• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Similarity measurement of Chinese medicine ingredients for cold-hot nature identificatio n

    2019-11-01 03:01:10GuoHuiWeiXianJunFuZhenGuoWang
    TMR Modern Herbal Medicine 2019年4期

    Guo-Hui Wei,Xian-Jun Fu,Zhen-Guo Wang*

    1Key Laboratory of Theory of TCM,Ministry of Education of China,Shandong University of Traditional Chinese Medicine,Jinan,China.

    Abstract

    Keywords:Traditional Chinese medicine,Chinese Medicine ingredients,Ultraviolet spectrum,Similarity measurement,Cold-hot nature

    Background

    As one of the core elements of Traditional Chinese Medicine(TCM),nature theory of TCM has attracted the attention of scholars and research institutions for many years.The nature of Chinese medicine(CM)contain four types i.e.cool,cold,hot,and warm,in which cold and hot nature is an important part of TCM nature theory[1,2].”Treating the hot syndrome with cold nature medicine and treating cold syndrome with hot nature medicine”indicates that cold or hot property of medicine nature theory is an important basis for TCM treatment in regulating the balance between Yin and Yang of human body,and the application of cold-hot medicine nature leads to effective treatment in TCM clinical medicine[3].

    Numerous specialists maintain different views on the TCM cold-hotnature.Jinetal.[4]proposed a‘three-element’mathematical analysis model to research biological character of TCM in the basis of cold-hot medicine nature.Zhaoet al.[5]explored a cold/hot plate method to differentiating cold-hot nature of Mahuang and Maxingshigan decoctions.Wanet al.[6]studied the effect of TCM with different properties on thermoregulation and temperature-sensitive transient receptor potentialion channelprotein ofrats with yeast-induced fever.Lianget al.[7]analyzed the cold and hot properties of Chinese medicinal herbs with molecular network and chemical fragment methods.Wanget al.[8]identified 59 CHMs with typical cold/hot properties by self-organizing map.Fuet al.[9,10]investigated the presence of anticancer activity displayed by cold-hot nature of traditional Chinese marine medicine with phylogenetic tree analysis and explored in Silico Mode-of-Action method to explain the cold,hot,and neutral nature of CMs.

    Generally,the discrimination of cold-hot nature of CMs contains two parts:feature representation and nature classification.Feature representation uses original effects of CM,fingerprint technology or metabolomics method to extract the characteristics of CM.Nature classification needsuse classical machine learning classifiersor constructed classifiers to discriminate the cold-hot nature of CMs.Original effects of Chinese medicine is an effective characteristic expression.Xue research group[11-13]explored original efficacy features of CMs in“Chinese Herbal Medicine(CHM)”and used classical classifiers(such as artificial neural network)to classify the unknown nature of CMs.Metabolomics method is also used to represent the CMs.Nieet al.[14]studied Metabono mic features of CMs and constructed a random forest model to discriminate the unknown nature of CMs.Chemicaltechnology isan important method for analyzing the cold-hot nature.Longet al.[15]analyzed the chemicalco mponents of 284C Ms with clear medicine nature,and explored a combination system for predicting cold-hot nature of other CMs.Other methods,such as nuclear magnetic resonance spectroscopy of proton(1H-NMR),are used to investigate the feature of CMs.Liet al.[16]studied the characteristics of CMs with 1H-NMR and applied pattern recognition techniques to analyze the unknown nature of CMs.

    Except classical classifiers,retrieval scheme is one of the popular and effective classification schemes,which has been applied widely in identifying benign and malignant of Mammography and pulmonary nodules[17-20].Compared with traditional classifiers,retrieval scheme can provide most similar cases for analysis and reference.Therefore,similarity measure plays an important role in retrieval scheme for classification.Our group has done a lot of research work on similarity measurement of pulmonary nodules images[20,21].We quantify the similarity of pulmonary nodules images to distance metric.Although similarity measurement has been widely studied in medical images,it is rarely used in the nature identification of CMs.

    The current research of medicine nature focused on revealtheconnection ofCM natureand material composition within CMs.Forexample,chemical fingerprinting technique and CM nature discriminant models are applied to analyze CM material composition.The chemical fingerprint data of CM can reflect the whole composition of CM ingredients.Bioactivity is determined by material composition,and the bioactivities of CMs are the core of identifying medicine nature[2].Thus,material composition indirectly determines the nature of CMs.Studies have found that CM ingredients are the material basis for the production of medicine natures[10].Therefore,it is speculated that CMs with similar composition of substances should have similar medicinal nature.

    To verify the hypothesis proposed above,in this work,we explore relationship between the CM ingredients and cold-hot medicinal nature.Firstly,we construct a CM ingredient database by using ultraviolet(UV)spectrum technology to represent 61 CMs,which have clear cold-hot nature(including 30 ‘cold’CMs and 31 ‘hot’CMs).Secondly,we study quantifying the similarity of CM ingredient to a distance metric.Mahalanobis distance is learned to measure the similarity of UV fingerprints of CMs.Finally,a retrieval scheme is proposed to build a predictive identification model to predict the cold-hot nature of CMs.

