• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drug-adapted cancer cell lines as preclinical models of acquired resistance

    2019-11-05 03:31:04MartinMichaelisMarkWassJindrichCinatljr
    Cancer Drug Resistance 2019年3期

    Martin Michaelis,Mark N.Wass,Jindrich Cinatl jr.

    1School of Biosciences,University of Kent,Canterbury CT2 7NJ,UK.

    2Institut für Medizinische Virologie,Klinikum der Goethe-Universit?t,Frankfurt am Main,Germany.

    Abstract

    Acquired resistance formation limits the efficacy of anti-cancer therapies.Acquired and intrinsic resistance differ conceptually.Acquired resistance is the consequence of directed evolution,whereas intrinsic resistance depends on the (stochastic) presence of pre-existing resistance mechanisms.Preclinical model systems are needed to study acquired drug resistance because they enable:(1) in depth functional studies; (2) the investigation of non-standard treatments for a certain disease condition (which is necessary to identify small groups of responders); and (3) the comparison of multiple therapies in the same system.Hence,they complement data derived from clinical trials and clinical specimens,including liquid biopsies.Many groups have successfully used drug-adapted cancer cell lines to identify and elucidate clinically relevant resistance mechanisms to targeted and cytotoxic anti-cancer drugs.Hence,we argue that drug-adapted cancer cell lines represent a preclinical model system in their own right that is complementary to other preclinical model systems and clinical data.

    Keywords: Cancer,acquired drug resistance,cancer cell lines,drug adaptation,cancer therapy,cancer models

    INTRODUCTION

    Despite improvements in therapy outcomes in recent decades,except for a few exceptions (e.g.,testicular cancer,Hodgkin's lymphoma,childhood acute lymphoblastic leukaemia) cure rates remain low for advanced cancers that require systemic therapy,typically metastatic disease.In such advanced cases,the impetus typically lies on the prolongation of life and the improvement of quality of life[1-8].

    Figure 1.Many cancer diseases respond initially well to therapy but cancer cells become eventually resistant to therapy.An improved understanding of the mechanisms and processes underlying resistance formation is necessary to identify biomarkers that guide the use of efficient next-line therapies for tumours that have do not respond to the available standard therapies anymore

    The efficacy of systemic anti-cancer therapies is limited by the occurrence of resistance.Resistance can be “intrinsic” or “upfront”,i.e.,cancer cells do not respond to therapy from the outset.Many cancer diseases,however,initially respond well to therapy,but after a temporary response resistant cancer cells emerge leading to “acquired” resistance,ultimately resulting in therapy failure and patient death[8-19].Hence,cancer diseases that have become resistant to the available treatment options represent an unmet clinical need.New strategies including new biomarkers that indicate effective follow-up therapies (on an individualised basis) are needed for such patients for which no established therapy options are available anymore [Figure 1].

    INTRINSIC AND ACQUIRED RESISTANCE MECHANISMS MAY DIFFER

    There is a conceptional difference between the mechanisms and processes underlying intrinsic and acquired drug resistance formation.Intrinsic resistance is the consequence of pre-existing,potentially stochastic changes that render cancer cells insensitive to the standard treatment.In contrast,acquired resistance is the consequence of selection and adaptation processes in response to therapy,i.e.,of directed evolution induced by the therapy.In line with this,differences have been described between intrinsic and acquired resistance mechanisms[20-23].Hence,acquired resistance needs to be studied in the context of the underlying (co)-evolutionary processes to establish a specific systems level understanding.

    PRECLINICAL MODEL SYSTEMS ARE NEEDED TO DELIVER BIOMARKERS FOR THE EFFECTIVE USE OF “LIQUID BIOPSIES” FOR THERAPY MONITORING

    The systematic elucidation of resistance formation depends on the combined use of preclinical model systems in combination with clinical data and specimens.Preclinical model systems enable in-depth functional and systems level studies that are difficult or impossible to perform using primary cancer cells,tissues,and/or organoids.In addition,non-standard treatments can be systematically investigated in preclinical model systems.This is not possible in a clinical setting,where patients receive standard therapies that provide the highest probability of treatment success.Hence,biomarkers that:(1) identify (small) groups of patients that are unlikely to respond to standard therapies; and (2) guide the use of more promising therapies to such patients need to be derived from preclinical models.Finally,preclinical model systems enable the direct comparison of different therapies in the same system.Such comparisons are not possible in the clinics,where every patient can only be treated once.

