• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diversity scaling of human vaginal microbial communities

    2019-10-31 10:51:10WendyLi,Zhan-ShanMa
    Zoological Research 2019年6期

    DEAR EDITOR,The composition and diversity of the human vaginal microbial community have been investigated intensively due to the diversity-stability relationship (DSR)-based hypothesis for bacterial vaginosis(BV)etiology,which was first proposed in the 1990s and has received renewed interest in recent years.Nevertheless,diversity changes(scaling)across individuals in a cohort or population have not yet been addressed,which is significant both theoretically and practically. Theoretically,biodiversity scaling is the core of biogeography, and practically, inter-subject heterogeneity is critical for understanding the etiology and epidemiology of human microbiome-associated diseases such as BV.Here we applied the diversity-area relationship(DAR),a recent extension to the classic species-area relationship(SAR),to study diversity scaling of the vaginal microbiome by reanalyzing reported data collected from 1107 postpartum women.The model used here characterized the power-law (or its extension)relationships between accrued diversity and areas(numbers of individuals),upon which four biogeographic profiles were thus defined. Specifically, we established the DAR profile(relationship between diversity scaling parameter and sotermed diversity order(q)),similarly pair-wise diversity overlap(PDO)profile,maximal accrual diversity(MAD)profile,and ratio of individual-level to population-level diversity (RIP)profile.These four profiles offer valuable tools to assess and predict diversity scaling (changes) in the human vaginal microbiome across individuals,as well as to understand the dynamics of vaginal microbiomes in healthy women.

    The human vaginal microbiome is a complex ecosystem that plays critical roles in maintaining host health.As the first defense of the reproductive tract,the vaginal microbiome is critical for the prevention of opportunistic pathogen colonization and viral infection. For example, endogenous,healthy vaginal microbiota can help protect against HIV infection by activating local and systemic inflammation;however,microbiota associated with BV can also increase susceptibility to HIV infection(Buvé et al.,2014;Petrova et al.,2013).For pregnant women,the vaginal microbiota is not only associated with maternal health but also that of neonates,with the composition of the newly colonized microbiome playing a key role in newborn immunity and metabolic development(Cox et al.,2014;Dominguez-Bello et al.,2010;Olszak et al.,2012;Rutayisire et al.,2016).Furthermore,babies delivered by cesarean section can have a higher risk of metabolic and immune diseases than those delivered vaginally(Dominguez-Bello et al.,2010;Sevelsted et al.,2015;Younes et al.,2018),although Chu et al.(2017)noted that delivery mode does not influence microbiome composition in newborns.Moreover,in pregnancy, vaginal dysbiosis is hypothesized to be a contributor to spontaneous preterm birth(Freitas et al.,2018;Romero et al.,2014a;Stout et al.,2017)and miscarriage(Ralph et al.,1999).

    In many healthy women, the vaginal microbiota is dominated by Lactobacillus spp.(Macklaim et al.,2013;Ravel et al.,2011).Several studies(Brotman et al.,2014;Gajer et al.,2012;Ma&Li,2017;Ravel et al.,2011)have confirmed the five major community state types of the vaginal microbiome in adult women,as first identified by Ravel et al.(2011). Four types are dominated by Lactobacillus spp.,including L.iners,L.crispatus,L.gasseri,and L.jensenii.However, 20%-30%of asymptomatic, otherwise healthy individuals lack lactic acid bacteria in their vaginal microbiome, which instead consists of obligate anaerobic bacteria(Ravel et al.,2011,2013).In addition,the frequency of microbiome type varies in different ethnic groups, with those microbiome not dominated by Lactobacillus spp.more commonly found in healthy Hispanic and black women than in Asian or white women(Ma et al.,2012;Ravel et al.,2011).Furthermore,the composition of the vaginal microbiome is dynamic during life and associated with menopause stage(Muhleisen & Herbst-Karlovetz, 2016). Recent research demonstrated the vaginal microbiome of perimenarcheal adolescents to be dominated by Lactobacillus spp.,including L.crispatus,L.iners,L.gasseri,and L.jensenii,similar to that found in reproductive-age women(Hickey et al.,2015).In premenopausal women, the vaginal microbiota is still dominated by L.crispatus and L.iners,but Lactobacillus spp.are often replaced by Streptococcus and Prevotella in the perimenopausal and postmenopausal stages(Brotman et al.,2014).Shifts in vaginal microbiome have also been observed during and after pregnancy. For example, diversity and richness of the vaginal microbiome is lower in pregnant women than in non-pregnant women(Freitas et al.,2017).Furthermore,Romero et al.(2014b)showed that the vaginal microbiome of pregnant women contains a higher abundance of L.vaginalis,L.crispatus,L.gasseri,and L.jensenii,and a lower probability of switching to a Lactobacillus-deficient community.In addition,radical changes in Lactobacillus-poor vaginal communities have been found at delivery,which can persist for up to a year(DiGuilio et al.,2015).