    Materials and Methods

    TCM Dataset

    61 representative CMs are analyzed in this study,in which 30 CMs are ‘cold’medicines and others are ‘hot’medicines.All the 61 CMs have been marked in the classical ‘Chinese Materia Medica’and ‘Shen Nong’s Herbal Classic’.Table 1 shows the 61 representative CMs and their natures(characteristics in brackets).

    The UV fingerprint technology is used to test the 61 CMs.The main instrument is UV-3010 UV Spectrophotometer(Hitachi,Japan).Our group recorded the absorbance of total 61 CMs in the ultraviolet wavelength of 190-400nm with four different solvents(chloroform,distilled water,absolute ethanol,petroleum ether).Detailed method for obtaining UV fingerprint can refer to the manuscript[25].As a ‘hot’medicine,Mustard Seeds has been marked in the classical‘Chinese Materia Medica’and ‘Shen Nong’s Herbal Classic’.Figure 1 shows the UV absorption curve of Jiezhi(Mustard Seeds)and GeGen(Puerariae Lobatae Radix)with petroleum ether solvent.

    Figure 1.UV absorption curve of Mustard Seeds(A)and Puerariae Lobatae Radix(B)with petroleum ether solvent

    Table 1.The experimental 61 representative CMs

    UV Fingerprint Similarity

    In this study,we investigate the relationship between cold-hot nature and material composition of CMs.To verify the hypothesis,CMs with similar composition of substances should have similar medicinal nature,we want to quantify the similarity of CM ingredients and explore the method for identifying CM nature.A UV fingerprint reflects the material composition of a CM.Therefore,we want to reveal cold-hot nature based on UV fingerprints.If the ingredients of CMs are similar,we can think that their medicinal properties are similar.Hence,CMs with similar UV fingerprints should have the same medicinal nature.

    Similarity measure is defined as semantic relevance,which has been used to measure the similarity of lung nodule images in our study[21].If two CMs are both‘cold’medicine,they are semantically similar.The Mahalanobis distance is used to measure the similarity of UV fingerprints of CMs.The smaller the Mahalanobis distance,the higher the similarity of UV fingerprints.

    Distance metric learning

    Denote the sample dataset aswithbeing theith sample in the input space andnbeing the totalnu mber of samples.Forbetter presentation,we also denote a distance metricas a Mahalanobis distance between,which is defined as:

    In Eq.(1),Tdenotes the transpose of a vector or a matrix,Mis a positive semi-definite matrix.IfM=I,corresponds to Euclidean distance.IfMis restricted to be a diagonal matrix,represents a distance metric in which the different axes are given different weights.More generally,Mrepresents a set of Mahalanobis distance.BecauseMis a positive semi-definite matrix,it can be decomposed intoM=AAT.Hence,Eq.(1)can be rewritten as:

    Therefore,learning such distance metric is actually equivalent to finding a transformation of Euclidean distance between samples in the original high-dimensional space.During recent years,a variety of techniques[22]have been proposed to learn such an optimal Mahalanobis distance metricfrom training datathataregiven in the form of side information.We want to obtainAfrom the semantic relevance.

    Similarity Metric

    We define similarity measurement as semantic relevance.Semantic relevance can be presented by side information,which means that if two CMs have same nature(cold or hot),they are semantic relevance.Therefore,we study transformation matrixAaccording to semantic relevance.

    For semantic relevance,it describes the class separability,which requires the separability measure increase when the size of the between-class scatter matrix increases or the size of the within-class scatter matrix is smaller.This can be described by the Differential Scatter Discriminant Criterion(DSDC)model[23],it is defined as:

    The variation is defined as:

    In(4),WSis the within-class scatter matrix,BSis the between-class scatter matrix.ρis a nonnegative tuning parameter,which balances the relative merits of minimizing the within-class scatter to the maximization of the between-class scatter.The learned matrixAis the transformation matrix.With matrixA,we can calculate Mahalanobis distance between nodule images.

    At last,the learning of optimal projections *Aof the optimization problem in(4)can be solved by applying the eigenvalue decomposition on matrixS=SW-ρSB,and the projection matrix *Acan be constructed by applying the eigenvectors ofScorresponding to theksmallest eigenvalues.

    The Retrieval Algorithm

    1.Compute(4)with eigenvalue decomposition and obtain the transformation matrixA* withkeigenvectors corresponding tokminimum eigenvalues.

    2.Calculate the Mahalanobis distancebetween samplesxiandxjbased on(2).

    3.With the Mahalanobis distance,sort the distances we obtained,the retrieval inclusion are the smallest ones.

    ARetrieval Scheme for Identification.

    With the learned Mahalanobisdistance,a retrieval scheme based on the similarity metric is proposed to predict cold-hot medicine nature.For a TCM with unknown nature,we firstly measure the absorption degree of UV spectrum,and then compute the similarity of the UV spectrum between this TCM and the TCMs with known nature in the dataset.The calculated Mahalanobis distances are ranked based on increasing Mahalanobis distance metricsto retrieve for the ‘mostsimilar’reference TCMs.The K ‘most similar’TCMs are the reference TCMs with largest Mahalanobis distances to the query TCM.Each retrieved TCM is given a weight value as the similarity factor.The weighting factor is defined as

    dkis the Mahalanobis distances between query TCM andkth retrieved TCM.Finally,acold nature probability is computed to indicate the degree of coldness of this TCM,which is the quotient of the sum of the Mahalanobis distances of retrieved cold nature medicines and the sum of the Mahalanobis distances of the K‘most similar’TCMs.The formula is defined as(C is the number of‘cold’nature medicines and H is the number of‘hot’nature medicines):

    Given a threshold ofPT=0.5,ifpis abovePT,we believe that this queried TCM is ‘cold’,otherwise,it is ‘hot’.