    So-called “l(fā)iquid biopsies” including circulating tumour DNA and circulating tumour cells enable the monitoring of cancer evolution and therapy response in ever greater detail[24].The clinical implementation of liquid biopsies still faces many technological and methodological challenges[24,25].However,the first FDA-approved assays based on liquid biopsies are available and have been shown to improve therapy outcomes[24,26-32].

    With the advancement of liquid biopsies for the monitoring of cancer cell evolution,a much more advanced understanding of the processes underlying therapy response and resistance formation will be required to make effective use of the wealth of omics data derived from liquid biopsies.Only an in-depth molecular understanding will enable the identification of biomarkers that indicate therapy failure early and inform the choice of effective next-line therapies.Such knowledge and the associated (putative) biomarkers will have to originate,at least in part,from research performed in preclinical model systems before they are tested in a clinical setting.

    DRUG-ADAPTED CANCER CELL LINES REFLECT CLINICAL RESISTANCE MECHANISMS

    Cancer cell lines are among the most commonly used pre-clinical models[33,34].They are relatively easy to handle and enable high throughput analysis at relatively low cost and in a timely fashion.There is increasing agreement that the use of (larger) cell line panels improves the value of results[34,35].The NCI60 panel of the National Cancer Institute is the oldest and best characterised cancer cell line panel,which has contributed to the discovery of many anti-cancer drugs[36,37].If typical caveats such as cell line cross-contamination and misauthentication as well as mycoplasma contamination[38]are avoided,the investigation of cancer cell lines provides substantial information on cancer cell biology and drug sensitivity,as,for example,confirmed by large pharmacogenomic screens including the Genomics of Drug Sensitivity in Cancer,the Cancer Cell Line Encyclopedia,and the Cancer Therapeutics Response Portal[39-45].Since most cancer cell lines have been derived from patients at diagnosis,however,they primarily reflect intrinsic resistance.

    Drug-adapted cell lines better reflect the evolutionary processes leading to resistance formation.They have enabled the discovery of major drug resistance mechanisms and the identification and elucidation of clinically relevant acquired resistance mechanisms to targeted and cytotoxic anti-cancer drugs[33].The ATPbinding cassette (ABC) transporters,arguably the most important mediators of drug resistance in cancer cells [Figure 2],were detected in drug-adapted cells.ABCB1 (also known as P-glycoprotein or MDR1) was discovered as the first member of the family of ABC transporters in colchicine-adapted Chinese hamster ovarian cells[46].It is a promiscuous efflux pump that transports a wide range of structurally different substrates and provides resistance to a large number of anti-cancer drugs from various classes[47,48].ABCC1 (also known as MRP1),another member of the ABC transporter family,is also of high importance as a cancer cell resistance mechanism[47,48]and was identified in a doxorubicin-adapted subline of the lung cancer cell line H69[49].

    Without intending to provide a comprehensive overview,we have selected a few studies that illustrate the potential of drug-adapted cancer cell lines to reveal clinically relevant resistance mechanisms.Nonsmall cell lung cancer patients,who harbour cancer cells characterised by activatingEGFRmutations,are treated with EGFR tyrosine kinase inhibitors[50].In a landmark study,METamplification was discovered as a resistance mechanism in a gefitinib-adapted subline of theEGFRexon 19 mutant non-small cell lung cancer cell line HCC827[51].Further investigation of resistance formation to EGFR tyrosine kinase inhibitors using drug-adapted non-small cell lung cancer cell lines revealed that the origin of the resistance-mediating T790MEGFRmutation may differ in different cell line systems and patients[52].Pre-existing T790M mutant subpopulations can either be selected,orde novoT790M mutations can be induced.The mode of resistance formation shaped the resistance phenotype of the resulting drug-resistant sublines.Induction ofde novoT790M mutations,but not selection of pre-existing T790M mutant clones,was associated with an enhanced cellular resistance to apoptosis,which was caused by an increase in the cellular levels of anti-apoptotic bcl-2 proteins[52].Furthermore,erlotinib-resistant colonies derived from non-small cell lung cancer cell lines reflected clinically observed resistance mechanisms[53].

