• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    State Estimation for Non-linear Sampled-Data Descriptor Systems: A Robust Extended Kalman Filtering Approach

    2019-11-05 00:58:50MaoWangTiantianLiangandZhenhuaZhou

    Mao Wang,Tiantian Liang* and Zhenhua Zhou

    (1.Space Control and Inertial Technology Research Center, Harbin Institute of Technology, Harbin 150001, China;2.Changzhou Vocational Institute of Light Industry Technology, Changzhou 213000, Jiangsu,China)

    Abstract: This paper proposes a state estimation method for a class of norm-bounded non-linear sampled-data descriptor systems using the Kalman filtering method. The descriptor model is firstly discretized to obtain a discrete-time non-singular one. Then a model of robust extended Kalman filter is proposed for the state estimation based on the discretized non-linear non-singular system. As parameters are introduced in for transforming descriptor systems into non-singular ones, there exist uncertainties in the state of the systems. To solve this problem, an optimized upper-bound is proposed so that the convergence of the estimation error co-variance matrix is guaranteed in the paper. A simulating example is proposed to verify the validity of this method at last.

    Keywords: sampled-data system, descriptor system, state estimation, Kalman filtering, REKF

    1 Introduction

    Descriptor systems, which can be defined as the singular systems or differential-algebraic equation systems as well, were proposed by the famous scholar Rosenbrock in 1970s[1]. For some practical systems, descriptor system theory has a better characterization than the space description method, such as in electrical networks[2], constrained mechanical systems[3], aircraft modeling[4]. Based on this reason, the descriptor system has received more and more attention in recent years. Especially in the domain of state estimation for the descriptor systems, prominent methods such as the design of the descriptor observer has been proposed by the former studies[5-9]. Howwever for most practical systems, there exists noises in both the dynamic model and measurement which makes the state estimation problem more complex. It is well known that the Kamlan filter method can solve this problem efficiently. So this work is based on this background to study the Kalman filter design for a precise state estimation of descriptor systems with noises and guarantee the convergence of the estimate.

    Some preliminary work has been done by former studies[10-14]to guarantee the feasibility of the Kalman filtering method for descriptor systems[15]. This model of the descriptor type which has a natural starting point for modeling when deriving relations among the quantities of dynamic evolution has been discussed. For a general class of descriptor model with time-varying, the optimal filter and its corresponding Riccati equation with “3 block” form have been deduced through a“dual approach”[16]. A further estimate method which is depending on recursive restructuring algorithm has been proposed for general discrete-time linear descriptor systems[17]. By transforming the problem of state estimation into a new one which the future dynamics having no influence on the present states[18]. An Extend Kalman filter (EKF) algorithm has been proposed for non-linear descriptor systems using a time-varying linearising semi-explicit index differential-algebraic equation. However, little existing work focuses on the state estimation problem of sampled-data nonlinear descriptor systems, and the optimal filter parameters of the descriptor systems in practical works may be singular ones which make the following work inconvenient[16-17]. So there is great incentive for us to develop a novel Kalman filter for the state estimation of non-linear sampled-data descriptor systems.

    Recently, a novel Kalman filtering method has been proposed[19]for the state estimation of the non-linear systems with the existence of the stochastic uncertainties in the dynamic model. For this class of systems, an EKF algorithm is firstly proposed for estimating the non-linear parts in the dynamic model. However the error covariance matrix for state estimation is impossible to calculate as the parameters are unknown because of the stochastic uncertainties. So an upper-bounded method has been proposed for the error covariance matrix and then to confirm the filtering gain by the proposed upper-bound. The method for choosing the upper-bounds[19]has already been researched[20].

    In this paper, a new approach of state estimation for norm-bounded non-linear sampled-data descriptor systems is proposed based on such results[19]. The non-linear sampled-data descriptor system is firstly discretized to obtain a discrete-time non-singular model by the Euler discretization method. By the introduced parameters, a discrete-time EKF is proposed for the state estimation of the transformed non-singular system. Due to the introduced parameters, uncertainties exist in the estimation error covariance. To solve this problem, we optimize the corresponding upper-bound with a matrix inequality. Then the filter gain is obtained by minimizing the corresponding upper-bound. Finally, a theorem is proposed and proofed to show the robustness of the designed REKF which is against the systems uncertainties.