    Performance Assessment

    In this subsection,to verify the feasibility of the proposed retrieval scheme for identification of cold-hot nature,extensive experiments are constructed to assess the performance of the retrieval scheme.We compare the performance of our scheme with that of the state-of-the-art classification models,including extreme learning machine(ELM)[24],artificial neural network(ANN)and supportvector machine (SVM).All experiments evaluations are on the basis of existing TCM dataset.The application assists to test unknown nature of a CM by retrieving similar UV spectra of CMs with clear cold-hot nature.In this study,we firstly compared nature identification performance of UV spectra with different solvents,and selected the solvent corresponding to the optimal identification performance.Secondly,we designed experiments to evaluate the proposed scheme performance,called stability evaluation.Thirdly,we illustrated the retrieval scheme with examples.Finally,an independent dataset is used to test the robustness of the proposed algorithm.

    In our experiments,stability evaluation is used to analyze the performance of the proposed prediction model.Stability evaluation is calculated with leave-one-CM-out method[20]in the whole dataset.Each time,one CM was selected as the query CM and the remaining 60 CMs as the reference database.Because every TCM was selected as the query CM,this process was performed 61times.In this retrieval scheme,we retrieved K ‘most similar’CMs and then obtained a ‘cold’nature probability.Atlast,61 probabilities were calculated.With varying the threshold of the ‘cold’nature probability,a Receiver Operating Characteristic(ROC)curve is generated.The area under the ROC curve(AUC)and prediction accuracy(ACC)are used to evaluate the performance of our scheme.The larger the area,the more stable the model is.ACC value is the probability of correct classification of cold-hot nature of CMs.The formula ofACC is as follows:

    The AUC and ACC value were applied for the stability evaluation.

    Results

    Performance Evaluation with Different Solvents.

    The chemical fingerprints of CMs reflect the material composition of CMs.UV spectra is one fingerprint of CMs,which can be applied to discriminate cold-hot nature of CMs.In this study,we construct experiments to quantitatively analyze the relationship between material composition and the nature of CMs by means of ultraviolet spectroscopy.

    In this work,the classification performance of the UV spectra with different solvents (distilled water,chloroform,petroleum ether,absolute ethanol)was analyzed to select UV data under solvent for optimal recognition performance.Leave-one-CM-out method is used to evaluate the parameters of our scheme.Figure 2 displays the ACC value curves for the medicine nature classification of the UV spectra with different solvents.The ACC value is computed as a function of the number of referenced CMs(K)retrieved to obtain a more comprehensive curve for predicting the performance of the model.In Figure 2,the curve of ACC value under petroleum ether solvent is better than that under other solvents,which means that the UV spectra of petroleum ether solvent have the best discriminant performance of cold-hot nature.When K is set as 7,the curve of ACC value under petroleum ether solvent has a peak.The identification performance reaches the maximal value 0.803.From the curve of ACC value under absolute ethanol,UV fingerprint with absolute ethanol has the lowest predicting performance.The CM nature identification with distilled water and chloroform is inferior to that with petroleum ether,but outperforms that with absolute ethanol solvent.According to the figure,the maximum ACC values of distilled water and chloroform are both 0.656.Therefore,these two solvents are poor for predicting medicine nature.

    Figure 2.The curves of ACC value for the medicine nature classification.K is the number of retrieved reference CMs

    In this study,the effect of parameter ρ in Eq.(4)under petroleum ether solvent is investigated to evaluate the predicting performance of cold-hot nature.The value of para meterρisset with intherange[10-3,10-2,10-1,1,5,10,102,103].Figure 3A displays the ACC value curve with different ρ.It can be concluded that the performance curve has small fluctuations and the ACC value reaches the maximum,when parameter ρ is set as 5.

    The number of eigenvectorskin the proposed retrieval algorithm is analyzed within the range[50 100 150 200 210].From Figure 3B,higher ACC value can be achieved with an increasing numberk.Maximum classification performance(ACC value)corresponds to the maximum number of eigenvectors=210k.

    Figure 3.The curve ofACC value under petroleum ether solvent with different ρ andk

    Model Performance Assessment

    To demonstrate the feasibility and stability of our proposed retrieval scheme for identifying cold-hot nature of CMs,this study compares the classification performance of our scheme(the retrieval scheme,denoted as"RS")with that of some classical classifiers(i.e.,ANN,SVM,ELM)orclassifiersusedin CM nature identification.All comparative algorithms use the optimal parameters from the dataset.According to the results of the previous section,the UV spectra data under petroleum ether solvent are used to study the cold-hold nature prediction.Table 2 shows the performance comparison of stability assessment between RS and other algorithms.Pearson correlation coefficient(PCC)is used as a comparative reference to measure the similarity of UV spectra.According to the prediction results of cold-hot nature,we can conclude as follows.Firstly,our scheme RS performs best in identification of cold-hot nature.Especially,RS and PCC havebetteri dentification accuracy than other comparison classical algorithms.This illustrates that Chinese medicines with similar ultraviolet spectrum have similar medicine nature.Secondly,ANN and ELM with UV spectral data are poor in identifying medicine nature.