    Figure 2.Members of the ATP-binding cassette (ABC) transporter family,including ABCB1 and ABCC1 as prominent members,belong to the most important mediators of drug resistance in cancer.Various members of the ABC transporter family function as efflux pumps that remove (often a wide range of structurally different anti-cancer drugs) from cancer cells and interfere with the achievement of effective intracellular drug concentrations

    Drug-adapted cancer cell lines have also been shown to reflect clinical resistance formation to other kinase inhibitors that target specific oncogenic driver events.Inhibitors that specifically target constitutively active oncogenic V600E-mutant BRAF,have improved the therapy of melanoma patients whose tumours consist of cells that harbour V600E BRAF mutations.Unfortunately,responses are short-lived,and resistance formation is inevitable[54].Key acquired resistance mechanisms to V600E-specific BRAF inhibitors including NRAS mutation,BRAF amplification,dimerization of aberrantly spliced V600E-mutant BRAF,and PDGFRB upregulation were all identified in drug-adapted cancer cell lines[55-57].Moreover,clinically 5 relevant resistance mechanisms were represented in EGFR,HER2,and ALK inhibitor-adapted cancer cell lines[58,59].

    Drug-adapted cancer cell lines also reflect clinical resistance formation against various other “targeted” anti-cancer drugs that interfere with features that are exclusively or predominantly found in cancer cells,as demonstrated by the following examples.Prostate cancer cell lines adapted to the antiandrogen enzalutamide enabled the identification of F876L mutations in the androgen receptor as a clinically relevant resistance mechanism[60,61].MDM2 inhibitors are under development as a novel class of anti-cancer drugs for the treatment ofTP53wild-type cancer cells from different cancer entities.TP53encodes p53,a major tumour suppressor protein.MDM2is a p53 target gene that encodes for MDM2,a major endogenous inhibitor of p53.MDM2 physically interacts with p53 and mediates its ubiquitination and proteasomal degradation.MDM2 inhibitors activate p53 signalling by interference with the MDM2/p53 interaction[62-64].Adaptation ofTP53wild-type cancer cell lines has been associated with the formation of loss-of-functionTP53mutations in many model systems[65-70].In agreement,MDM2 inhibitor treatment of liposarcoma patients was associated with the emergence ofTP53mutations[71].

    Drug-adapted cancer cell lines are also used to elucidate resistance mechanisms to cytotoxic anti-cancer agents.A subfraction of cells that critically depend on notch- and hedgehog signalling have been shown to be critically involved in resistance formation to doxorubicin in castration-resistant prostate cancer cells[72].A number of recent studies investigated resistance formation in acute myeloid leukaemia cells using drugadapted cell lines and identified GLI1,EZH2,and SAMHD1 as clinically relevant resistance mechanisms to cytarabine-based therapies[73-75].In addition,increased glucocorticoid sensitivity was detected in cytarabineadapted acute myeloid leukaemia cell lines and patient samples[76].The use of drug-adapted cell lines has also shown that acquired resistance to cytotoxic drugs can be associated with decreased sensitivity to kinase inhibitors[77,78].The clinical impact of this is difficult to determine,however,because the baseline sensitivity of tumours to different anti-cancer therapies prior to the first-line treatment is not typically known.

    MULTIPLE RESISTANCE MODELS ARE NEEDED TO REFLECT THE HETEROGENEITY OF THE PROCESSES ASSOCIATED WITH RESISTANCE FORMATION

    It is now generally accepted that cancer diseases are associated with tremendous intra-tumour heterogeneity[79-81].Although therapy-induced heterogeneity has not been investigated to the same extent,there are indications that the processes underlying resistance formation are likely to be as complex[52,82-88].

    The advantage of cancer cell lines as models is that they are relatively easy to handle and enable high throughput analysis at relatively low cost and in a timely fashion.Although they do not reflect the original heterogeneity of the tumour they have been derived from,they are not as homogenous or clonal as previously believed[34-37,89].Resistance can occur by selection of pre-existing drug-resistant subpopulations or by adaptation of originally drug-sensitive cells to anti-cancer therapies.Both mechanisms have been shown to be represented in drug-adapted cancer cell lines[52,66-70,90-101].

    In this context,we have adapted theTP53wild-type acute myeloid leukaemia (AML) cell lines MV4-11,OCIAML-2,OCI-AML-3,and SIG-M5 to the MDM2 inhibitor nutlin-3 in multiple independent experiments[102].Nutlin-3-adapted sublines of the same AML cell lines displayed a substantial heterogeneity in the response to other anti-cancer drugs.Notably,the biggest fold change (11.4) was detected in the response of two nutlin-3-adapted MV4-11 sublines to doxorubicin,although nutlin-3 treatment selected a pre-existingTP53mutant subpopulation in this cell line.This indicates that even the drug-induced selection of a defined pre-existing subpopulation in a cell line can result in phenotypically different sublines[102].New technologies including single cell approaches will enable the elucidation of selection and adaptation processes during resistance formation in more detail[94,103,104].