    This paper is organized as follows. A norm-bounded non-linear sampled-data descriptor model is proposed in Section 2, and then the system is discretized into a discrete-time non-singular one by an efficient way, assumption is given to guarantee the Kalman filtering process of the sampled-data descriptor system. In Section 3, A REKF algorithm is proposed for state estimation and implemented in the transformed non-singular system based on an upper-bound, and its robustness is proofed. In Section 4, a simulating example is proposed to demonstrate the validity of our results. In the Section 5, conclusions are drawn at the end.

    2 Problem Statement and Assumption

    Consider a non-linear sampled-data descriptor model as the following equation:

    (1)

    wherex∈Rndenotes the state vector,y(tk)∈Rmdenotes the sampled output at timetkwith the sampling intervalτ=tk+1-tk. In system (1),Esatisfies that rank(E)=r≤n, which means thatEmay be singular. Additionally, the matrix [EC]Tsatisfies that rank[EC]T=n.

    In the system (1), the state vectorxshould satisfy that

    M-E(xxT)>0

    (2)

    whereM∈Rn×nis a known matrix.

    The following assumption is proposed for Kalman filter of the sampled-data nonlinear descriptor system.

    For the system (1), because of the singular matrixEexists in the dynamic model, it is very hard to calculate the covariance matrix in the process of the Kalman filtering. In this paper, our purpose is to find parameters to transform the descriptor system (1) into a non-singular one.

    Lemma1[21]If there exist matrixR1∈Ra1×b1, matrixR2∈Rb1×c1and matrixR3∈Ra1×c1, whereR2satisfies that rankR2=c1, then

    R1R2=R3

    (3)

    has a general solution as the following equation:

    (4)

    TE+NC=In

    (5)

    (6)

    whereS∈Rn×(n+m)is an arbitrary matrix which denotes the design freedom.

    Nonetheless, it is easy to see that the dynamic model of Eq.(1) is continuous-time one, and the measurement is the discrete-time one. So we firstly discretize the system (1) to be a discrete non-singular model.

    For any ofx(t), the following equation exists based on Eq.(6):

    (7)

    Then using the Euler discretization method, Eq.(7) can be discretized as

    xk=xk-1+Tτφ(xk-1)+Tτwk-1+NCxk+O(τ2)

    (8)

    where

    In this paper, the sampling intervalτis choosing to be sufficiently small so that the terms inO(τ2) can be omitted.

    The measurement is represented as

    yk=Cxk+vk

    (9)

    So the system (1) is discretized and represented as the following equation

    (10)

    The Eq.(9) can be rewritten as the following equation:

    Cxk=yk-vk

    (11)

    So the Eq.(10) is rewritten as the following equation:

    (12)

    In Eq.(12),wk-1,vkare defined as

    Define

    f(xk-1)=xk-1+Tτφ(xk-1)

    (13)

    ΔEk=Nyk-Nvk

    (14)

    Substitute the Eqs. (13) and (14) into the system (12), then Eq.(12) can be written as the following equation:

    (15)

    3 Robust Extended Kalman Filter(REKF)

    In this section, a REKF is proposed for the transformed non-singular system (15).

    The structure of EKF is also suitable for the proposed REKF, define

    (16)

    (17)

    (18)

    (19)

    Our purpose is to find a boundPkwhich satisfies

    Σk≤Pk

    (20)

    The predicted error and its corresponding covariance matrix can be defined as follows

    (21)

    (22)

    Substitute the dynamic model of the Eqs. (15) and (16) into Eq.(21) it is obtained that

    (23)

    (24)

    (25)

    whereAk∈Rn×n,βk∈Rn×nare unknown matrix to consider the linearising error of the dynamic model, andβkis assumed to be bounded. i.e.

    (26)

    G∈Rn×nis introduced to tune the filter.

    Combine the Eqs. (24) and (25), then the Eq. (23) is rewritten as

    (27)

    ΔEkcan be processed as

    ΔEk=ΔBwk-1=(HkαkLk)wk-1

    (28)

    whereαkis assumed to be bounded which is similar asβk.