    Despite extensive studies on the human vaginal microbiome, what constitutes normal or healthy vaginal microbiota remains unresolved. For example, Doyle et al.(2018)sampled and sequenced the vaginal microbiome of 1 107 rural Malawi women after pregnancy, and found that 75.7% (752/994) of the population were dominated by Gardnerella vaginalis rather than by Lactobacillus spp.,and although L. iners increased with time after delivery, G.vaginalis still dominated for an extended period.In Doyle’s study,both the pregnancy delivery mode and ethnicity also appeared to influence the composition of vaginal microbiome,though all hosts were healthy.

    Previous research has revealed that the biodiversity of vaginal microbial communities varies with health status and lifestyle of the host.Nevertheless,existing studies have not addressed diversity scaling(changes)across individuals in a cohort or population. Theoretically, microbiome diversity distribution across individual subjects (i. e., space) is traditionally a focus of microbial biogeography. Practically speaking, understanding the biogeography of the human microbiome can reveal critical information on its characteristics in a cohort setting, which can, in turn,significantly influence studies on the etiology and epidemiology of human microbiome-associated diseases such as inflammatory bowel disease,obesity,and BV.To effectively assess the spatial scaling of human vaginal microbial diversity, we applied the DAR model, which is a recent extension of the classic SAR in biogeography and conservation biology(Bell et al.,2005;Horner-Devin et al.,2004;MacArthur&Wilson,1967;Noguez et al.,2005;Peay et al.,2007;Triantis et al.,2012;Várbíró et al.,2017;Whittaker& Triantis, 2012). SAR is one of the oldest described ecological laws or patterns, whereby species richness increases with increasing sampling area,and can be traced back to the 19th century(Watson,1835).It is still considered one of the most important principles in conservation biology and biogeography. The extensions from SAR to DAR introduced a several important advances including:(1) Expanding species richness (number of species) to general diversity measures in Hill numbers(Chao et al.,2012,2014;Hill,1973),thus making it possible to not only assess the scaling of species richness(numbers),but also scaling of general diversity(e.g.,change in community evenness or dominance).Therefore,the classic SAR is a special case of the more general DAR;(2)The DAR,PDO,MAD,and local regional/global diversity(LRD/LGD)profiles are effective tools for the biogeographic mapping of biodiversity over space(Ma,2018a,2018c,2019).

    In this study,we applied DAR modeling and associated biogeographic profiles to investigate the spatial diversity scaling of postpartum vaginal microbial communities across individuals by reanalyzing the large vaginal microbiome dataset originally reported by Doyle et al.(2018).The spatial diversity scaling of the vaginal microbiome revealed heterogeneity among individuals, which could provide an ecological basis for personalized and precise diagnosis and treatment of microbiome-associated diseases,including BV.The biogeographic profiles of the vaginal microbiome also provide tools for explaining the DSR hypothesis for BV etiology from multiple dimensions(Ma&Ellison,2018,2019).

    The vaginal microbial dataset (Doyle et al., 2018)reanalyzed in this study consisted of 1 158 vaginal microbiome samples collected from 1 107 rural Malawi women postdelivery.Most samples were collected within the first 20 d of delivery,though some were sampled 5-583 d post-delivery.The V5-V7 hypervariable regions of the 16S rRNA genes were amplified and sequenced under the MiSeq Illumina platform.After quality control,the sequences were clustered into 14 354 operational taxonomic units(OTUs)using QIIME 2.8.6.Samples with less than 2 000 reads were removed,as were OTUs with less than 1 000 reads. After prescreening,1 076 samples and 466 OTUs remained for DAR analysis.In DAR analysis,the number of each OTU read is equivalent to the population abundance of a species in macro-ecology,or OTU abundance in diversity analysis. More detailed information on the dataset can be found in Doyle et al.(2018).

    The Hill numbers(Hill,1973)were reintroduced to ecology by Jost(2007)and Chao et al.(2012,2014),and possess certain critical advantages over traditional diversity indexes.The Hill numbers for measuring alpha diversity are as follows:

    When q=1,the Hill number is undefined,but its limit exists in the following form:

    where,D is the diversity in Hill numbers,q(=0,1,2,…)is the order number of diversity,S is the number of species(or OTUs),and piis the relative abundance of species i.The diversity order(q)sets the sensitivity of the Hill numbers to the relative frequencies of species abundances.When q=0,0D is equal to the number of species or species richness(S).When q=1,1D is the number of typical or common species in the community and is equal to the exponential of Shannon entropy.When q=2,2D is more sensitive to species with high abundance,and is equal to the inverse of the Simpson index.Generally,qD is the diversity of a community with x=qD equally abundant species.

    Beta-diversity can be defined with the multiplicative partitioning of Hill numbers(Chao et al.,2012,2014;Ellison,2010;Gotelli&Chao,2013;Jost,2007),as follows:

    where,qDαandqDγare the alpha and gamma diversities in terms of Hill numbers,respectively.AsqDγis equivalent to the alpha diversity of the meta-community, it has the same definition as alpha-diversity (Eqn. (1)). Chao et al. (2012,2014) defined a series of Hill numbers corresponding to different diversity orders(q)as the diversity profile.In this study,the diversity or Hill numbers were computed until the third order,q=3.

