應(yīng)力;4)液態(tài)金屬高溫下較低的飽和蒸氣壓和較高的汽化潛熱使其可用于相變集熱器的設(shè)計(jì)。
碟式集熱場(chǎng)中液態(tài)金屬相變集熱器主要包括熱管集熱器和池沸騰集熱器。熱管集熱器的原理是通過毛細(xì)吸液芯結(jié)構(gòu)使液態(tài)金屬均勻包覆在集熱管上,液態(tài)金屬吸收太陽(yáng)能熱后蒸發(fā)成為金屬蒸汽,蒸汽在換熱管上冷凝放熱,將熱量傳遞給管內(nèi)的工作介質(zhì),冷凝后的蒸汽流回集熱管表面,相較于直接照射式集熱器,系統(tǒng)的效率可以提高20%[88];池沸騰集熱器沒有毛細(xì)吸液芯結(jié)構(gòu),液態(tài)金屬聚集在金屬池內(nèi),吸收太陽(yáng)能熱后產(chǎn)生金屬蒸汽,池沸騰集熱器結(jié)構(gòu)簡(jiǎn)單,加工成本較低,但存在沸騰不穩(wěn)定、惡化傳熱等問題。
本文對(duì)槽式、塔式以及碟式3種典型集熱場(chǎng)從光學(xué)結(jié)構(gòu)、集熱器結(jié)構(gòu)、導(dǎo)熱工質(zhì)3個(gè)方面進(jìn)行了綜述,總結(jié)了現(xiàn)階段提升集熱效率和運(yùn)行穩(wěn)定性的技術(shù)手段,主要分為以下幾點(diǎn):1)百米級(jí)槽式太陽(yáng)能集熱場(chǎng)陣列跟蹤系統(tǒng)結(jié)構(gòu)雙軸化以降低余弦效應(yīng);2)光路追跡法被用于仿真異形結(jié)構(gòu)集熱場(chǎng)輻照能流分布;3)集熱管中添加填充物增強(qiáng)管內(nèi)湍流,提高對(duì)流換熱面積;4)在流體工質(zhì)中添加納米顆粒物來(lái)提高流體工質(zhì)的傳熱性能;5)實(shí)驗(yàn)與CFD模擬成為集熱管特性研究的重要方法;6)多孔介質(zhì)在吸熱器端廣泛運(yùn)用。
現(xiàn)階段集熱場(chǎng)結(jié)構(gòu)優(yōu)化方面的研究已經(jīng)取得了豐碩的成果,但由這些優(yōu)化策略派生的問題尚未解決。未來(lái)聚光太陽(yáng)能集熱場(chǎng)技術(shù)的發(fā)展方向包括:通過提高聚光輻照分布的均勻性來(lái)降低集熱器的熱應(yīng)力;優(yōu)化集熱管填充物結(jié)構(gòu),在保證原有的集熱效率提升的基礎(chǔ)上降低管路壓損;對(duì)于點(diǎn)聚焦式集熱場(chǎng),優(yōu)化集熱器結(jié)構(gòu)以降低由對(duì)流、輻射引起的熱損;探究集熱器中顆粒物的傳熱與流體特性,建立合理的多相流模型。
[1] Islam M T,Huda N,Abdullah A B,et al.A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies:current status and research trends[J].Renewable and Sustainable Energy Reviews,2018,91:987-1018.
[2] Abdulhamed A J,Adam N M,Ab-Kadir M Z A,et al.Review of solar parabolic-trough collector geometrical and thermal analyses,performance,and applications[J].Renewable and Sustainable Energy Reviews,2018,91:822-831.
[3] Fernández-García A,Zarza E,Valenzuela L,et al.Parabolic-trough solar collectors and their applications[J].Renewable and Sustainable Energy Reviews,2010,14(7):1695-1721.
[4] He Y,Wang K,Qiu Y,et al.Review of the solar flux distribution in concentrated solar power:non-uniform features,challenges,and solutions[J].Applied Thermal Engineering,2019,149:448-474.
[5] 王金平,王軍,馮煒,等.槽式太陽(yáng)能跟蹤控制系統(tǒng)的研制及應(yīng)用[J].農(nóng)業(yè)工程學(xué)報(bào),2015,31(2):45-52.
[6] Bakos G C.Design and construction of a two-axis Sun tracking system for parabolic trough collector (PTC) efficiency improvement[J].Renewable Energy,2006,31(15):2411-2421.
[7] Khalifa A N,Al-Mutawalli S S.Effect of two-axis sun tracking on the performance of compound parabolic concentrators[J].Energy Conversion and Management,1998,39(10):1073-1079.