    (29)

    Substitute the Eq. (28) into Eq.(27), it is obtained that

    (30)

    Substitute the Eq. (30) into Eq.(22), it is obtained that

    Σk/k-1=(Fk+AkβkG)Σk-1(Fk+AkβkG)T+
    (HkαkLk+Tτ)Qk-1(HkαkLk+Tτ)T

    (31)

    Substitute the Eq. (17) into Eq.(18), it is obtained that

    (32)

    Substitute the Eq. (32) into Eq.(19), it is obtained that

    (33)

    Our purposed is to find the optimal filter parametersT(Fk+AkβkG) andKkwhich minimizeΣk, so the following equation is obtained as

    (34)

    From Eq.(32) and Eq.(33), it is obtained that

    (35)

    Although the error covariance is obtained by the showing deducing, sinceβkandαkare unknown, it is impossible to calculateΣkto solve this problem, the following lemma is needed.

    Based on Lemma 2, the Eq.(31) can be rewritten as

    (36)

    SubstituteΣk/k-1into Eq.(35) byPk/k-1, it is obtained that

    (37)

    By the aforementioned deduction, we get the gainKkby using the upper-bound method based on Lemma 1.

    Remark1Now we review the filtering process. It can be seen that for the transformed system (15), the one-step prediction and the corresponding error covariance matrix are calculated by Eqs.(16) and (31), the state estimation and its corresponding error covariance matrix are obtained by Eqs.(17) and (32). By the upper-bound Eq.(36), we get the filter gain Eq.(37).

    The following discussion is about the robustness of the proposed filter. Consider the non-singular system as follows:

    (38)

    It is obtained that

    (39)

    where

    (40)

    Define

    (41)

    (42)

    The robustness of the proposed REKF algorithm is guaranteed by the following theorem.

    Theorem1For every 0≤k≤n, if the following assumption is established:

    det(I-KkCk)≠0,det(F)≠0,det(L)≠0

    (43)

    Then the proposed REKF algorithm for system (38) can guarantee the robustness against uncertainties in system by the following inequality:

    (44)

    Theorem 1 is proofed in the appendix.

    2) The Eq.(44) shows that the proposed REKF has a robustness against the uncertainties taken byTandN, the process and measurement noises, and is arising from theHdesign. In Ref.[19], the author has argued that,γshould be sufficiently large so that Eq.(44) is satisfied.

    4 Simulations

    A simulating example of a sampled-data descriptor system with a non-linear structure in the dynamic model is shown in this section to illustrate the effectiveness of our method.

    Consider a model of norm-bounded non-linear sampled-data descriptor system as follows:

    The initial condition is choosing as

    Using the Eq.(6),choosing

    ThenTandNis obtained as

    Obviously,Tis non-singular matrix.

    To ensure the robustness of the proposed REKF algorithm,γis chosen asγ=102.231 2;

    To ensure the convergence ofΔEk,λ,H,Lare choosing as

    Fig. 1 shows the state ofx1andx2.

    As the aforementioned, for the state estimation of the proposed non-linear sampled-data descriptor system, the superiority of the REKF algorithm is that the convergence of the error covariance matrix of the Kalman Filtering can be guaranteed. Based on this reason, we choose to compare the state estimation error obtained by REKF algorithm with the one obtained by the EKF algorithm to show the effectiveness of the REKF algorithm.

    Fig. 1 The state of x1 and x2

    The previous simulations were carried out with MATLAB programs on a Intel(R) Core(TM) i5-3210M CPU@ 2.50 GHz and 8 GB memory PC. The state estimation error obtained by REKF algorithm and EKF algorithm is shown in Fig. 2 and Fig.3.

    Fig. 2 State estimation error of x1 by EKF and REKF

    The Root Mean Square Error (RMSE) of the estimation for the two state vectors of the proposed non-linear sampled-data descriptor system separately by using the conventional EKF algorithm and the REKF algorithm is shown in Table 1.

    Fig. 3 State estimation error of x2 by EKF and REKF

    AlgorithmErrorx1x2EKF0.006 00.006 2REKF0.001 00.001 0

    Now we analyze the simulation figures and the tables.

    From Fig.2 and Fig.3, it can be seen that for the proposed sampled-data descriptor system, REKF algorithm has a better state estimation than the conventional EKF algorithm. The estimation error in the both two figures obtained by the REKF algorithm is smaller the one obtained by the EKF algorithm.

    Table 1 further proofed that the proposed REKF algorithm is more accurate in the state estimation of the proposed descriptor systems when comparing with the conventional EKF algorithm.

    By analyzing the figures and the tables, As the proposed REKF algorithm provided an upper-bound for the new uncertainties caused by the introduced parameters in the dynamic model of the transformed non-singular system, the convergence of the estimating error can be guaranteed, and the state of the proposed norm-bounded non-linear sampled-data descriptor systems can be accurately estimated by our method.