    According to Ma(2018a),we used the power law(PL)DAR model and power-law with exponential cutoff(PLEC)model as the DAR models for the human vaginal microbiome.The PL model is:

    where,qD is diversity measured in Hill numbers of the q-th order,A is the area(number of individuals),and c&z are the PL parameters.

    The PLEC model is:

    where,d is a third parameter that is usually less than zero in DAR modeling,and exp(dA)is then the exponential decay item that eventually overwhelms the power law behavior when A is sufficiently large.

    To simplify parameter estimation,we transformed non-linear Equations(4)and(5)into log-linear regression equations:

    In Eqn.(6),z is the slope of the log-linear transformed PL model,which is equivalent to its interpretation in the traditional SAR—ratio of diversity accrual rate to area increase rate.Parameter c of the PL model can be viewed as the number of species equivalent to diversity in the first unit of area to accrue.Thus,the accrual order of area unit may influence parameter c. To deal with this technical issue, the units(individuals/samples) to be accumulated were randomly permutated each time the DAR model was built.For each dataset,we repeatedly applied DAR modeling 100 times by randomly re-ordering all samples in the dataset. For the detailed computational procedure,please refer to Ma(2018a).

    Similar to the diversity profile concept of Chao et al.(2012,2014),which is a series of Hill numbers corresponding to different diversity orders(q),Ma(2018a)and Ma&Li(2018)proposed four DAR-based profiles,including the DAR,PDO,MAD, and LRD/LGD profiles. These four profiles can be quantitatively characterized by parameters from the PL/PLEC DAR models and can be used to sketch out biogeography maps of the human microbiome or other ecological communities.

    The DAR profile was defined as a series of z-values(scaling parameter)of the PL-DAR model(Eqns.4&6),i.e.,a series of z-values corresponding to different diversity orders(q)or z-q trends.

    The PDO profile was defined as:

    where,z is the scaling parameter of the PL-DAR model,i.e.,the PDO profile is a series of g(q)values corresponding to different diversity orders(q),computed with Eqn.(8).

    The MAD profile was defined as a series of MAD orqDmaxvalues,corresponding to different diversity orders(q):

    where, Amax=-z/d is the number of individuals (samples)needed to reach the MAD,and c and z are parameters of the PLEC-DAR model(Eqns.(5)&(7)).

    The RIP profile was defined as a series of RIP values corresponding to different diversity orders(q),as specified by the following equation:

    where,c is a parameter of the PL-DAR model and D is the diversity in Hill numbers estimated with the PLEC-DAR model(Eqns.(5)&(7)).Based on the above RIP definition,a RIP profile can be defined for a population(cohort)of any size.In practice,usingqDmaxforqD is more convenient,i.e.:

    The RIP parameter assesses the average level of an individual to represent a population(or cohort)from which the individual is a member.The RIP profile is also known as the LRD (local-to-regional diversity) or LGD (local-to-global diversity) profile in other ecological systems beyond the human microbiome(Ma&Li,2018;Ma,2019).

    We built two DAR models for the vaginal microbiome,including the PL and PLEC models for alpha-diversity and beta-diversity scaling,respectively.The results are listed in Tables 1 and 2, including the diversity order (q) of Hill numbers,mean model parameters(z,ln(c),d,g,Dmax)and their standard errors,and measures(correlation coefficient R&P-value)for goodness-of-fitting.N represented the number of successful fittings out of 100 p re-samplings,as explained previously. Re-sampling was performed to deal with the possible influence of the order of diversity accrual(i.e.,order in which the samples were accrued for building the DAR model)on model parameter c.Except for two cases of alpha-DAR modeling at diversity order q=3,the fittings to the DAR models were successful in all 100 re-samplings.Even in the two exceptions, the success rates were 97% and 99%,respectively. Therefore, the DAR models were considered suitable for vaginal microbiome assessment,as also evident by the R (linear correlation coefficient) and associated p values,which indicated the goodness-of-fit of the DAR models.

    Based on Table 1,we found the following in regard to alpha-DAR scaling:

    (1)As one of the most important parameters from the PLDAR model,the scaling parameter(z)at different diversity orders(q)was z(q)=(0.807(0),0.171(1),0.110(2),0.095(3)),where z(q)represents the DAR profile according to previous definition.The DAR profile characterizes the diversity scaling across individuals(over space)comprehensively.Results also showed that the scaling level differed at different orders.Forexample,scaling at diversity order q=0,which is equivalent to the classic SAR law,was faster than that at q=1,2,or 3,as indicated by the monotonically decreasing z-value(see Figure 1A for alpha-DAR profile).

    Table 1 Alpha-DAR models computed with 100 re-samplings for the vaginal microbiome

    Figure 1 DAR profile(z-q)and PDO profile(g-q)of the vaginal microbiome

    (2)The PDO profile was g(q)=(0.250(0),0.874(1),0.920(2),0.931(3)).The PDO profile,which characterizes the overlap or similarity between pair-wise individuals,showed the opposite trend as the DAR profile,i.e.,a monotonically increasing trend(see Figure 1A for alpha-PDO profile).