    Since many models will be needed to cover the complexity associated with acquired resistance formation,we have established the Resistant Cancer Cell Line collection by adapting initially chemosensitive cancer cell lines to clinical concentrations of targeted and cytotoxic anti-cancer drugs to enable the systematic investigation of acquired drug resistance mechanisms.It currently contains 1300 cancer cell lines based on 125 parental cell lines from 16 cancer entities and reflects acquired resistance to 67 drugs (https://research.kent.ac.uk/ibc/the-resistant-cancer-cell-line-rccl-collection).The DEN50-R platform is another project dedicated to the generation of drug-adapted cancer cell line panels (http://www.den50-r.org).

    CONCLUSION

    This perspective is focused on the use of drug-adapted cancer cell lines as models of acquired drug resistance in cancer.Drug-adapted cancer cell lines are,like every model system,associated with specific advantages and limitations.Models including primary cancer cell cultures,three-dimensional cell (co-)culture systems,tumour-derived organoids,and animal models better reflect certain aspects of tumour growth such as intra-tumour heterogeneity,three-dimensional architecture,cancer cell interaction with the cancer microenvironment,and/ or metastatic behaviour[105-114].Such models can be used to study processes that cannot be studied in cell lines.In this context,acquired resistance models have been established based on cell line- and patient-derived xenografts,organoids,and transgenic tumour models[115-125].However,cell lines enable the establishment of a substantially larger number of models within a given timeframe and at a given cost,which is critical for studying the drug-induced heterogeneity.Notably,data so far suggest that the drug adaptation of cancer cell lines reveals similar resistance mechanisms as cell line-derived xenografts and transgenic mouse models[116,118,123,125].

    Figure 3.Drug-adapted cancer cell lines enable the identification of candidate biomarkers that enable the early detection of resistance formation and,in combination with drug screens and functional genomics approaches,the selection of effective next-line therapies

    In conclusion,drug-adapted cancer cell lines reflect clinically relevant acquired drug resistance mechanisms and represent a preclinical model system in their own right,which is complementary to other preclinical models and clinical specimens.Drug-adapted cancer cell lines enable systems level studies and the direct comparison of different therapies in the same system that cannot be performed in the clinics.Hence,drug-adapted cancer cell lines offer potential for the identification of biomarkers that indicate resistance formation and,ideally,effective next-line therapies [Figure 3].Many drug-adapted cancer cell lines will be needed to cover the complexity of the mechanisms underlying resistance formation.

    DECLARATIONS

    Authors' contributions

    Contributed to the writing and revision of the article and read and approved the final version.

    Availability of data and materials

    Not applicable.

    Financial support and sponsorship

    None.

    Conflicts of interest

    All authors declared that there are no conflicts of interest.

    Ethical approval and consent to participate

    Not applicable.

    Consent for publication

    Not applicable.

    Copyright

    ? The Author(s) 2019.