    5 Conclusion

    In this paper, a REKF algorithm is proposed for the state estimation of norm-bounded non-linear sampled-data descriptor system with noises. First, using the Euler discretization method and the introduced parameters, the proposed sampled-data descriptor model is discretized to be a non-singular discrete time one. Then, the EKF algorithm is proposed for solving the non-linear problem for the transformed non-singular system. As the introduced parameters and the transforming way, an uncertainty exists in the dynamic model of the transformed system. Then an upper-bound is introduced for depressing the influence of the uncertainties on the estimation results so that the convergence of the error covariance matrix in the process of the Kalman filtering is guaranteed. At last, the given simulating example shows that, the proposed REKF algorithm has a better estimating effect comparing with the conventional EKF one for this class of sampled-data descriptor systems.

    Appendix

    In this section, Theorem 1 is proofed.

    Proof

    Substitute Eq.(27) into Eq. (32), and for the system (38),Ak=0 it is obtained that

    (AP1)

    From the Eq.(AP1) it is obtained that

    (AP2)

    From the Eq. (41) it is obtained that

    (AP3)

    From the Eq.(AP3), the second term of Eq.(AP2) can be rewritten as the following inequality

    (AP4)

    Substitute the Eq.(40) into Eq.(AP4), it is obtained that

    (AP5)

    It is easy to verify that

    (AP6)

    Using the Eq.(AP6), the third term of Eq.(AP2) can be rewritten as

    (AP7)

    It is also verified that

    (AP8)

    From the Eq.(AP8), the following inequality is obtained as

    (AP9)

    From the Eq.(AP3), the first term of Eq.(AP2) can be rewritten as

    (AP10)

    From the Eq.(40) we can see that

    (AP11)

    From the Eqs.(AP3) and (AP11), (AP10) can be rewritten as

    (AP12)

    From the Eqs.(AP5), (AP9) and (AP12), (AP12) can be rewritten as the following inequality

    (AP13)

    Further, adding the both sides of the Eq. (AP13), it is obtained that

    (AP14)

    From the Eq.(40) it is obtained that

    (AP15)

    By the Eqs.(AP14) and (AP15) it is obtained that

    (AP16)

    So Theorem 1 is proofed.