    (3)The MAD profile characterizes the theoretically maximal accumulation of diversity across individuals.Here,regarding the MAD profile,the PLEC model failed to produce Dmaxat diversity order q=0 because d>0,for which a maximum does not exist.For the diversity orders q=1,2,3,the PLEC model for alpha-diversity successfully generated Dmax,i.e.,Dmax(q)=(86.8(1),34.4(2),24.5(3)).

    Table 2 Beta-DAR models computed with 100 re-samplings for the vaginal microbiome

    From Table 2,we found the following in regard to beta-DAR scaling:

    (1)As one of the most important parameters of the PL-DAR model, the beta-diversity scaling parameter (z) at different diversity orders(q)was z(q)=(0.805(0),0.176(1),0.146(2),0.166(3)),where z(q)represents the DAR profile according to previous definition and characterizes diversity scaling across individuals(over space)comprehensively(see Figure 1B for beta-DAR profile).Comparison between the beta-DAR and alpha-DAR profiles revealed an interesting phenomenon:i.e.,the alpha-DAR profile monotonically decreased with q,whereas the beta-DAR profile was valley-shaped. This suggests that,at a lower diversity order(q),the alpha-DAR and beta-DAR scaling parameters(z)were rather close to each other,but the difference was enlarged at higher diversity orders(q).

    (2)The beta-PDO profile was g(q)=(0.253(0), 0.870(1),0.893(2),0.877(3))for beta-diversity scaling.Here,the PDO profile,which characterizes the overlap or similarity between pair-wise individuals,showed the opposite trend to the DAR profile,i.e.,a bell-shaped trend(see Figure 1B for beta-PDO profile).

    (3)The MAD profile characterizes the theoretical maximal accumulation of diversity across individuals.Here,regarding the beta-MAD profile,the PLEC model failed to produce Dmaxat diversity order q=0 because d>0,for which a maximum does not exist.For diversity orders q=1,2,3,the PLEC model for beta-diversity successfully generated Dmax,i.e.,Dmax(q)=(15.5(1),17.3(2),21.3(3)).

    Table 3 shows the RIP values for both alpha-DAR and beta-DAR of the vaginal microbiome.At diversity order q=0,the estimation of0Dmaxfailed, and RIP for q=0 could not be estimated.For q=1,2,3,RIP was successfully estimated for alpha- and beta-diversity, respectively. Here, RIP characterized the relationship between individual- and population-level diversity.For example,at diversity order q=1,alpha-RIP=0.327 and beta-RIP=0.316, indicating that an average individual represented approximately 33%and 32%of population alpha-and beta-diversity,respectively.

    In the current study,we investigated the diversity(including alpha- and beta-diversity) scaling of the human vaginal microbiome across individuals by re-analyzing a big datasetoriginally published by Doyle et al.(2018).Compared with the microbial SAR range reported in existing literature for other microbes, such as Green & Bohannan’s (2006) range between 0.019-0.470,the scaling parameter(z)estimated in our study,i.e.,alpha-z=0.807,beta-z=0.805,appears to be out of the known range,at nearly twice that reported for SAR values for other microbes.Three possibilities exist for the significant difference: (1) The use of revolutionary metagenomic sequencing technology, which allows for detection of more microbial species and consequently large scaling parameter;(2)The human vaginal microbiome has higher heterogeneity across individuals, which could be validated by future biomedical studies; and (3) The postpartum nature of the vaginal microbiome samples analyzed in this study. We could not exclude these possibilities at present due to insufficient available data for comparative research. Indeed, previous studies have classified human vaginal microbiomes into five main community-state types(CSTs),in which CST I,II,III,and V are dominated by Lactobacillus spp.,and CST IV is composed of facultative or strictly anaerobic bacteria(Gajer et al.,2012;Ravel et al.,2011),many of which are BV-related.The vaginal microbial communities of postpartum women in rural Malawi studied by Doyle et al. (2018) and reanalyzed here were mostly Lactobacillus-deficient microbiomes, which could be grouped as CST IV,although all these women were healthy.Therefore,the classification of CSTs may be more complex than initially conceived. Consequently, our DAR analysis based on Doyle et al.(2018)may be limited by the datasets of postpartum women,and the DAR parameters of the vaginal microbiomes of other CST women are likely different from the results reported here.Further studies should be performed to clarify this important issue.

    Table 3 Ratio of individual-level to population-level diversity(RIP)of the vaginal microbiome

    The major findings in this study can be summarized using four profiles: i.e., DAR profile, characterizing the change(scaling)in diversity heterogeneity across individuals;PDO profile, characterizing the pair-wise similarity (overlap)between individuals;MAD profile,characterizing the maximal accrual diversity in a population; and RIP profile,characterizing the ratio of individual-level diversity to population-level diversity.Theoretically,the four profiles can together summarize the essential characteristics of the spatial distribution of vaginal microbial diversity and offer effective tools to sketch out the biogeographic maps of the human vaginal microbiome. Practically, they are essentially quantitative metrics of diversity heterogeneity across individuals from different dimensions(diversity scaling,pairwise similarity in diversity,maximal accrual diversity,ratio of individual to population diversity). These multidimensional metrics could provide more comprehensive tools for understanding the implications of vaginal microbial diversity to women’s health,including the DSR hypothesis for BV etiology(Ma et al.,2012,Ma&Ellison 2018,2019 Sobel,1999).In addition,the quantitative models of the four profiles obtained here could be harnessed to assess and predict microbiome diversity changes at the population scale and are of potential significance for evaluating women’s health associated with vaginal microbiomes.