    大片免费播放器 马上看| 99久久人妻综合| 午夜影院在线不卡| 国产免费福利视频在线观看| 亚洲成国产人片在线观看| 亚洲中文日韩欧美视频| 久久久久久人人人人人| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 久久久国产一区二区| 亚洲av电影在线观看一区二区三区| 老司机在亚洲福利影院| 日韩精品免费视频一区二区三区| 欧美激情高清一区二区三区| 国产一区二区在线观看av| xxxhd国产人妻xxx| 久久久久久久国产电影| 久久久国产精品麻豆| 日本色播在线视频| 99国产精品99久久久久| 在线亚洲精品国产二区图片欧美| 国产一区二区激情短视频 | 成年女人毛片免费观看观看9 | 91麻豆精品激情在线观看国产 | 2018国产大陆天天弄谢| a 毛片基地| 久久国产精品男人的天堂亚洲| 成人亚洲欧美一区二区av| 又大又爽又粗| 国产精品偷伦视频观看了| 一二三四在线观看免费中文在| 久久国产精品人妻蜜桃| 久久国产精品人妻蜜桃| 国产1区2区3区精品| 久久99热这里只频精品6学生| 我的亚洲天堂| 人人妻人人添人人爽欧美一区卜| 久久国产亚洲av麻豆专区| 中文字幕高清在线视频| 一级毛片我不卡| 国产精品熟女久久久久浪| 曰老女人黄片| 国产精品99久久99久久久不卡| 久久人人爽人人片av| 妹子高潮喷水视频| 欧美+亚洲+日韩+国产| 久热这里只有精品99| 人人妻人人澡人人爽人人夜夜| 中文字幕人妻熟女乱码| 色视频在线一区二区三区| 国产精品一二三区在线看| kizo精华| 汤姆久久久久久久影院中文字幕| 脱女人内裤的视频| av在线app专区| 99精国产麻豆久久婷婷| 又粗又硬又长又爽又黄的视频| 老司机深夜福利视频在线观看 | 在线精品无人区一区二区三| 视频区图区小说| 在线观看免费高清a一片| 久久久久久人人人人人| 久久人妻福利社区极品人妻图片 | 午夜免费男女啪啪视频观看| 国产一区二区三区av在线| 91老司机精品| 欧美+亚洲+日韩+国产| 色94色欧美一区二区| bbb黄色大片| 亚洲中文日韩欧美视频| 日本欧美视频一区| 国产黄色免费在线视频| 日日夜夜操网爽| 在线亚洲精品国产二区图片欧美| 99精国产麻豆久久婷婷| 美女扒开内裤让男人捅视频| 亚洲熟女毛片儿| 亚洲,欧美精品.| 两性夫妻黄色片| 久久青草综合色| 中文字幕亚洲精品专区| 午夜福利视频在线观看免费| 欧美+亚洲+日韩+国产| 一区二区av电影网| 日韩制服骚丝袜av| 爱豆传媒免费全集在线观看| 国产一区二区 视频在线| 亚洲国产精品一区三区| 久久久久久久久免费视频了| av国产精品久久久久影院| 高清欧美精品videossex| 久久国产精品影院| 另类精品久久| 伊人久久大香线蕉亚洲五| 国产精品99久久99久久久不卡| 亚洲国产精品成人久久小说| 好男人视频免费观看在线| 亚洲精品在线美女| 日韩视频在线欧美| 亚洲av美国av| 久久久久久久久久久久大奶| 亚洲情色 制服丝袜| 亚洲av综合色区一区| 国产三级黄色录像| 狂野欧美激情性xxxx| 中文乱码字字幕精品一区二区三区| 精品一品国产午夜福利视频| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 晚上一个人看的免费电影| 久久精品人人爽人人爽视色| 欧美日韩亚洲国产一区二区在线观看 | 99久久人妻综合| 少妇裸体淫交视频免费看高清 | 亚洲色图综合在线观看| 无遮挡黄片免费观看| 亚洲国产精品一区二区三区在线| 91老司机精品| 丝袜喷水一区| 国产精品久久久久久人妻精品电影 | 满18在线观看网站| 亚洲精品久久午夜乱码| 精品亚洲成a人片在线观看| 国产免费福利视频在线观看| 人人妻人人添人人爽欧美一区卜| 国产深夜福利视频在线观看| 欧美激情高清一区二区三区| 久久热在线av| av天堂在线播放| 国产成人精品久久久久久| 免费av中文字幕在线| 丰满饥渴人妻一区二区三| 黄色一级大片看看| 狂野欧美激情性xxxx| 国产精品免费视频内射| 视频区欧美日本亚洲| 在线av久久热| 欧美成人午夜精品| 国产av精品麻豆| www.精华液| 欧美日韩黄片免| 大陆偷拍与自拍| 啦啦啦在线观看免费高清www| 国产精品免费视频内射| 精品久久久久久久毛片微露脸 | 黄色怎么调成土黄色| 自线自在国产av| 欧美xxⅹ黑人| 国产一区二区 视频在线| 男人舔女人的私密视频| 亚洲国产欧美一区二区综合| 精品高清国产在线一区| 午夜福利一区二区在线看| 中文欧美无线码| 男男h啪啪无遮挡| av在线老鸭窝| 亚洲av国产av综合av卡| 亚洲国产最新在线播放| 久久av网站| 国产麻豆69| 久久精品亚洲熟妇少妇任你| 十八禁网站网址无遮挡| 午夜久久久在线观看| 久久人人爽人人片av| 亚洲中文av在线| 18禁裸乳无遮挡动漫免费视频| 国产精品免费视频内射| 大陆偷拍与自拍| 丰满人妻熟妇乱又伦精品不卡| 国产一级毛片在线| 亚洲av欧美aⅴ国产| 久久99热这里只频精品6学生| 精品亚洲成国产av| 中文欧美无线码| 亚洲欧美一区二区三区久久| 亚洲,欧美精品.