    在线免费观看不下载黄p国产| 久久热精品热| 免费观看精品视频网站| 亚洲精品一区蜜桃| 亚洲在线观看片| 精品国内亚洲2022精品成人| 亚洲人成网站在线观看播放| 久久久久久久久久成人| 亚洲欧美日韩东京热| 精品国产一区二区三区久久久樱花 | 日本免费在线观看一区| 亚洲精品久久久久久婷婷小说| 亚洲熟女精品中文字幕| 观看美女的网站| 国产中年淑女户外野战色| 日韩视频在线欧美| 一级毛片黄色毛片免费观看视频| 国产 亚洲一区二区三区 | av在线天堂中文字幕| 国产人妻一区二区三区在| 乱码一卡2卡4卡精品| 黄色配什么色好看| 亚洲成人中文字幕在线播放| 欧美日韩视频高清一区二区三区二| 51国产日韩欧美| 黄色欧美视频在线观看| 91久久精品电影网| 男女国产视频网站| 国产精品一二三区在线看| 成年免费大片在线观看| 精品亚洲乱码少妇综合久久| 亚洲成人av在线免费| 国产不卡一卡二| 日日干狠狠操夜夜爽| 久久精品夜色国产| 国产伦在线观看视频一区| 亚洲精品乱码久久久久久按摩| 久久99热这里只有精品18| 欧美zozozo另类| 蜜桃亚洲精品一区二区三区| 色综合色国产| 国产精品久久久久久精品电影| 日韩av在线大香蕉| 内地一区二区视频在线| 免费大片黄手机在线观看| 欧美日韩在线观看h| 成人特级av手机在线观看| 水蜜桃什么品种好| 久久久久久久久中文| 亚洲精品乱码久久久久久按摩| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 亚洲人成网站在线观看播放| 91av网一区二区| 免费看美女性在线毛片视频| 中文字幕亚洲精品专区| 亚洲成人av在线免费| 久久久久久久久大av| 男女视频在线观看网站免费| 国产综合懂色| 国产免费福利视频在线观看| 亚洲内射少妇av| 亚洲精品日本国产第一区| 亚洲三级黄色毛片| 亚洲av中文av极速乱| 久久久久久久午夜电影| 欧美丝袜亚洲另类| 午夜免费男女啪啪视频观看| 国产黄频视频在线观看| av在线播放精品| 极品教师在线视频| av福利片在线观看| 99热网站在线观看| 最近手机中文字幕大全| 免费人成在线观看视频色| 成人毛片60女人毛片免费| 亚洲内射少妇av| 国产精品美女特级片免费视频播放器| 久久久久久久久中文| 免费高清在线观看视频在线观看| 激情五月婷婷亚洲| 婷婷色av中文字幕| 精品国产一区二区三区久久久樱花 | 国产亚洲av片在线观看秒播厂 | 91在线精品国自产拍蜜月| 成人二区视频| 看十八女毛片水多多多| 国产伦精品一区二区三区视频9| 性插视频无遮挡在线免费观看| 高清毛片免费看| 成人亚洲精品一区在线观看 | 老司机影院毛片| 亚洲伊人久久精品综合| 老司机影院成人| 天堂网av新在线| 两个人的视频大全免费| 乱人视频在线观看| 成人亚洲精品av一区二区| 久久久久国产网址| 婷婷六月久久综合丁香| 成人av在线播放网站| 秋霞伦理黄片| 婷婷色麻豆天堂久久| 我要看日韩黄色一级片| 亚洲国产成人一精品久久久| 一级毛片黄色毛片免费观看视频| 亚洲最大成人av| 婷婷色av中文字幕| 夜夜看夜夜爽夜夜摸| 亚洲自偷自拍三级| 免费看av在线观看网站| 免费大片黄手机在线观看| 日本黄大片高清| 高清av免费在线| 观看美女的网站| 国产乱来视频区| 伦精品一区二区三区| 欧美bdsm另类| 男女视频在线观看网站免费| 亚洲丝袜综合中文字幕| 国产极品天堂在线| 国产成人a∨麻豆精品| 高清在线视频一区二区三区| 22中文网久久字幕| 日韩av在线大香蕉| 成人欧美大片| 国产黄频视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看| av国产免费在线观看| 色播亚洲综合网| 丝袜喷水一区| 2022亚洲国产成人精品| 亚洲国产精品成人综合色| 乱码一卡2卡4卡精品| 精品一区二区三区人妻视频| 免费大片18禁| 国产综合懂色| 亚洲激情五月婷婷啪啪| 一个人免费在线观看电影| 18禁动态无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 三级国产精品片| 欧美+日韩+精品| 身体一侧抽搐| 亚洲欧美日韩东京热| 午夜福利在线观看免费完整高清在| 少妇人妻一区二区三区视频| 一级a做视频免费观看| 禁无遮挡网站| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 亚洲精品视频女| 国产一区亚洲一区在线观看| 男女视频在线观看网站免费| 特大巨黑吊av在线直播| 国产伦理片在线播放av一区| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av| 日日干狠狠操夜夜爽| 成人午夜高清在线视频| 亚洲高清免费不卡视频| 十八禁国产超污无遮挡网站| 亚洲欧美日韩无卡精品| 国内精品宾馆在线| 国产成人精品福利久久| 精品久久国产蜜桃| 欧美极品一区二区三区四区| 男的添女的下面高潮视频| 校园人妻丝袜中文字幕| 成人综合一区亚洲| 亚洲美女视频黄频| 国产成人aa在线观看| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 午夜激情福利司机影院| .