    COMPETING INTERESTS

    The authors declare that they have no competing interests.

    AUTHORS'CONTRIBUTIONS

    Z.S.M.designed the study and wrote the paper.W.L.performed the data analysis and interpretation.All authors read and approved the final version of the manuscript.

    ACKNOWLEDGEMENTS

    We are deeply indebted to Prof.Yong-Gang Yao for his advice and review of our manuscript.We are also deeply grateful to Dr.Ronan Doyle,Great Ormond Street Hospital,NHS Foundation Trust,United Kingdom,for his assistance in re-analyzing the raw sequencing reads for this study.

    国产av麻豆久久久久久久| 国产三级在线视频| 久久久久久久久中文| 午夜日韩欧美国产| 亚洲人成伊人成综合网2020| 国产精品99久久久久久久久| 麻豆av噜噜一区二区三区| 久久久久久国产a免费观看| 亚洲自偷自拍三级| 日本色播在线视频| 乱码一卡2卡4卡精品| 一级av片app| 亚洲欧美激情综合另类| 亚洲av免费在线观看| 亚洲经典国产精华液单| 黄色配什么色好看| 最近最新中文字幕大全电影3| 亚洲精品日韩av片在线观看| 99久久九九国产精品国产免费| 亚洲第一电影网av| 制服丝袜大香蕉在线| 亚洲最大成人av| 97超视频在线观看视频| 国产主播在线观看一区二区| 2021天堂中文幕一二区在线观| 日韩欧美国产一区二区入口| 国产精品一区二区性色av| 日本黄色视频三级网站网址| 黄色日韩在线| av天堂中文字幕网| 又紧又爽又黄一区二区| 天天一区二区日本电影三级| 国内精品一区二区在线观看| 久久久久久久久久成人| 白带黄色成豆腐渣| 麻豆成人av在线观看| 欧美日韩黄片免| 自拍偷自拍亚洲精品老妇| 搡女人真爽免费视频火全软件 | 亚洲av电影不卡..在线观看| 亚洲黑人精品在线| 亚洲四区av| 天美传媒精品一区二区| 欧美成人a在线观看| 日本免费a在线| 嫩草影院新地址| 丰满人妻一区二区三区视频av| 波多野结衣巨乳人妻| 免费观看精品视频网站| 色av中文字幕| 中文字幕免费在线视频6| 男女之事视频高清在线观看| 亚洲精华国产精华精| 日本欧美国产在线视频| 18禁黄网站禁片午夜丰满| 在线观看免费视频日本深夜| 51国产日韩欧美| 久久久国产成人免费| 午夜福利视频1000在线观看| 国内揄拍国产精品人妻在线| 色哟哟·www| 午夜福利18| 欧美+日韩+精品| 精品一区二区三区人妻视频| 黄色配什么色好看| 欧美最新免费一区二区三区| 国产色婷婷99| 一进一出抽搐动态| 中亚洲国语对白在线视频| 麻豆一二三区av精品| 麻豆av噜噜一区二区三区| 1024手机看黄色片| 亚洲欧美清纯卡通| 两个人视频免费观看高清| 午夜a级毛片| 日韩欧美精品v在线| 国产伦人伦偷精品视频| 亚洲美女黄片视频| 国产精品久久久久久久电影| 91午夜精品亚洲一区二区三区 | 国产黄a三级三级三级人| 欧美zozozo另类| 国产精品美女特级片免费视频播放器| aaaaa片日本免费| 老女人水多毛片| 亚洲国产高清在线一区二区三| 国产私拍福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 九九爱精品视频在线观看| 网址你懂的国产日韩在线| 黄片wwwwww| 岛国在线免费视频观看| 十八禁国产超污无遮挡网站| 亚洲成人久久性| 88av欧美| 非洲黑人性xxxx精品又粗又长| av专区在线播放| 国产精品综合久久久久久久免费| 亚洲熟妇熟女久久| 午夜激情福利司机影院| 亚洲最大成人中文| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久精品吃奶| 亚洲人成网站高清观看| 成人国产一区最新在线观看| 搡老妇女老女人老熟妇| 九九爱精品视频在线观看| .