| 日韩一卡2卡3卡4卡2021年| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 母亲3免费完整高清在线观看| 久久精品久久精品一区二区三区| 在线观看免费视频网站a站| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 国产成人一区二区在线| 一级片'在线观看视频| 国产精品一二三区在线看| 成人亚洲精品一区在线观看| 一级片'在线观看视频| 欧美亚洲日本最大视频资源| av网站免费在线观看视频| 黄色a级毛片大全视频| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 亚洲av片天天在线观看| 男女床上黄色一级片免费看| 日韩av免费高清视频| 午夜两性在线视频| 久久人妻熟女aⅴ| 黄色a级毛片大全视频| 无遮挡黄片免费观看| 青草久久国产| 欧美精品亚洲一区二区| 久久人妻福利社区极品人妻图片 | 国产高清不卡午夜福利| 黄色怎么调成土黄色| 亚洲第一av免费看| 中文欧美无线码| 99国产精品一区二区三区| 深夜精品福利| 成年女人毛片免费观看观看9 | 免费高清在线观看视频在线观看| 欧美性长视频在线观看| 老司机影院毛片| 欧美精品av麻豆av| 天天影视国产精品| 国产一区二区在线观看av| 又紧又爽又黄一区二区| 免费观看人在逋| 亚洲欧美日韩高清在线视频 | 亚洲av在线观看美女高潮| 男女免费视频国产| 国产精品三级大全| 亚洲伊人久久精品综合| 欧美日韩视频精品一区| 多毛熟女@视频| www日本在线高清视频| 亚洲欧美色中文字幕在线| 五月开心婷婷网| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 少妇人妻 视频| 少妇 在线观看| 99国产综合亚洲精品| 中国国产av一级| 999久久久国产精品视频| 国产精品一区二区在线观看99| 青草久久国产| 亚洲综合色网址| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 大话2 男鬼变身卡| 真人做人爱边吃奶动态| 高清视频免费观看一区二区| 亚洲欧洲精品一区二区精品久久久| 丁香六月天网| 亚洲色图 男人天堂 中文字幕| 最新的欧美精品一区二区| 91九色精品人成在线观看| 一本一本久久a久久精品综合妖精| 精品久久蜜臀av无| 亚洲少妇的诱惑av| 女警被强在线播放| 老汉色∧v一级毛片| 亚洲黑人精品在线| 色婷婷久久久亚洲欧美| 狠狠婷婷综合久久久久久88av| 脱女人内裤的视频| 欧美黑人精品巨大| 可以免费在线观看a视频的电影网站| 免费在线观看影片大全网站 | www.熟女人妻精品国产| 日韩电影二区| 婷婷丁香在线五月| 国产野战对白在线观看| 午夜老司机福利片| 国产精品久久久久久精品古装| 欧美在线一区亚洲| 丝袜美足系列| 九草在线视频观看| 日本av手机在线免费观看| 久久亚洲精品不卡| av网站在线播放免费| 亚洲精品一区蜜桃| 日本wwww免费看| 天堂俺去俺来也www色官网| 亚洲一码二码三码区别大吗| 欧美 亚洲 国产 日韩一| 国产精品九九99| 亚洲av电影在线观看一区二区三区| 欧美在线黄色| 亚洲成国产人片在线观看| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| av网站免费在线观看视频| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 久久午夜综合久久蜜桃| 国产不卡av网站在线观看| 婷婷丁香在线五月| 国产又爽黄色视频| 婷婷丁香在线五月| 日韩视频在线欧美| av网站在线播放免费| 新久久久久国产一级毛片| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 晚上一个人看的免费电影| 超色免费av| 下体分泌物呈黄色| 满18在线观看网站| 男人爽女人下面视频在线观看| 国产熟女欧美一区二区| 亚洲欧美一区二区三区久久| 最近中文字幕2019免费版| 91精品国产国语对白视频| 国产精品二区激情视频| 高清av免费在线| av在线老鸭窝| 精品久久蜜臀av无| tube8黄色片| 亚洲欧美成人综合另类久久久| 