国产精品久久| 国产亚洲91精品色在线| 嘟嘟电影网在线观看| 最近中文字幕2019免费版| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 午夜福利高清视频| 国产免费视频播放在线视频 | 乱人视频在线观看| 高清在线视频一区二区三区| 国产午夜精品久久久久久一区二区三区| av卡一久久| 亚洲三级黄色毛片| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频 | 久久97久久精品| 久久久a久久爽久久v久久| 久久久亚洲精品成人影院| 一夜夜www| 免费黄频网站在线观看国产| 午夜日本视频在线| 成人无遮挡网站| 欧美高清成人免费视频www| 99久久精品热视频| 国产亚洲一区二区精品| 亚洲av日韩在线播放| 嫩草影院新地址| 十八禁国产超污无遮挡网站| 又大又黄又爽视频免费| 好男人在线观看高清免费视频| 中文资源天堂在线| 亚洲内射少妇av| 国产精品蜜桃在线观看| 亚洲激情五月婷婷啪啪| 性插视频无遮挡在线免费观看| 午夜免费观看性视频| 美女主播在线视频| 51国产日韩欧美| 国产精品1区2区在线观看.| 有码 亚洲区| 亚洲av电影不卡..在线观看| 久久久久久九九精品二区国产| 91久久精品国产一区二区成人| av专区在线播放| 日韩不卡一区二区三区视频在线| 国产精品美女特级片免费视频播放器| 国产黄片美女视频| 校园人妻丝袜中文字幕| 免费看不卡的av| 日韩制服骚丝袜av| 国产乱来视频区| 亚洲国产高清在线一区二区三| 一级二级三级毛片免费看| 精品人妻一区二区三区麻豆| 欧美bdsm另类| 免费黄色在线免费观看| 午夜福利在线观看免费完整高清在| 日韩成人av中文字幕在线观看| 国产日韩欧美在线精品| 99热网站在线观看| 成年av动漫网址| 午夜日本视频在线| 男人爽女人下面视频在线观看| 亚洲欧美日韩东京热| 麻豆国产97在线/欧美| 亚洲图色成人| 美女大奶头视频| 在现免费观看毛片| 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 美女被艹到高潮喷水动态| 男人舔女人下体高潮全视频| 水蜜桃什么品种好| kizo精华| 亚洲精品日韩av片在线观看| 性插视频无遮挡在线免费观看| 99热这里只有是精品50| 亚洲精品日韩在线中文字幕| 亚洲最大成人av| 免费看av在线观看网站| 亚洲欧美成人精品一区二区| 国内精品美女久久久久久| 国产视频首页在线观看| 免费看av在线观看网站| 欧美最新免费一区二区三区| 久久久国产一区二区| 国产视频内射| 岛国毛片在线播放| 亚洲熟妇中文字幕五十中出| 国产69精品久久久久777片| 久久精品熟女亚洲av麻豆精品 | 五月伊人婷婷丁香| 亚洲综合精品二区| 成年版毛片免费区| 两个人视频免费观看高清| 精品久久久久久久人妻蜜臀av| 亚洲国产精品专区欧美| 成人亚洲精品av一区二区| 2022亚洲国产成人精品| 国产片特级美女逼逼视频| 色综合色国产| 欧美zozozo另类| 中文资源天堂在线| 我要看日韩黄色一级片| 中文字幕av在线有码专区| 丰满人妻一区二区三区视频av| 18禁动态无遮挡网站| 国产精品国产三级专区第一集| 高清欧美精品videossex| 免费无遮挡裸体视频| 久久久精品欧美日韩精品| 国产一区有黄有色的免费视频 | 天堂俺去俺来也www色官网 | 日韩亚洲欧美综合| 久久久久久久久久久免费av| 亚洲精品久久午夜乱码| 熟妇人妻久久中文字幕3abv| 中国国产av一级| 黄色欧美视频在线观看| 久久久久久久久久黄片| 国产亚洲av片在线观看秒播厂 | 欧美丝袜亚洲另类| 亚洲精品久久久久久婷婷小说| 国产亚洲av嫩草精品影院| 免费大片黄手机在线观看| 亚洲av电影在线观看一区二区三区 | 国产激情偷乱视频一区二区| 亚洲国产欧美在线一区| 在线观看人妻少妇| 免费电影在线观看免费观看| 亚洲精品一区蜜桃| 26uuu在线亚洲综合色| 亚洲精品成人av观看孕妇| 国产一级毛片七仙女欲春2| 