国产精品久久| 久久精品国产亚洲av香蕉五月| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆 | 国产一区二区三区视频了| 亚洲av美国av| 乱系列少妇在线播放| av专区在线播放| 男人舔奶头视频| 国产精品自产拍在线观看55亚洲| 啦啦啦啦在线视频资源| 一级黄色大片毛片| 精品久久国产蜜桃| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| 成人三级黄色视频| 国产成人影院久久av| 国产高清三级在线| 国产男靠女视频免费网站| 国产精品女同一区二区软件 | 亚洲一级一片aⅴ在线观看| 午夜免费激情av| 天堂网av新在线| 日韩欧美 国产精品| 女生性感内裤真人,穿戴方法视频| 三级毛片av免费| 国产亚洲精品av在线| 色在线成人网| www.www免费av| 老师上课跳d突然被开到最大视频| 夜夜看夜夜爽夜夜摸| 亚洲熟妇熟女久久| 色视频www国产| 国产精品乱码一区二三区的特点| 黄色女人牲交| 午夜激情福利司机影院| 国产精品乱码一区二三区的特点| 亚洲自偷自拍三级| 国产精品伦人一区二区| 不卡一级毛片| 在线观看美女被高潮喷水网站| 亚洲av不卡在线观看| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| 免费看av在线观看网站| 成年版毛片免费区| 国产高清视频在线观看网站| 亚洲一区高清亚洲精品| 日韩精品中文字幕看吧| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 一进一出抽搐gif免费好疼| 狂野欧美激情性xxxx在线观看| 欧美丝袜亚洲另类 | 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 97碰自拍视频| 国产精品久久久久久av不卡| 国产伦精品一区二区三区四那| 国产男靠女视频免费网站| 女人十人毛片免费观看3o分钟| 乱码一卡2卡4卡精品| 我的老师免费观看完整版| 综合色av麻豆| 别揉我奶头 嗯啊视频| 精品一区二区三区视频在线观看免费| 欧美性猛交╳xxx乱大交人| 如何舔出高潮| 国产高潮美女av| 欧美一区二区亚洲| 九色国产91popny在线| 又粗又爽又猛毛片免费看| 男女之事视频高清在线观看| 91麻豆av在线| 亚洲国产精品合色在线| 亚洲成人久久性| 最近视频中文字幕2019在线8| 欧美极品一区二区三区四区| 久久精品91蜜桃| 亚洲无线在线观看| 又爽又黄a免费视频| 日韩人妻高清精品专区| 欧美成人一区二区免费高清观看| netflix在线观看网站| 黄片wwwwww| 久久久色成人| 两性午夜刺激爽爽歪歪视频在线观看| 欧美精品国产亚洲| 亚洲av电影不卡..在线观看| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 日韩欧美在线二视频| 熟妇人妻久久中文字幕3abv| 日本一本二区三区精品| bbb黄色大片| 国产亚洲精品久久久com| 国产精品嫩草影院av在线观看 | 看十八女毛片水多多多| 国内少妇人妻偷人精品xxx网站| 草草在线视频免费看| 观看美女的网站| av女优亚洲男人天堂| 日本黄色片子视频| 大又大粗又爽又黄少妇毛片口| 成人高潮视频无遮挡免费网站| 在线观看av片永久免费下载| 天堂√8在线中文| 国产淫片久久久久久久久| 亚洲久久久久久中文字幕| 国产毛片a区久久久久| 国产精品免费一区二区三区在线| 丝袜美腿在线中文| 女人被狂操c到高潮| 一个人看的www免费观看视频| av福利片在线观看| 人人妻人人澡欧美一区二区| 狂野欧美激情性xxxx在线观看| 国产成人aa在线观看| netflix在线观看网站| 麻豆成人av在线观看| 免费电影在线观看免费观看| 亚洲av免费高清在线观看| 级片在线观看| 成人精品一区二区免费| 一进一出抽搐gif免费好疼| 波多野结衣高清无吗| 超碰av人人做人人爽久久| 热99re8久久精品国产| 日韩大尺度精品在线看网址| 一个人看视频在线观看www免费| 又粗又爽又猛毛片免费看| 亚洲国产欧美人成| 国产真实乱freesex| 午夜视频国产福利| 国产真实伦视频高清在线观看 | 色5月婷婷丁香| 韩国av在线不卡| 真人一进一出gif抽搐免费| 如何舔出高潮| 国产v大片淫在线免费观看| 成年人黄色毛片网站| 真人一进一出gif抽搐免费| 国产亚洲欧美98| 久久久久久久亚洲中文字幕| 精品人妻偷拍中文字幕| 狠狠狠狠99中文字幕| 91麻豆av在线| 成人国产综合亚洲| 国产蜜桃级精品一区二区三区| 免费观看人在逋| 国产综合懂色| 国产黄片美女视频| 五月伊人婷婷丁香| 亚洲国产欧洲综合997久久,| 禁无遮挡网站| 天堂影院成人在线观看| 九九在线视频观看精品| 色综合站精品国产| 午夜a级毛片| 天堂动漫精品| 一进一出抽搐动态| 91狼人影院| 亚洲精品一区av在线观看| 久久人人爽人人爽人人片va| 夜夜夜夜夜久久久久| 国产精品国产高清国产av| 日本色播在线视频| 真人一进一出gif抽搐免费| 赤兔流量卡办理| 18禁黄网站禁片免费观看直播| 桃红色精品国产亚洲av| 91狼人影院| 婷婷六月久久综合丁香| 国产亚洲精品久久久com| 久久久精品大字幕| 国产黄片美女视频| 久久精品夜夜夜夜夜久久蜜豆| 精品人妻视频免费看| 亚洲精品粉嫩美女一区| 