    Thirdly,identification accuracy of SVM is better than that of ANN and ELM.However,it is poor than our scheme.Finally,stability assessment of our scheme is the best.

    Table 2.Comparison of stability evaluation

    Prediction Examples

    Leave-one-out method is used to obtain prediction examples.Two retrieval CM cases returned by RS are listed in Table 3.The query Chinese medicine(first row)and its top k=7 retrieved reference CMs are showed in the table.The retrieved reference CMs are computed by RS and ranked with monotonically incremental Mahalanobis distance.Cold medicine(DiFuZhi(Kochiae Fructus))and hot medicine(BiBa(Piperis Longi Fructus))are served as the examples to illustrate the principle of cold-hot medicine identification.In the first column,the query medicine isPiperis Longi Fructus.Its retrieved reference medicines are all hot nature.The calculated cold nature probability is 0,which indicates that the query medicine maybe is hot nature.In the second column,the query medicine isKochiae Fructus.The retrieved results have six cold nature medicines and one hot nature medicine.Its cold nature probability is 0.9464,indicating the query medicine is more likely to be cold nature.The prediction examples demonstrate thatsimilar UV fingerprints can characterize the same medicine nature.

    Table 3.Prediction examples based on the proposed RS

    Overall Prediction Performance.

    In this study,we perform a holistic assessment of the proposed RS method.Table 4 shows the prediction confusion matrix of 61 CMs.The total prediction accuracy is 80.3%(49/61).The identification accuracy of cold nature medicine is86.7% (26/30),whilethe prediction accuracy of hot nature medicine is 74.2(23/31).It can be seen that this scheme has a good prediction rate for medicines with cold nature.The recall,precision and F-score of 61 CM identification are listed in Table 5.Generally,our scheme has good identification rate.

    Table 4.Confusion matrix of 61 CM identification

    Table 5.The recall,precision and F-score of 61 CM identification

    Robustness of the proposed method

    An independent dataset is used to test the robustness of the proposed algorithm.In thisdataset,molecular descriptors are calculated to represent the CMs,including Molweight,H.Acceptors,H.Donors,Polar.Surface.Area,Rotatable.Bonds,Sp3.Atoms,Symmetric.atoms and Amines.The detailed process has been described in the manuscript[10].In the dataset,there are 534 hot medicines and 724 cold medicines.Table 6 shows the identification confusion matrix of 1258 CMs(534+724 medicines).The total identification accuracy is 81.1%(1020/1258).The prediction accuracy of cold nature medicines is 83.0%(443/534),while the identification accuracy of hot nature medicines is 79.7%(577/724).The experimentalresults demonstrate thatthe proposed method has better robustness.Generally,our scheme has good prediction rate.

    Table 6.Confusion matrix of 61 CM identification

    Discussion

    In this study,we have explored the feasibility of classifying CM nature with a retrieval scheme on the basis of the similarity of UV spectral data.Experiment results have demonstrated that it is an effective method for identifying the unknown CM nature by calculating the similarity of the UV spectrum.Meanwhile,the experimental results verify the proposed hypothesis that CMs with similar composition of substances should have similar medicinal nature.

    In summary,the advantages of our research are as follows.First,to realize CM nature identification,a dataset of 61 reference CM UV spectrum is assembled in which each CM has clearly cold or hot nature.Thus,it is effective and feasible for CM nature determination.

    Second,cold-hot nature plays a critical role in TCM nature theory.In this study,we investigate the interrelationship between material composition within CM and cold-hotnature.Materialco mposition is represented by UV spectra.Experiment evaluations have illustrated that there is a correlation between material composition and cold-hot medicine nature,which can be applied for cold-hot nature classification.Furthermore,we demonstrate that material composition determines the CM cold-hot nature.

    Third,in the light of UV spectral characteristics of CM,we investigate a retrieval scheme to identify CM nature.The distance metric is studied to measure the similarity of UV spectra.Experiment results display that our scheme performs best.The potential explanation is that our scheme sufficiently explores the relationship between material composition and CM cold-hot nature.

    Fourth,another performance that has been thoroughly demonstrated in this study is the robustness of the proposed retrievalscheme for the future clinical applications.For an intelligent discriminant model,our goal is to assist researchers in reading ultraviolet spectra and identifying cold-hot nature.The model is not feasible if the robustness is too low for an independent TCM dataset.We have demonstrated that our model has a high robustness in the experiments.More CM fingerprint data will be extracted to confirm the robustness of our model in the future.