[8] Wei Q,Yang Y,Liu H,et al.Experimental study on direct solar photocatalytic water splitting for hydrogen production using surface uniform concentrators [J].International Journal of Hydrogen Energy,2018,43(30):13745-13753.
[9] Peng S,Hong H,Jin H,et al.A new rotatable-axis tracking solar parabolic-trough collector for solar- hybrid coal-fired power plants[J].Solar Energy,2013,98:492-502.
[10] Fang J,Liu Q,Liu T,et al.Thermodynamic evaluation of a distributed energy system integrating a solar thermochemical process with a double-axis tracking parabolic trough collector[J].Applied Thermal Engineering,2018,145:541-551.
[11] Qu W,Wang R,Hong H,et al.Test of a solar parabolic trough collector with rotatable axis tracking[J].Applied Energy,2017,207:7-17.
[12] Jeter S M.Calculation of the concentrated flux density distribution in parabolic trough collectors by a semifinite formulation[J].Solar Energy,1986,37(5):335-345.
[13] Coventry J,Blakers A.Direct measurement and simulation techniques for analysis of radiation flux on a linear PV concentrator[J].Progress in Photovoltaics Research & Applications,2010,14(4):341-352.
[14] Klaus Pottler E L.Photogrammetry:a powerful tool for geometric analysis of solar concentrators and their components[J].Journal of Solar Energy Engineering,2005,127(1):94-101.
[15] Pottler K,Ulmer S,Lüpfert E,et al.Ensuring performance by geometric quality control and specifications for parabolic trough solar fields [J].Energy Procedia,2014,49:2170-2179.
[16] Cheng Z D,He Y L,Cui F Q,et al.Numerical simulation of a parabolic trough solar collector with nonuniform solar flux conditions by coupling FVM and MCRT method[J].Solar Energy,2012,86(6):1770-1784.
[17] Jiang S,Hu P,Mo S,et al.Optical modeling for a two-stage parabolic trough concentrating photovoltaic/ thermal system using spectral beam splitting technology[J].Solar Energy Materials and Solar Cells,2010,94(10):1686-1696.
[18] Liang H,You S,Zhang H.Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors[J].Energy,2016,96:37-47.
[19] Serrano-Aguilera J J,Valenzuela L,F(xiàn)ern Ndez-Reche J.Inverse Monte Carlo ray-tracing method (IMCRT) applied to line-focus reflectors[J].Solar Energy,2016,124:184-197.
[20] Araki K,Nagai H,Herrero R,et al.1-D and 2-D Monte Carlo simulations for analysis of CPV module characteristics including the acceptance angle impacted by assembly errors[J].Solar Energy,2017,147: 448-454.
[21] Xia X,Dai G,Shuai Y.Experimental and numerical investigation on solar concentrating characteristics of a sixteen-dish concentrator[J].International Journal of Hydrogen Energy,2012,37(24):18694-18703.
[22] Johnston G.Focal region measurements of the 20m2tiled dish at the Australian National University [J].Solar Energy,1998,63(2):117.
[23] Shuai Y,Xia X,Tan H.Numerical simulation and experiment research of radiation performance in a dish solar collector system[J].Frontiers of Energy and Power Engineering in China,2010,4(4):488-495.
[24] Dai G,Xia X,Sun C,et al.Numerical investigation of the solar concentrating characteristics of 3D CPC and CPC-DC[J].Solar Energy,2011,85(11):2833-2842.
[25] Du S,Li M,Ren Q,et al.Pore-scale numerical simulation of fully coupled heat transfer process in porous volumetric solar receiver[J].Energy,2017,140:1267-1275.
[26] He Y,Cui F,Cheng Z,et al.Numerical simulation of solar radiation transmission process for the solar tower power plant:from the heliostat field to the pressurized volumetric receiver[J].Applied Thermal Engineering,2013,61(2):583-595.
[27] Wang K,He Y,Qiu Y,et al.A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver [J].Renewable Energy,2016,89:93-107.
[28] Besarati S M,Yogi Goswami D,Stefanakos E K.Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant[J].Energy Conversion and Management,2014,84:234-243.
[29] Salomé A,Chhel F,F(xiàn)lamant G,et al.Control of the flux distribution on a solar tower receiver using an optimized aiming point strategy:application to THEMIS solar tower[J].Solar Energy,2013,94:352-366.
[30] He Y L,Cheng Z D,Cui F Q,et al.Numerical investigations on a pressurized volumetric receiver:solar concentrating and collecting modelling [J].Renewable Energy,2012,44:368-379.