欧美色欧美亚洲另类二区| 尤物成人国产欧美一区二区三区| 全区人妻精品视频| 日韩欧美一区二区三区在线观看| 97热精品久久久久久| 97超级碰碰碰精品色视频在线观看| 日日夜夜操网爽| 国产免费男女视频| 大型黄色视频在线免费观看| 他把我摸到了高潮在线观看| a级毛片a级免费在线| 99在线视频只有这里精品首页| 可以在线观看的亚洲视频| 一本精品99久久精品77| 国产精品98久久久久久宅男小说| 国产精品一及| 欧美zozozo另类| 少妇人妻精品综合一区二区 | 麻豆国产97在线/欧美| 色精品久久人妻99蜜桃| 看片在线看免费视频| 日韩中字成人| 久久久久九九精品影院| 亚洲avbb在线观看| 精品久久久久久久末码| av黄色大香蕉| 两个人的视频大全免费| 精品久久久久久成人av| 国产在线男女| 欧美不卡视频在线免费观看| av在线观看视频网站免费| 欧美日韩乱码在线| 国产v大片淫在线免费观看| 精品99又大又爽又粗少妇毛片 | 久久九九热精品免费| 日本撒尿小便嘘嘘汇集6| 免费无遮挡裸体视频| 亚洲自偷自拍三级| 日韩亚洲欧美综合| 在线播放无遮挡| 又粗又爽又猛毛片免费看| 99在线人妻在线中文字幕| 成人鲁丝片一二三区免费| 中文字幕久久专区| av中文乱码字幕在线| 午夜福利在线观看吧| 免费看日本二区| 欧美人与善性xxx| 在线a可以看的网站| 亚洲熟妇熟女久久| 18禁黄网站禁片午夜丰满| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 国产精品美女特级片免费视频播放器| 午夜日韩欧美国产| 亚洲成人免费电影在线观看| 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 一区二区三区激情视频| 精品午夜福利在线看| 18禁黄网站禁片午夜丰满| 99久久九九国产精品国产免费| 亚洲av成人av| 中文字幕免费在线视频6| 亚洲成人久久性| 欧美日韩精品成人综合77777| 亚洲精品一区av在线观看| 国产真实伦视频高清在线观看 | 精品日产1卡2卡| 国产精品一区二区性色av| 欧美在线一区亚洲| 亚洲三级黄色毛片| 国产精品久久久久久亚洲av鲁大| 噜噜噜噜噜久久久久久91| 91精品国产九色| 欧美日韩瑟瑟在线播放| 99久久精品热视频| 欧美成人性av电影在线观看| 亚洲天堂国产精品一区在线| 99国产极品粉嫩在线观看| 最近中文字幕高清免费大全6 | 午夜精品一区二区三区免费看| 亚洲中文字幕一区二区三区有码在线看| 色哟哟·www| 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av| 精品国内亚洲2022精品成人| 此物有八面人人有两片| 一区二区三区免费毛片| 日韩在线高清观看一区二区三区 | 亚洲va在线va天堂va国产| 在线国产一区二区在线| av国产免费在线观看| 在现免费观看毛片| 免费看光身美女| 精品久久久久久久久av| 亚洲人成网站在线播| 成人国产一区最新在线观看| 久久午夜福利片| 成人永久免费在线观看视频| 欧美黑人欧美精品刺激| 免费看av在线观看网站| 欧美日韩综合久久久久久 | 日日摸夜夜添夜夜添av毛片 | 国产精品1区2区在线观看.| 性插视频无遮挡在线免费观看| h日本视频在线播放| 亚洲精品影视一区二区三区av| 亚洲色图av天堂| 色精品久久人妻99蜜桃| 在线观看免费视频日本深夜| 97热精品久久久久久| 国产亚洲精品久久久久久毛片| 美女cb高潮喷水在线观看| 永久网站在线| 午夜爱爱视频在线播放| 亚洲精品一区av在线观看| 麻豆av噜噜一区二区三区| 亚洲第一区二区三区不卡| 亚洲av熟女| 性欧美人与动物交配| 高清毛片免费观看视频网站| 中文资源天堂在线| 22中文网久久字幕| 国产真实伦视频高清在线观看 | 国产精品久久久久久久久免| 国产亚洲精品av在线| 国产真实伦视频高清在线观看 | 色综合婷婷激情| 国产主播在线观看一区二区| .国产精品久久| 亚洲美女视频黄频| 国产成人av教育| av福利片在线观看| 亚洲综合色惰| 别揉我奶头~嗯~啊~动态视频| 在线播放无遮挡| 最新中文字幕久久久久| 日韩亚洲欧美综合| 午夜日韩欧美国产| 亚洲18禁久久av| 亚洲图色成人| 国产一区二区三区av在线 | 人妻制服诱惑在线中文字幕| 男女边吃奶边做爰视频| 精品久久久久久久久久久久久| 搡老岳熟女国产| 中文字幕精品亚洲无线码一区| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 国产伦在线观看视频一区| 久久久久久久午夜电影| 观看免费一级毛片| 一a级毛片在线观看| 国产麻豆成人av免费视频| 日韩中文字幕欧美一区二区| 午夜久久久久精精品| 在线观看舔阴道视频| 国产亚洲91精品色在线| 极品教师在线视频| 少妇人妻一区二区三区视频| 美女高潮的动态| 国产一区二区三区av在线 | 天堂动漫精品| 免费观看精品视频网站| 精品乱码久久久久久99久播| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利18| aaaaa片日本免费| 日本免费一区二区三区高清不卡| 禁无遮挡网站| 又紧又爽又黄一区二区| 毛片一级片免费看久久久久 | 午夜a级毛片| 日韩欧美免费精品| 国产美女午夜福利| 久久精品人妻少妇| 亚洲欧美日韩无卡精品| bbb黄色大片| 欧美日本视频| 狂野欧美激情性xxxx在线观看| 看黄色毛片网站| 欧美精品国产亚洲| 又黄又爽又刺激的免费视频.