    However,our research still has some limitations.First,this study only used UV spectra to represent the CMs.Other fingerprint techniques are not analyzed in this study.The CMs are complex mixtures of compounds.It is impossible to reflect the whole composition of CM compounds by only one fingerprint technique.In the future,we want to use multiple fingerprints to analyze CM cold-hot nature.Second,we investigate the similarity of UV spectra with a distance metric.The fingerprint data have the characteristics of high dimension and small sample.Based on such characteristics,the design of forecasting model is the focus in the future.Third,our study focuses on exploring retrieval scheme for cold-hot nature classification.UV spectrum features have not been thoroughly analyzed.Subsequently,we will integrate more effective fingerprint data to improve medicine nature classification performance.

    Ourstudy givesnot only a method for nature identification,but a new scheme for nature marker of Chinese medicines.Nature marker is a novel concept,indicating the ingredients of Chinese medicines closely related to medicine natures.With our nature identification scheme,we want to look for Chinese medicines with the similar ingredients under the same nature restriction conditions.Such several Chinese medicines have the same ingredients,which can be considered as the nature markers of these several Chinese medicines.

    Conclusion

    In this study,a retrieval scheme is proposed to predict cold-hot medicine nature.Based on the characteristics of CM,this scheme has better classification performance than classical classifiers.Effective experiments demonstrate that cold-hot medicine nature and UV spectral fingerprint data are relevant.