日本免费a在线| 国产大屁股一区二区在线视频| 91久久精品电影网| 欧美日韩视频高清一区二区三区二| 熟妇人妻不卡中文字幕| 中文字幕久久专区| 人人妻人人澡欧美一区二区| 亚洲国产精品成人综合色| 亚洲精品一区蜜桃| 免费观看av网站的网址| 亚洲av男天堂| 午夜老司机福利剧场| 国产高清三级在线| 1000部很黄的大片| 国产亚洲最大av| 亚洲国产色片| 久久久久久久久久成人| 精品久久久久久久久亚洲| 欧美日韩国产mv在线观看视频 | 少妇裸体淫交视频免费看高清| 亚洲av在线观看美女高潮| 人妻夜夜爽99麻豆av| 日本av手机在线免费观看| 日本一本二区三区精品| 国产精品国产三级专区第一集| av卡一久久| 波多野结衣巨乳人妻| 亚洲av成人精品一二三区| 在线免费十八禁| 精品少妇黑人巨大在线播放| 在线免费观看的www视频| 一级黄片播放器| 岛国毛片在线播放| 久久韩国三级中文字幕| 成年版毛片免费区| 亚洲高清免费不卡视频| 精品不卡国产一区二区三区| 久久久久九九精品影院| 高清午夜精品一区二区三区| 一级毛片我不卡| 网址你懂的国产日韩在线| 日韩av在线大香蕉| 大香蕉久久网| 91久久精品国产一区二区成人| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 一个人看视频在线观看www免费| 最近视频中文字幕2019在线8| 久久久精品免费免费高清| 午夜激情久久久久久久| 日韩欧美一区视频在线观看 | 久久久久久久久久成人| 69人妻影院| 日韩,欧美,国产一区二区三区| 一级毛片久久久久久久久女| 少妇熟女aⅴ在线视频| 日本免费a在线| 一个人看视频在线观看www免费| 视频中文字幕在线观看| 亚洲欧美日韩东京热| 两个人视频免费观看高清| 久久久久国产网址| 国产精品久久视频播放| 最近中文字幕2019免费版| 日韩欧美精品免费久久| 日本免费在线观看一区| 国产精品久久久久久精品电影小说 | 亚洲天堂国产精品一区在线| 美女黄网站色视频| 亚洲在线自拍视频| 国产av不卡久久| 成人综合一区亚洲| 精品一区在线观看国产| 尾随美女入室| 日本av手机在线免费观看| 日本熟妇午夜| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜 | 国产精品99久久久久久久久| 久久精品久久精品一区二区三区| 国产精品1区2区在线观看.| 国模一区二区三区四区视频| 久久久久久久久久人人人人人人| 午夜免费激情av| 国产熟女欧美一区二区| 亚洲国产色片| 汤姆久久久久久久影院中文字幕 | 男的添女的下面高潮视频| 最近的中文字幕免费完整| 男女边摸边吃奶| 亚洲精品第二区| 2021天堂中文幕一二区在线观| 99热这里只有是精品在线观看| 国产精品无大码| 特大巨黑吊av在线直播| 亚洲av男天堂| 成人一区二区视频在线观看| av一本久久久久| 亚洲无线观看免费| 91在线精品国自产拍蜜月| 国产黄片美女视频| 亚洲av免费高清在线观看| ponron亚洲| 97精品久久久久久久久久精品| 亚洲真实伦在线观看| 久久草成人影院| 少妇被粗大猛烈的视频| 久久精品国产鲁丝片午夜精品| 国产精品国产三级国产av玫瑰| 国产免费又黄又爽又色| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 最近视频中文字幕2019在线8| 熟妇人妻久久中文字幕3abv| 亚洲婷婷狠狠爱综合网| av.在线天堂| 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 国产69精品久久久久777片| 看非洲黑人一级黄片| 精品久久久久久久久久久久久| 美女黄网站色视频| 亚洲人成网站在线观看播放| 国产黄片视频在线免费观看| 看十八女毛片水多多多| 99久国产av精品国产电影| 我的老师免费观看完整版| 免费黄色在线免费观看| 国产真实伦视频高清在线观看| 免费黄网站久久成人精品| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 色综合站精品国产| 搞女人的毛片| 精品熟女少妇av免费看| 禁无遮挡网站| 日日啪夜夜撸| 18禁动态无遮挡网站| 美女国产视频在线观看| 欧美97在线视频| 色综合站精品国产| 欧美激情久久久久久爽电影| 男插女下体视频免费在线播放| ponron亚洲| 超碰97精品在线观看| 久久这里只有精品中国| 联通29元200g的流量卡| av在线天堂中文字幕| 白带黄色成豆腐渣| 2021少妇久久久久久久久久久| 久久精品人妻少妇| 欧美极品一区二区三区四区| 五月玫瑰六月丁香| 