| 99久久中文字幕三级久久日本| aaaaa片日本免费| 91午夜精品亚洲一区二区三区 | 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 18+在线观看网站| 国国产精品蜜臀av免费| 人妻丰满熟妇av一区二区三区| 久久精品国产清高在天天线| 日本三级黄在线观看| 成人国产麻豆网| 婷婷丁香在线五月| 亚洲成人精品中文字幕电影| 97超级碰碰碰精品色视频在线观看| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 国产乱人视频| 中文字幕精品亚洲无线码一区| 97碰自拍视频| 可以在线观看的亚洲视频| 悠悠久久av| 麻豆成人午夜福利视频| 国产一区二区三区视频了| 男人的好看免费观看在线视频| 欧美不卡视频在线免费观看| 欧美在线一区亚洲| 黄色日韩在线| 午夜老司机福利剧场| 国产午夜福利久久久久久| 日本一二三区视频观看| 一区二区三区激情视频| 久久亚洲真实| h日本视频在线播放| 最近最新免费中文字幕在线| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6 | 日韩中字成人| 极品教师在线视频| 精品人妻视频免费看| 国产v大片淫在线免费观看| 亚洲美女黄片视频| 国产单亲对白刺激| 午夜影院日韩av| 久久精品国产亚洲网站| 又粗又爽又猛毛片免费看| 热99re8久久精品国产| 此物有八面人人有两片| 99精品久久久久人妻精品| 一进一出抽搐gif免费好疼| 午夜激情福利司机影院| 97碰自拍视频| 三级毛片av免费| 国产高潮美女av| 简卡轻食公司| 久久精品91蜜桃| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器| 在线观看66精品国产| 男插女下体视频免费在线播放| 夜夜看夜夜爽夜夜摸| 精品欧美国产一区二区三| 国产免费一级a男人的天堂| 午夜爱爱视频在线播放| 午夜免费成人在线视频| 成人鲁丝片一二三区免费| 91av网一区二区| 国产精品伦人一区二区| 国产一区二区在线观看日韩| 亚洲不卡免费看| 亚洲av美国av| 免费观看精品视频网站| 成人特级av手机在线观看| 亚洲午夜理论影院| 观看美女的网站| 日韩,欧美,国产一区二区三区 | 亚洲七黄色美女视频| 人妻制服诱惑在线中文字幕| 欧美在线一区亚洲| 亚洲av二区三区四区| 18禁裸乳无遮挡免费网站照片| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站| 人妻制服诱惑在线中文字幕| 老司机福利观看| 91av网一区二区| 九九爱精品视频在线观看| 搡老岳熟女国产| 非洲黑人性xxxx精品又粗又长| 国产免费一级a男人的天堂| 可以在线观看的亚洲视频| 亚洲第一区二区三区不卡| 丝袜美腿在线中文| 日韩,欧美,国产一区二区三区 | 国产成人一区二区在线| 亚洲最大成人手机在线| 美女免费视频网站| 中文字幕久久专区| 免费人成视频x8x8入口观看| 久久热精品热| 国产av一区在线观看免费| 亚洲狠狠婷婷综合久久图片| 亚洲中文字幕日韩| 老司机午夜福利在线观看视频| 国产av不卡久久| 黄色一级大片看看| 一进一出抽搐动态| 久久精品国产清高在天天线| 熟妇人妻久久中文字幕3abv| 在线免费十八禁| 日本与韩国留学比较| 国产v大片淫在线免费观看| 国产熟女欧美一区二区| 久久这里只有精品中国| 亚洲图色成人| 国产国拍精品亚洲av在线观看| 麻豆一二三区av精品| 波多野结衣高清作品| 亚洲在线自拍视频| 综合色av麻豆| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 黄色一级大片看看| 日韩欧美精品免费久久| 色哟哟哟哟哟哟| 午夜精品久久久久久毛片777| 老熟妇仑乱视频hdxx| 国产成人影院久久av| 国产亚洲欧美98| av在线观看视频网站免费| 久久国内精品自在自线图片| 国内少妇人妻偷人精品xxx网站| 在线看三级毛片| 97人妻精品一区二区三区麻豆| 国产久久久一区二区三区| 亚洲av美国av| 色综合婷婷激情| 久久久久久久精品吃奶| 日本黄色视频三级网站网址| 乱系列少妇在线播放| 最好的美女福利视频网| 欧美另类亚洲清纯唯美| 亚洲熟妇中文字幕五十中出| 中文字幕高清在线视频| 亚洲av熟女|