    精品国产一区二区三区久久久樱花| 一区二区日韩欧美中文字幕| 亚洲欧美色中文字幕在线| 91成人精品电影| 国产日韩欧美在线精品| 精品视频人人做人人爽| 免费在线观看视频国产中文字幕亚洲 | 在线观看美女被高潮喷水网站| 久久影院123| 午夜免费鲁丝| 国产一区二区在线观看av| 菩萨蛮人人尽说江南好唐韦庄| 日韩中字成人| 1024香蕉在线观看| 人人妻人人澡人人看| 男女无遮挡免费网站观看| 亚洲国产成人一精品久久久| 久久精品夜色国产| 女人高潮潮喷娇喘18禁视频| 国产白丝娇喘喷水9色精品| 美女大奶头黄色视频| 中文字幕色久视频| 青春草亚洲视频在线观看| 亚洲,一卡二卡三卡| 美女xxoo啪啪120秒动态图| 成人毛片a级毛片在线播放| 性高湖久久久久久久久免费观看| 国产成人一区二区在线| 亚洲国产精品999| 亚洲国产精品999| 久久免费观看电影| 日本猛色少妇xxxxx猛交久久| 精品第一国产精品| 人人澡人人妻人| 精品午夜福利在线看| 18在线观看网站| 欧美xxⅹ黑人| 边亲边吃奶的免费视频| 国产av码专区亚洲av| 人人妻人人澡人人爽人人夜夜| 久久久久久久久久人人人人人人| 精品一区二区免费观看| 高清欧美精品videossex| 中文字幕亚洲精品专区| 一个人免费看片子| 一区福利在线观看| 日本91视频免费播放| 国产无遮挡羞羞视频在线观看| av不卡在线播放| 老司机影院成人| 咕卡用的链子| 99久久精品国产国产毛片| 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 麻豆av在线久日| 亚洲色图 男人天堂 中文字幕| 亚洲熟女精品中文字幕| 母亲3免费完整高清在线观看 | 成年动漫av网址| 亚洲国产看品久久| 成年女人在线观看亚洲视频| 亚洲第一av免费看| 中文字幕人妻丝袜一区二区 | 爱豆传媒免费全集在线观看| 国产亚洲最大av| 青青草视频在线视频观看| 亚洲一级一片aⅴ在线观看| freevideosex欧美| 永久网站在线| 有码 亚洲区| 在线观看国产h片| 久久久久精品性色| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 少妇被粗大猛烈的视频| 最黄视频免费看| 中文字幕人妻丝袜制服| 人人妻人人爽人人添夜夜欢视频| 免费黄频网站在线观看国产| 久久久a久久爽久久v久久| 国产亚洲精品第一综合不卡| 精品人妻在线不人妻| 永久网站在线| 欧美日韩成人在线一区二区| 国产极品粉嫩免费观看在线| 制服诱惑二区| 久久精品国产亚洲av高清一级| 五月开心婷婷网| 老司机影院毛片| 成人亚洲精品一区在线观看| 国产成人精品在线电影| 精品一区二区免费观看| 在现免费观看毛片| 久热这里只有精品99| 成人毛片60女人毛片免费| 婷婷色综合大香蕉| 免费不卡的大黄色大毛片视频在线观看| 亚洲综合色网址| 成人毛片60女人毛片免费| 婷婷色麻豆天堂久久| 高清黄色对白视频在线免费看| 最新的欧美精品一区二区| 91国产中文字幕| 精品一区二区三区四区五区乱码 | 亚洲经典国产精华液单| 可以免费在线观看a视频的电影网站 | 日韩在线高清观看一区二区三区| 亚洲国产精品999| av.在线天堂| 伊人亚洲综合成人网| 亚洲美女黄色视频免费看| 久久99精品国语久久久| 国产精品成人在线| 亚洲一区二区三区欧美精品| av在线观看视频网站免费| 国产熟女午夜一区二区三区| 最新中文字幕久久久久| 亚洲av男天堂| 国产精品女同一区二区软件| 飞空精品影院首页| 成人亚洲欧美一区二区av| 亚洲国产av新网站| 黄色毛片三级朝国网站| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区三区在线| 日韩中文字幕欧美一区二区 | 欧美在线黄色| 日韩欧美一区视频在线观看| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 国产视频首页在线观看| 天天躁夜夜躁狠狠躁躁| 十八禁网站网址无遮挡| 亚洲av男天堂| 2021少妇久久久久久久久久久| 韩国av在线不卡| 午夜福利视频在线观看免费| 欧美成人午夜免费资源| 欧美精品亚洲一区二区| 最近2019中文字幕mv第一页| 亚洲精品中文字幕在线视频| 天天影视国产精品| 日本欧美视频一区| 少妇的逼水好多| 国产福利在线免费观看视频| 久久人人爽av亚洲精品天堂| 亚洲精品成人av观看孕妇| 99国产精品免费福利视频| 最黄视频免费看| 久久精品国产综合久久久| 少妇精品久久久久久久| 午夜福利在线观看免费完整高清在| 国产精品秋霞免费鲁丝片| 搡老乐熟女国产| 久久ye,这里只有精品| 日韩三级伦理在线观看| 欧美bdsm另类| 91国产中文字幕| 成人国产麻豆网| 日韩中字成人| 性色avwww在线观看| av在线老鸭窝| 一级毛片黄色毛片免费观看视频| 成人国产麻豆网| 一边亲一边摸免费视频| 午夜激情久久久久久久| 国产国语露脸激情在线看| 性少妇av在线| 欧美少妇被猛烈插入视频| 午夜福利视频精品| 又黄又粗又硬又大视频| 国产精品久久久久久久久免| 肉色欧美久久久久久久蜜桃| 色哟哟·www| 丰满饥渴人妻一区二区三| 伦理电影大哥的女人| 少妇的丰满在线观看| 国产精品99久久99久久久不卡 | 边亲边吃奶的免费视频| 中文字幕色久视频| 精品卡一卡二卡四卡免费| 色播在线永久视频| 久久韩国三级中文字幕| 咕卡用的链子| 国产乱来视频区| 少妇人妻精品综合一区二区| 亚洲精品一区蜜桃| 欧美变态另类bdsm刘玥| 亚洲av日韩在线播放| 成人国语在线视频| 日韩中文字幕欧美一区二区 | 日韩在线高清观看一区二区三区| 日韩一卡2卡3卡4卡2021年| 欧美国产精品va在线观看不卡| 国产亚洲av片在线观看秒播厂| 国产在线免费精品| 日产精品乱码卡一卡2卡三| 国产国语露脸激情在线看| 美女主播在线视频| 精品一区二区三区四区五区乱码 | av在线播放精品| 亚洲欧美精品综合一区二区三区 | 亚洲成国产人片在线观看| 丝袜脚勾引网站| 亚洲国产日韩一区二区| 国产精品 欧美亚洲| 亚洲成人一二三区av| 五月开心婷婷网| 亚洲精品国产一区二区精华液| 最近手机中文字幕大全| 欧美av亚洲av综合av国产av | 成人免费观看视频高清| 叶爱在线成人免费视频播放| 成年美女黄网站色视频大全免费| 亚洲一区二区三区欧美精品| 亚洲av福利一区| 性色avwww在线观看| 国产乱人偷精品视频| 久热这里只有精品99| 国产精品一区二区在线观看99| 久久免费观看电影| www.