[31] Cui F Q,He Y L,Cheng Z D,et al.Numerical simulations of the solar transmission process for a pressurized volumetric receiver[J].Energy.2012,46(1):618-628.
[32] 王君,董明利,李巍,等.大型槽式太陽(yáng)能反射鏡面攝影測(cè)量方法[J].激光與光電子學(xué)進(jìn)展,2018,55(5):246-252.
[33] Ydrissi M E,Ghennioui H,Bennouna E G,et al.Geometric,optical and thermal analysis for solar parabolic trough concentrator efficiency improvement using the Photogrammetry technique under semi-arid climate[J].Energy Procedia,2019,157:1050-1060.
[34] Keck T,Scheil W,Benz R.An innovative dish/stirling system[C]//Energy Conversion Engineering Conference.Proceedings of the 25th Intersociety Energy Conversion Engineering Conference. New York,USA:IEEE,1990:317-322.
[35] Hafez A Z,Soliman A,El-Metwally K A,et al.Design analysis factors and specifications of solar dish technologies for different systems and applications [J].Renewable and Sustainable Energy Reviews,2017,67:1019-1036.
[36] Audibert,M,Pasquetti,R,Desautel,J.The Thermo-Helio-Energy-kW (THEK) parabolic dish program[C]//Advances In Solar Energy Technology. Proceedings of the Biennial Congress of the International Solar Energy Societ.Hamburg,Germany:Elsevier,1988:1597-1601.
[37] Lopez,C W,Stone,K W.Performance of the southern california edison company stirling dish[R].Washington DC:NASA STI,1993.
[38] West,R E,Larson,R W.Implementation of Solar Thermal Technology[M].Massachusetts,USA:MIT Press,1996:1-43.
[39] Stine,W B,Diver,R B.A Compendium of Solar Dish/Stirling Technology[R].California,USA:Sandia National Laboratories,1994.
[40] Oldberg,V R,F(xiàn)ord,J L.Design of the support structure,drive pedestal,and controls for a solar concentrator[R].California,USA:Sandia National Laboratories,1991.
[41] Keck T,Balz M,Blumenthal Y.Large is Beautiful – Progress of HelioFocus 500 m2Dish[J].Energy Procedia,2015,69:1597-1602.
[42] Coventry J,Andraka C.Dish systems for CSP[J].Solar Energy,2017,152:140-170.
[43] Zou B,Dong J,Yao Y,et al.An experimental investigation on a small-sized parabolic trough solar collector for water heating in cold areas[J].Applied Energy,2016,163:396-407.
[44] Fuqiang W,Zhexiang T,Xiangtao G,et al.Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube[J].Energy,2016(114):275-292.
[45] Zhang D,Tao H,Xu Y,et al.Numerical investigation on flow and heat transfer characteristics of corrugated tubes with non-uniform corrugation in turbulent flow[J].Chinese Journal of Chemical Engineering,2018,26(3):437-444.
[46] Liu L,Ling X,Peng H.Analysis on flow and heat transfer characteristics of EGR helical baffled cooler with spiral corrugated tubes[J].Experimental Thermal and Fluid Science,2013,44:275-284.
[47] Nanan K,Thianpong C,Pimsarn M,et al.Flow and thermal mechanisms in a heat exchanger tube inserted with twisted cross-baffle turbulators[J].Applied Thermal Engineering,2017,114:130-147.
[48] Eiamsa-Ard S,Promvonge P.Thermal characteristics in round tube fitted with serrated twisted tape [J].Applied Thermal Engineering,2010,30(13):1673-1682.
[49] Eiamsa-Ard S,Rattanawong S,Promvonge P.Turbulent convection in round tube equipped with propeller type swirl generators[J].International Communications in Heat and Mass Transfer,2009,36(4):357-364.
[50] Bellos E,Tzivanidis C,Tsimpoukis D.Thermal enhancement of parabolic trough collector with internally finned absorbers[J].Solar Energy,2017,157:514-531.
[51] Jamal-Abad M T,Saedodin S,Aminy M.Experimental investigation on a solar parabolic trough collector for absorber tube filled with porous media[J].Renewable Energy,2017,107:156-163.
[52] Jaramillo O A,Borunda M,Velazquez-Lucho K M,et al.Parabolic trough solar collector for low enthalpy processes:an analysis of the efficiency enhancement by using twisted tape inserts[J].Renewable Energy,2016,93:125-141.
[53] Ghadirijafarbeigloo S,Zamzamian A H,Yaghoubi M.3-D numerical simulation of heat transfer and turbulent flow in a receiver tube of solar parabolic trough concentrator with louvered twisted-tape Inserts[J].Energy Procedia,2014,49:373-380.