免费看av在线观看网站| 国产色视频综合| 又紧又爽又黄一区二区| 又大又爽又粗| 国产精品一二三区在线看| 男的添女的下面高潮视频| 久久精品亚洲熟妇少妇任你| 最近最新中文字幕大全免费视频 | 这个男人来自地球电影免费观看| 侵犯人妻中文字幕一二三四区| 亚洲七黄色美女视频| 国产成人a∨麻豆精品| 午夜福利,免费看| av天堂久久9| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 天天躁夜夜躁狠狠躁躁| 99热国产这里只有精品6| 每晚都被弄得嗷嗷叫到高潮| 最黄视频免费看| 日韩一区二区三区影片| 99国产精品一区二区蜜桃av | 亚洲精品久久成人aⅴ小说| 最近中文字幕2019免费版| 国产一区二区 视频在线| 丰满少妇做爰视频| 岛国毛片在线播放| 久久久精品国产亚洲av高清涩受| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜制服| 国产高清国产精品国产三级| av在线老鸭窝| 99精品久久久久人妻精品| 国产精品免费视频内射| 波野结衣二区三区在线| 亚洲欧洲精品一区二区精品久久久| 乱人伦中国视频| 婷婷色麻豆天堂久久| 午夜91福利影院| 免费看不卡的av| 色婷婷av一区二区三区视频| 国产精品国产三级国产专区5o| 99精国产麻豆久久婷婷| 欧美久久黑人一区二区| 欧美精品高潮呻吟av久久| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区 | 午夜免费观看性视频| 视频区图区小说| 久久人人爽人人片av| 欧美日韩综合久久久久久| 9色porny在线观看| 丝袜喷水一区| 婷婷色综合大香蕉| 精品福利观看| 欧美日韩综合久久久久久| 人人澡人人妻人| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 午夜激情av网站| 精品人妻熟女毛片av久久网站| www.精华液| 纯流量卡能插随身wifi吗| 欧美在线一区亚洲| 丁香六月欧美| 日韩电影二区| 极品人妻少妇av视频| 国产亚洲av高清不卡| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 精品一品国产午夜福利视频| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 人人妻人人添人人爽欧美一区卜| 久久亚洲精品不卡| 久久久久久亚洲精品国产蜜桃av| 免费看av在线观看网站| 老鸭窝网址在线观看| 美国免费a级毛片| 国产在线视频一区二区| 伦理电影免费视频| 波多野结衣av一区二区av| 麻豆国产av国片精品| 国产精品一区二区精品视频观看| 99国产综合亚洲精品| xxxhd国产人妻xxx| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 十八禁网站网址无遮挡| 王馨瑶露胸无遮挡在线观看| 亚洲国产精品一区二区三区在线| 97精品久久久久久久久久精品| 只有这里有精品99| 中文字幕亚洲精品专区| 国产97色在线日韩免费| 男人添女人高潮全过程视频| 久久久久国产一级毛片高清牌| 18禁观看日本| 久久性视频一级片| 精品福利观看| 国产高清不卡午夜福利| 中文字幕人妻丝袜一区二区| 色婷婷av一区二区三区视频| 妹子高潮喷水视频| 天天操日日干夜夜撸| 亚洲av片天天在线观看| 国产在线免费精品| 欧美另类一区| 精品亚洲乱码少妇综合久久| 久久九九热精品免费| 老司机在亚洲福利影院| 国产免费福利视频在线观看| 一本综合久久免费| 女人精品久久久久毛片| 亚洲国产欧美日韩在线播放| 日韩一本色道免费dvd| 黄色毛片三级朝国网站| 久久毛片免费看一区二区三区| 一边亲一边摸免费视频| 波多野结衣av一区二区av| 精品国产一区二区久久| 国产成人欧美| 国产伦人伦偷精品视频| 视频在线观看一区二区三区| 午夜91福利影院| 国产高清不卡午夜福利| 99久久99久久久精品蜜桃| 亚洲精品一区蜜桃| 视频区图区小说| 亚洲国产欧美日韩在线播放| 久久精品亚洲av国产电影网| 中文乱码字字幕精品一区二区三区| 黄色一级大片看看| 欧美久久黑人一区二区| 国产主播在线观看一区二区 | 久久精品亚洲熟妇少妇任你| 自线自在国产av| 看免费成人av毛片| 精品第一国产精品| 精品亚洲成国产av| 日韩制服骚丝袜av| 亚洲 国产 在线| 操出白浆在线播放| 999精品在线视频| 欧美精品一区二区免费开放| 久久国产精品影院| 国产女主播在线喷水免费视频网站| 一区二区三区乱码不卡18| 久久女婷五月综合色啪小说| 久久青草综合色| 国产欧美日韩一区二区三 | 免费看十八禁软件| 国产精品99久久99久久久不卡| 国产成人精品久久久久久| 黑人欧美特级aaaaaa片| 青春草视频在线免费观看| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 好男人电影高清在线观看| 亚洲熟女精品中文字幕| 亚洲午夜精品一区,二区,三区| 99国产综合亚洲精品| 黄色毛片三级朝国网站| 久久鲁丝午夜福利片| av在线播放精品| 男女床上黄色一级片免费看| 黄色a级毛片大全视频| 国产精品国产av在线观看| 亚洲免费av在线视频| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区三区av在线| 欧美日韩黄片免| 日本av免费视频播放| 在现免费观看毛片| 51午夜福利影视在线观看| 真人做人爱边吃奶动态| 蜜桃在线观看..| 夫妻午夜视频| 男人添女人高潮全过程视频| 美女扒开内裤让男人捅视频| 国产日韩欧美在线精品| 久久久久久亚洲精品国产蜜桃av| 97在线人人人人妻| 最新在线观看一区二区三区 | 考比视频在线观看| 亚洲色图 男人天堂 中文字幕| 建设人人有责人人尽责人人享有的| 亚洲激情五月婷婷啪啪| 一级a爱视频在线免费观看| 一级片免费观看大全| 不卡av一区二区三区| 高清黄色对白视频在线免费看| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 国产av精品麻豆| 91九色精品人成在线观看| 免费女性裸体啪啪无遮挡网站| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 无限看片的www在线观看| 亚洲黑人精品在线| 美国免费a级毛片| 亚洲七黄色美女视频| 手机成人av网站| 精品福利永久在线观看| 国产黄色视频一区二区在线观看| 高清黄色对白视频在线免费看| 成年人午夜在线观看视频| 国产福利在线免费观看视频| 丝袜脚勾引网站| 天天躁夜夜躁狠狠久久av| 97精品久久久久久久久久精品| 丝袜人妻中文字幕| 亚洲欧美一区二区三区国产| 一级,二级,三级黄色视频| 国产视频一区二区在线看| 国产精品国产三级专区第一集| 国产精品国产三级国产专区5o| 国产精品偷伦视频观看了| 婷婷成人精品国产| 99香蕉大伊视频| 午夜精品国产一区二区电影| 国产国语露脸激情在线看| www.自偷自拍.com| 亚洲av成人精品一二三区| 国产一级毛片在线| 国产极品粉嫩免费观看在线| 99久久人妻综合| 亚洲av成人精品一二三区| 日本五十路高清| 欧美日韩一级在线毛片| 狂野欧美激情性bbbbbb| 亚洲黑人精品在线| 一边摸一边做爽爽视频免费| 免费观看人在逋| 国产免费视频播放在线视频| 99国产综合亚洲精品| 一本大道久久a久久精品| 最近最新中文字幕大全免费视频 | 国产女主播在线喷水免费视频网站| 午夜激情av网站| 亚洲人成电影观看| 纯流量卡能插随身wifi吗| 爱豆传媒免费全集在线观看| 精品人妻一区二区三区麻豆| 可以免费在线观看a视频的电影网站| 欧美97在线视频| 婷婷丁香在线五月| 日韩制服丝袜自拍偷拍| 欧美日韩一级在线毛片| 自线自在国产av| 亚洲国产av影院在线观看| 国产一区有黄有色的免费视频| 国产97色在线日韩免费| 久久久国产欧美日韩av| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久av美女十八| 国产97色在线日韩免费| 精品人妻在线不人妻| 久久av网站| 看免费av毛片| 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 51午夜福利影视在线观看| 中文乱码字字幕精品一区二区三区| 51午夜福利影视在线观看| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 丝袜在线中文字幕| 日本色播在线视频| 午夜视频精品福利| 中文欧美无线码| 久热爱精品视频在线9| 麻豆av在线久日| 一级黄色大片毛片| 91国产中文字幕| 欧美亚洲日本最大视频资源| bbb黄色大片| 国产亚洲精品第一综合不卡| 国产精品免费大片| 18禁国产床啪视频网站| 亚洲精品久久午夜乱码| 最近中文字幕2019免费版| 亚洲午夜精品一区,二区,三区| 欧美日韩成人在线一区二区| 午夜精品国产一区二区电影| 日韩中文字幕视频在线看片| 免费看不卡的av| 国产1区2区3区精品| 美女脱内裤让男人舔精品视频| a级毛片黄视频| 中文欧美无线码| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 欧美日本中文国产一区发布|