熟女人妻精品国产| 国产成人av激情在线播放| 久久ye,这里只有精品| 五月天丁香电影| 日韩欧美精品免费久久| 大片电影免费在线观看免费| 中文字幕最新亚洲高清| 亚洲综合精品二区| 蜜桃国产av成人99| 亚洲激情五月婷婷啪啪| 又粗又硬又长又爽又黄的视频| 男女高潮啪啪啪动态图| 大香蕉久久成人网| 美女国产视频在线观看| 亚洲精品国产一区二区精华液| 9色porny在线观看| 最近中文字幕高清免费大全6| 亚洲欧美一区二区三区国产| 人妻系列 视频| 国产无遮挡羞羞视频在线观看| 日韩欧美一区视频在线观看| 欧美xxⅹ黑人| 69精品国产乱码久久久| 成人国产av品久久久| 日韩中文字幕视频在线看片| 久久久久久久国产电影| a级毛片在线看网站| 国产日韩一区二区三区精品不卡| 久久国产精品男人的天堂亚洲| 一区在线观看完整版| 99久国产av精品国产电影| 尾随美女入室| 夫妻午夜视频| 在线观看人妻少妇| 最新中文字幕久久久久| 亚洲av综合色区一区| 色网站视频免费| 国产一区亚洲一区在线观看| 我要看黄色一级片免费的| 黄色 视频免费看| 秋霞伦理黄片| 久久久久久久久久久免费av| 日本av免费视频播放| 男女边吃奶边做爰视频| 久久久久精品性色| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看 | 毛片一级片免费看久久久久| 国产毛片在线视频| 丰满乱子伦码专区| 巨乳人妻的诱惑在线观看| 99热国产这里只有精品6| 人妻系列 视频| 在线天堂最新版资源| 777米奇影视久久| 又黄又粗又硬又大视频| 婷婷成人精品国产| 亚洲伊人色综图| a级片在线免费高清观看视频| 午夜福利网站1000一区二区三区| 一本—道久久a久久精品蜜桃钙片| 欧美国产精品va在线观看不卡| 午夜福利乱码中文字幕| 久久久久久伊人网av| 久久精品久久久久久久性| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 亚洲欧洲日产国产| 色婷婷久久久亚洲欧美| 纯流量卡能插随身wifi吗| 欧美激情 高清一区二区三区| 日本av免费视频播放| 精品少妇内射三级| 一个人免费看片子| 在线天堂最新版资源| 国产亚洲欧美精品永久| 一边摸一边做爽爽视频免费| 日韩一本色道免费dvd| 久久国内精品自在自线图片| 岛国毛片在线播放| 免费观看性生交大片5| 18禁国产床啪视频网站| www.熟女人妻精品国产| 两个人免费观看高清视频| 国产97色在线日韩免费| videos熟女内射| 亚洲精品自拍成人| 啦啦啦视频在线资源免费观看| 欧美日韩亚洲高清精品| 两个人免费观看高清视频| 五月开心婷婷网| 涩涩av久久男人的天堂| 国产伦理片在线播放av一区| 看非洲黑人一级黄片| 男女边吃奶边做爰视频| 女性被躁到高潮视频| 激情视频va一区二区三区| 性高湖久久久久久久久免费观看| 国产精品欧美亚洲77777| 亚洲国产成人一精品久久久| 久久精品国产自在天天线| 欧美人与性动交α欧美软件| 成人午夜精彩视频在线观看| 男女下面插进去视频免费观看| 成人手机av| 日韩一卡2卡3卡4卡2021年| 久久久久久久久免费视频了| 亚洲欧美中文字幕日韩二区| 伊人久久国产一区二区| 伦精品一区二区三区| 久久女婷五月综合色啪小说| 国产精品三级大全| 亚洲精品国产av成人精品| 欧美在线黄色| 亚洲精品国产一区二区精华液| 欧美人与性动交α欧美软件| a级片在线免费高清观看视频| 丝袜人妻中文字幕| 天美传媒精品一区二区| 97人妻天天添夜夜摸| 少妇精品久久久久久久| 久久精品国产亚洲av高清一级| 国产精品成人在线| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品美女久久久久99蜜臀 | 亚洲,欧美精品.| 久久久久国产网址| av免费观看日本| 日日摸夜夜添夜夜爱| 亚洲精品第二区| 一区二区日韩欧美中文字幕| 91午夜精品亚洲一区二区三区| 午夜福利视频精品| 女人久久www免费人成看片| 久久久国产一区二区| 亚洲国产成人一精品久久久| 制服诱惑二区| 欧美日韩精品网址| 成人毛片a级毛片在线播放| 日本av手机在线免费观看| 天天影视国产精品| 丝袜美腿诱惑在线| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 亚洲三级黄色毛片| h视频一区二区三区| 日本午夜av视频| 国产精品久久久久久精品古装| 亚洲国产精品一区二区三区在线| 9热在线视频观看99| 国产一区二区三区综合在线观看| 久久97久久精品| 久久久a久久爽久久v久久| 久久精品亚洲av国产电影网| 青青草视频在线视频观看| 国产黄色视频一区二区在线观看| 亚洲欧美色中文字幕在线| 国产欧美亚洲国产| 国产一区二区三区av在线| 国产1区2区3区精品| 九色亚洲精品在线播放| 亚洲人成网站在线观看播放| 久久99蜜桃精品久久| 丰满迷人的少妇在线观看| 九九爱精品视频在线观看| 国产精品秋霞免费鲁丝片| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 免费日韩欧美在线观看| 国产免费福利视频在线观看| 一区二区三区四区激情视频| 精品一品国产午夜福利视频| 亚洲av中文av极速乱| 丰满乱子伦码专区| 18禁动态无遮挡网站| 欧美变态另类bdsm刘玥| 在线天堂中文资源库| 超色免费av| 国语对白做爰xxxⅹ性视频网站| 新久久久久国产一级毛片| 免费观看在线日韩| 男女高潮啪啪啪动态图| 欧美国产精品va在线观看不卡| 久久狼人影院| 七月丁香在线播放| 国产色婷婷99| 国产 一区精品| 97人妻天天添夜夜摸| 国产不卡av网站在线观看| 日本色播在线视频| 