久久久久免费精品人妻一区二区| 色播亚洲综合网| 日本-黄色视频高清免费观看| 狂野欧美白嫩少妇大欣赏| 美女大奶头视频| 极品少妇高潮喷水抽搐| 精品久久久久久久久av| 国产精品99久久久久久久久| 一级毛片我不卡| 日韩人妻高清精品专区| 久久草成人影院| 国产成人免费观看mmmm| 免费看不卡的av| 69av精品久久久久久| 国产有黄有色有爽视频| 免费在线观看成人毛片| 亚洲怡红院男人天堂| 联通29元200g的流量卡| 天美传媒精品一区二区| 亚洲国产高清在线一区二区三| 非洲黑人性xxxx精品又粗又长| 日本午夜av视频| 十八禁国产超污无遮挡网站| 亚洲av电影在线观看一区二区三区 | 精品熟女少妇av免费看| 久久99热6这里只有精品| 最新中文字幕久久久久| 精品久久久噜噜| 一级二级三级毛片免费看| 国产精品一区二区在线观看99 | 人妻一区二区av| 成人午夜高清在线视频| 国产午夜福利久久久久久| 国产人妻一区二区三区在| 国产一区二区三区av在线| 别揉我奶头 嗯啊视频| 亚洲熟妇中文字幕五十中出| 搞女人的毛片| 日本欧美国产在线视频| av在线观看视频网站免费| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产伦一二天堂av在线观看| 六月丁香七月| 一区二区三区高清视频在线| 午夜福利成人在线免费观看| 高清av免费在线| 国产一区二区三区综合在线观看 | 欧美zozozo另类| 国产免费一级a男人的天堂| 久久99热6这里只有精品| 亚洲综合色惰| 80岁老熟妇乱子伦牲交| 日日摸夜夜添夜夜爱| 成人毛片60女人毛片免费| 亚洲精品456在线播放app| 国产成人免费观看mmmm| 中国美白少妇内射xxxbb| 日韩欧美精品免费久久| 日产精品乱码卡一卡2卡三| 亚洲久久久久久中文字幕| 精品久久久久久久久av| 白带黄色成豆腐渣| 亚洲欧美一区二区三区国产| 久久这里只有精品中国| 亚洲人成网站在线观看播放| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久久久按摩| 高清毛片免费看| 久久久精品94久久精品| 久久鲁丝午夜福利片| 日本一二三区视频观看| 亚洲国产精品sss在线观看| av线在线观看网站| 97在线视频观看| 少妇高潮的动态图| 国产黄色视频一区二区在线观看| 日韩伦理黄色片| 日韩一区二区视频免费看| 国产高清有码在线观看视频| 91久久精品电影网| 高清毛片免费看| 亚洲精品国产成人久久av| 白带黄色成豆腐渣| 免费黄色在线免费观看| 亚洲av男天堂| 亚洲,欧美,日韩| 美女cb高潮喷水在线观看| 只有这里有精品99| 一级爰片在线观看| 久久97久久精品| 国产爱豆传媒在线观看| av线在线观看网站| 国产精品精品国产色婷婷| 你懂的网址亚洲精品在线观看| 青春草国产在线视频| 亚洲av免费在线观看| 国产午夜精品论理片| 亚洲精品国产av成人精品| xxx大片免费视频| 亚洲精品中文字幕在线视频 | 亚洲国产精品成人久久小说| 亚洲,欧美,日韩| 在线免费观看的www视频| 人妻系列 视频| 欧美日韩综合久久久久久| 国模一区二区三区四区视频| 国产成人精品久久久久久| 欧美 日韩 精品 国产| 中文精品一卡2卡3卡4更新| 国产探花极品一区二区| 成人av在线播放网站| 男人舔女人下体高潮全视频| 看黄色毛片网站| 插阴视频在线观看视频| 亚洲国产精品sss在线观看| 国产淫语在线视频| 性插视频无遮挡在线免费观看| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 噜噜噜噜噜久久久久久91| 精品不卡国产一区二区三区| 又爽又黄无遮挡网站| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 欧美xxxx性猛交bbbb| 亚洲伊人久久精品综合| 亚洲国产日韩欧美精品在线观看| 一本久久精品| 亚洲欧美日韩无卡精品| 成人欧美大片| 一级毛片我不卡| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区四那| 亚洲国产最新在线播放| 国产黄频视频在线观看| 联通29元200g的流量卡| 97热精品久久久久久| 精品人妻视频免费看| 免费观看精品视频网站| 亚洲高清免费不卡视频| 黄片无遮挡物在线观看| 亚洲av不卡在线观看| 97人妻精品一区二区三区麻豆| 成人一区二区视频在线观看| videossex国产| 亚洲熟女精品中文字幕| 青春草视频在线免费观看| 一个人观看的视频www高清免费观看| 91午夜精品亚洲一区二区三区|