[54] Mwesigye A,Bello-Ochende T,Meyer J P.Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts [J].International Journal of Thermal Sciences,2016,99:238-257.
[55] Sahin H M,Baysal E,Dal A R,et al.Investigation of heat transfer enhancement in a new type heat exchanger using solar parabolic trough systems[J].International Journal of Hydrogen Energy,2015,40(44):15254-15266.
[56] Ebrahim Ghasemi S,Akbar Ranjbar A.Numerical thermal study on effect of porous rings on performance of solar parabolic trough collector[J].Applied Thermal Engineering,2017,118:807-816.
[57] Reddy K S,Ravi Kumar K,Ajay C S.Experimental investigation of porous disc enhanced receiver for solar parabolic trough collector[J].Renewable Energy,2015,77:308-319.
[58] Bellos E,Tzivanidis C.Investigation of a star flow insert in a parabolic trough solar collector[J].Applied Energy,2018,224:86-102.
[59] Daabo A M,Mahmoud S,Al-Dadah R K,et al.Numerical investigation of pitch value on thermal performance of solar receiver for solar powered Brayton cycle application[J].Energy,2017,119:523-539.
[60] Loni R,Kasaeian A B,Askari Asli-Ardeh E,et al.Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil[J].Energy,2018,154:168-181.
[61] Ortega J D,Christian J M,Ho C K.Design and Testing of a novel bladed receiver[C]//ASME. 11th International Conference on Energy Sustainability.Charlotte,North Carolina,USA:ASME,2017:1-8.
[62] Besarati S M,Yogi Goswami D,Stefanakos E K.Development of a solar receiver based on compact heat exchanger technology for supercritical carbon dioxide power cycles[J].Journal of Solar Energy Engineering,2015,137(3):31018.
[63] Hischier I,Hess D,Lipiński W,et al.Heat transfer analysis of a novel pressurized air receiver for concentrated solar power via combined cycles [J].Journal of Thermal Science and Engineering Applications,2010,1(4):41002.
[64] Hischier I,Leumann P,Steinfeld A.Experimental and numerical analyses of a pressurized air receiver for solar-driven gas turbines[J].Journal of Solar Energy Engineering,2012,134(2):21003.
[65] Chen X,Xia X,Meng X,et al.Thermal performance analysis on a volumetric solar receiver with double- layer ceramic foam[J].Energy Conversion and Management,2015,97:282-289.
[66] Du S,Ren Q,He Y.Optical and radiative properties analysis and optimization study of the gradually-varied volumetric solar receiver[J].Applied Energy,2017,207:27-35.
[67] Kretzschmar H,Gauché P.Hybrid pressurized air receiver for the SUNSPOT cycle[C]//SASEC.1st South African Solar Energy Conference. Stellenbosch,South Africa:SASEC,2012:1-9.
[68] Craig K J,Gauché P,Kretzschmar H.CFD analysis of solar tower hybrid pressurized air receiver (HPAR) using a dual-banded radiation model[J].Solar Energy,2014,110:338-355.
[69] Montes M J,Abánades A,Martínez-Val J M.Thermof- luidynamic model and comparative analysis of parabolic trough collectors using oil,water/steam,or molten salt as heat transfer fluids[J].Journal of Solar Energy Engineering,2010,132(2):21001.
[70] Akbarzadeh S,Valipour M S.Heat transfer enhancement in parabolic trough collectors:a comprehensive review[J].Renewable and Sustainable Energy Reviews,2018,92:198-218.
[71] Mahian O,Kianifar A,Sahin A Z,et al.Entropy generation during Al2O3/water nanofluid flow in a solar collector:effects of tube roughness,nanoparticle size,and different thermophysical models[J].International Journal of Heat and Mass Transfer,2014,78:64-75.
[72] Waghole D R,Warkhedkar R M,Kulkarni V S,et al.Experimental investigations on heat transfer and friction factor of silver nanofliud in absorber/receiver of parabolic trough collector with twisted tape inserts[J].Energy Procedia,2014,45:558-567.
[73] Mwesigye A,Y?lmaz I H,Meyer J P.Numerical analysis of the thermal and thermodynamic performance of a parabolic trough solar collector using SWCNTs-Therminol?VP-1 nanofluid[J].Renewable Energy,2018,119:844-862.
[74] Potenza M,Milanese M,Colangelo G,et al.Experimental investigation of transparent parabolic trough collector based on gas-phase nanofluid [J].Applied Energy,2017,203:560-570.