亚洲精品国产av成人精品| 水蜜桃什么品种好| 秋霞伦理黄片| 交换朋友夫妻互换小说| 亚洲欧洲日产国产| 亚洲精品第二区| 免费在线观看完整版高清| 亚洲精品,欧美精品| 毛片一级片免费看久久久久| a级片在线免费高清观看视频| 成人国语在线视频| 日韩电影二区| xxx大片免费视频| 秋霞伦理黄片| av免费观看日本| 亚洲欧美中文字幕日韩二区| 美女午夜性视频免费| 亚洲激情五月婷婷啪啪| 又粗又硬又长又爽又黄的视频| 最近的中文字幕免费完整| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 午夜日韩欧美国产| 男女无遮挡免费网站观看| 观看av在线不卡| 嫩草影院入口| 看十八女毛片水多多多| 一本大道久久a久久精品| 亚洲精品美女久久久久99蜜臀 | 免费人妻精品一区二区三区视频| 国产精品免费视频内射| 观看av在线不卡| 麻豆乱淫一区二区| 老鸭窝网址在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲成人手机| 91在线精品国自产拍蜜月| 亚洲图色成人| 人体艺术视频欧美日本| 日韩三级伦理在线观看| 婷婷色综合www| 亚洲精华国产精华液的使用体验| 国产成人免费观看mmmm| 国产老妇伦熟女老妇高清| h视频一区二区三区| 国产熟女欧美一区二区| 哪个播放器可以免费观看大片| 成人黄色视频免费在线看| 青青草视频在线视频观看| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| av网站免费在线观看视频| 丰满乱子伦码专区| 少妇熟女欧美另类| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 国产免费福利视频在线观看| 亚洲一级一片aⅴ在线观看| 美女福利国产在线| 婷婷成人精品国产| 亚洲精品美女久久久久99蜜臀 | 在线观看免费日韩欧美大片| 一二三四在线观看免费中文在| 香蕉国产在线看| 性色av一级| 一级毛片黄色毛片免费观看视频| 久久午夜综合久久蜜桃| 久久精品国产亚洲av天美| 伊人亚洲综合成人网| 精品国产一区二区久久| 美女国产视频在线观看| 精品99又大又爽又粗少妇毛片| 五月伊人婷婷丁香| tube8黄色片| 制服诱惑二区| 国精品久久久久久国模美| 国产成人aa在线观看| 亚洲国产毛片av蜜桃av| 成人亚洲欧美一区二区av| 国产一区亚洲一区在线观看| 亚洲av综合色区一区| 精品国产乱码久久久久久男人| 国产男人的电影天堂91| 五月天丁香电影| 国产男女超爽视频在线观看| 99久久中文字幕三级久久日本| 在线 av 中文字幕| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 欧美+日韩+精品| 黄色怎么调成土黄色| 亚洲精品美女久久av网站| 欧美人与性动交α欧美软件| 国产探花极品一区二区| 热99国产精品久久久久久7| 日韩一本色道免费dvd| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 香蕉精品网在线| 波多野结衣一区麻豆| 成年人午夜在线观看视频| 久久久国产精品麻豆| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 天天躁夜夜躁狠狠久久av| 黑人猛操日本美女一级片| 国产精品国产三级国产专区5o| 人妻一区二区av| 777米奇影视久久| 欧美人与善性xxx| 观看美女的网站| 国产成人精品福利久久| 毛片一级片免费看久久久久| 色网站视频免费| 侵犯人妻中文字幕一二三四区| 久久鲁丝午夜福利片| 极品人妻少妇av视频| 成年av动漫网址| 日韩熟女老妇一区二区性免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 女性被躁到高潮视频| 亚洲精品美女久久久久99蜜臀 | 精品第一国产精品| 亚洲国产欧美日韩在线播放| 亚洲国产欧美在线一区| 午夜影院在线不卡| 免费观看性生交大片5| 久久国产精品大桥未久av| 久久午夜福利片| 汤姆久久久久久久影院中文字幕| 一区二区三区激情视频| 各种免费的搞黄视频| 欧美精品亚洲一区二区| 久久久亚洲精品成人影院| 校园人妻丝袜中文字幕| 亚洲国产看品久久| 成人毛片a级毛片在线播放| 午夜免费鲁丝| 午夜免费男女啪啪视频观看| 成人黄色视频免费在线看| 国产成人a∨麻豆精品| 亚洲成色77777| 大码成人一级视频| 国产日韩欧美在线精品| av免费观看日本| 欧美精品亚洲一区二区| 亚洲国产av新网站| videos熟女内射| 国产成人av激情在线播放| av.在线天堂| 侵犯人妻中文字幕一二三四区| 美女国产视频在线观看| 国产乱来视频区| 男人操女人黄网站| 久久久久国产精品人妻一区二区| 电影成人av| 咕卡用的链子| 香蕉丝袜av| av国产精品久久久久影院| 三上悠亚av全集在线观看| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 成人手机av| 成年人午夜在线观看视频| 伦理电影大哥的女人| 日本av手机在线免费观看| kizo精华| 精品久久久久久电影网| 精品亚洲成国产av| 日产精品乱码卡一卡2卡三| 99久久综合免费| 男人添女人高潮全过程视频| 搡女人真爽免费视频火全软件| 下体分泌物呈黄色| 成人免费观看视频高清| 王馨瑶露胸无遮挡在线观看| 欧美+日韩+精品| 男女高潮啪啪啪动态图| 精品亚洲成国产av| 欧美bdsm另类| av女优亚洲男人天堂| 亚洲欧美精品自产自拍| 日韩成人av中文字幕在线观看| 成年动漫av网址| 日韩av免费高清视频| 一二三四在线观看免费中文在| 免费观看av网站的网址| 国产成人aa在线观看| 亚洲欧美精品自产自拍| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 久久精品国产综合久久久| 九草在线视频观看| √禁漫天堂资源中文www| 精品亚洲成a人片在线观看| 日本-黄色视频高清免费观看| 老司机亚洲免费影院| 黄色配什么色好看|