[75] Ho C K,Christian J M,Yellowhair J,et al.Performance evaluation of a high-temperature falling particle receiver[C]//Advanced Energy Systems Division and Solar Energy Division of ASME. 10th International Conference on Energy Sustainability. Charlotte,North Carolina,USA:ASME,2016:1-8.
[76] Tan T,Chen Y.Review of study on solid particle solar receivers[J].Renewable and Sustainable Energy Reviews,2010,14(1):265-276.
[77] Ho C K,Christian J M,E.Yellowhair J,et al.On-sun performance evaluation of alternative high-temperature falling particle receiver designs[J].Journal of Solar Energy Engineering,2018,141(1):11009.
[78] Ho C K,Carlson M,Garg P,et al.Technoeconomic analysis of alternative solarized s-CO2brayton cycle configurations[J].Journal of Solar Energy Engineering,2016,138(5):51008.
[79] Ho M X,Pan C.Experimental investigation of heat transfer performance of molten HITEC salt flow with alumina nanoparticles[J].International Journal of Heat and Mass Transfer,2017,107:1094-1103.
[80] Bellos E,Tzivanidis C,Tsimpoukis D.Thermal,hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids[J].Energy Conversion and Management,2018,156:388-402.
[81] Ghasemi S E,Ranjbar A A.Thermal performance analysis of solar parabolic trough collector using nanofluid as working fluid:a CFD modelling study[J].Journal of Molecular Liquids,2016,222:159-166.
[82] Kasaeian A,Daneshazarian R,Rezaei R,et al.Experimental investigation on the thermal behavior of nanofluid direct absorption in a trough collector [J].Journal of Cleaner Production,2017,158:276-284.
[83] Xiao G,Guo K,Ni M,et al.Optical and thermal performance of a high-temperature spiral solar particle receiver[J].Solar Energy,2014,109:200-213.
[84] Wu W,Trebing D,Amsbeck L,et al.Prototype testing of a centrifugal particle receiver for high-temperature concentrating solar applications[J].Journal of Solar Energy Engineering,2015,137(4):41011.
[85] Gilles F.Experimental aspects of the thermochemical conversion of solar energy decarbonation of CaCO3[J].Solar Energy.1980,24(4):385-395.
[86] Benoit H,Pérez López I,Gauthier D,et al.On-sun demonstration of a 750℃heat transfer fluid for concentrating solar systems:dense particle suspension in tube[J].Solar Energy,2015,118:622-633.
[87] 許輝,張紅,白穜,等.碟式太陽(yáng)能熱發(fā)電技術(shù)綜述(一)[J].熱力發(fā)電,2009,38(5):5-9.
[88] Adkins D R,Andraka C E,Moreno J B,et al.Heat pipe solar receiver development activities at sandia national laboratories[C]//Sandia National Laboratories. Proceedings of the Renewable and Advanced Energy Conference.Maui,HA:Sandia National Laboratories,1999:1-10.
Review on Advanced Technology of Concentrated Solar Power Concentrators
TONG Kai1, YANG Lijun1, SONG Jifeng2, DU Xiaoze1, YANG Yongping1
(1.School of Energy, Power and Mechanical Engineering, North China Electric Power University, Changping District, Beijing 102206, China; 2. School of Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China)
Concentrated solar power generation technology is one of the most important approach of the solar thermal utilization due to its stability, controllability and high capacity. The photon-thermal conversion efficiency of the solar concentrator is the main factor that influence the power generation capacity and the photon- electric conversion efficiency of the concentrated solar thermal power station. In this paper, the recent key technologies of improving the optical-thermal conversion performance of the solar concentrators were summarized via three aspects, including optical structures, receiver structures and heat transfer fluid. The advanced optimization strategy and the performance improvements of the concentrators, as well as the limitation, were presented. On the basis referred, the perspective of the solar concentrator technologies was analyzed.
concentrated solar power generation; solar concentrator; irradiative flux distribution; heat transfer fluid; nanoparticle
10.12096/j.2096-4528.pgt.19095
國(guó)家自然科學(xué)基金項(xiàng)目(51776067)。
Project Supported by National Natural Science Foundation of China (51776067).
2019-06-04。
佟鍇(1992),男,博士研究生,研究方向?yàn)椴凼骄酃馓?yáng)能發(fā)電技術(shù)、光催化技術(shù)等,tongkai@ncepu.edu.cn;
楊立軍(1970),男,博士,教授,研究方向?yàn)榛鹆Πl(fā)電廠空冷技術(shù)、太陽(yáng)能熱發(fā)電技術(shù),煙氣除塵技術(shù)和二氧化碳捕集技術(shù)等,yanglj@ncepu.edu.cn。
佟鍇
(責(zé)任編輯 楊陽(yáng))