• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite Difference Methods for the Time Fractional Advection-diffusion Equation

    2019-10-30 10:15:58MAYanMUSBAH

    MA Yan, MUSBAH F. S.

    (1.ZhiXing College of Northwest Normal University, Lanzhou 730070, China; 2.Department of Mathematics, University of Bani Walid, Bani Walid 38645, Libya)

    Abstract: In this paper, three implicit finite difference methods are developed to solve one dimensional time fractional advection-diffusion equation. The fractional derivative is treated by applying right shifted Gr¨unwald-Letnikov formula of order α ∈(0,1). We investigate the stability analysis by using von Neumann method with mathematical induction and prove that these three proposed methods are unconditionally stable. Numerical results are presented to demonstrate the effectiveness of the schemes mentioned in this paper.

    Key words: Time fractional advection-diffusion; Finite difference method; Gr¨unwald-Letnikov formula; Stability; Effectiveness

    §1. Introduction

    Advection-diffusion equation is a well-known parabolic partial differential equation which describes both spread and movement of a substance or any conserved quantity such as particle,heat,energy,etc.,by a fluid due to the fluid’s bulk motion[1]. The advection-diffusion equation is derived from the Fick’s law with two fluxes: advective and diffusive flux and the conservation law [2].

    Fractional partial differential equations can be thought as generalizations of classical partial differential equations, which can give a better description of the complex phenomena such as signal processing, systems identification, control and non-Brownian motion [3] or so called levy motion which is a generalization of Brownian motion [4]. A comprehensive background on this topic can be found in books by [5] and [6].

    Fractional advection-diffusion equations (FADEs) are described by a continuous time random walk (CTRW) where the process is defined by non Markovian process, in which the movement of a particle is dependent on past movements [6]. This is the most important feature in fractional models. Many problems in nature can be modelled by fractional advection-diffusion equations,such as those involving ground water fluid flows in a porous medium[7],a movement of solute in an aquifer which can sometimes be related to a Fickian process [8].

    Several finite difference approaches for solving FADEs can be found in literature.[4] developed a Lax–Wendroff–type time discretization procedure for spatial fractional advection–diffusion equation. The Riemann–Liouville derivative was used for the fractional term and the dependent function was approximated by using a linear spline to compute the integrals.[9]considered explicit and implicit methods for solving space-fractional advection–diffusion equation with source and variable coefficients. Two finite difference methods were proposed by[7] for solving a space-time fractional advection–diffusion equation in a bounded domain. In this study, the fractional temporal derivative was approximated by using Caputo formula while the fractional spatial derivative was approximated by using the standard and right shifted Gr¨unwald–Letnikov formula. A class of the fractional advection–dispersion equations was discussed by [10]. They studied five models with different intervals of fractional order. The model equation is fractional in space and time, which means it can describe the particle motion in a complex system with heavy tailed and the particle motion with long memory in time. It was pointed out that the proposed methods can be utilized for other kinds of fractional partial differential equations. The fractional Crank-Nicolson method was developed by [11] for solving two-sided fractional advection-diffusion equations. The right shifted Grnwald-Letnikov formula was applied to discretize the two-side fractional derivative term. The same model was also discussed by [12]. They combined the characteristic methods and fractional finite difference methods. A fast and new characteristic finite difference method for two sided fractional advection-diffusion equation was developed by [8]. The method has two features over the standard implicit method in that it is more accurate and efficient. [13] determined the Lie symmetries to reduce a time fractional advection-diffusion equation involving the Riemann-Liouville fractional derivative with a nonlinear source term to a fractional ordinary differential equation. They solved the reduced fractional equation by using Caputo fractional derivative for the fractional part and used implicit second order backward differentiation formula. [14]proposed an efficient and accurate meshless method for solving fractional advection-diffusion equations with variable coefficients. This method is based on moving least square (MLS) approximation. The time fractional derivative is expressed in Caputo sense and approximated by a finite difference scheme of order ((δt)2?α),0 < α ≤1. The spatial derivative was approximated by employing the MLS approach. Crank-Nicolson scheme was discussed by [15] to solve Riesz space fractional advection-dispersion equations. The Riesz fractional derivatives of order α ∈(0,1) and β ∈(1,2] were approximated by using weighted and shifted Gr¨unwald difference operators.

    The purpose of this article is to develop three implicit finite difference methods for solving the one-dimensional time fractional advection-diffusion equation:

    with the initial condition

    and the boundary conditions

    where u(x,t)is a concentration of a quantity such as mass,energy,etc.,v is the average velocity of a quantity,D is the diffusion coefficient (or diffusivity),f,g1,g2and g3are known functions.denotes the Riemann-Liouville fractional derivative. We consider the case when 0<α<1.Note that if α=1, Eq.(1) corresponds to the classical advection diffusion equation.

    Regarding he differences between the methods other people conducted and the method developed in our paper as follows: firstly we used Gr¨unwald-Letnikov definition while in other articles Caputo fractional derivative was used for solving time fractional advection-diffusion equations. Both Caputo and Gr¨unwald-Letnikov definition have same order of accuracy. The schemes proposed in our paper can be applied for time fractional advection-diffusion problem that its time fractional part is defined by Caputo fractional derivative taking into account the relation between Riemann-Liouville fractional derivative and Caputo fractional derivative [16].Also, there is no article tried to use an implicit upwind method for solving time fractional advection-diffusion equations to see what kind of solution that gives and compare it with other implicit method. Finally, we have added another kind of example that has nonzero initial condition which was derived from Example 1 to see the result regarding this problem.

    Definition 1.1The fractional derivativeof f(t)can be defined by Riemann-Liouville formula as [17]

    where Γ(·) is the Gamma function and 0 ≤t ≤T.

    The above derivative is related to the Riemann-Liouville fractional integral,which is defined as

    where

    Definition 1.2The right-shifted Gr¨unwald-Letnikov formula of function f with respect to independent variable t is defined as [18]

    §2. Finite Difference Methods for time Fractional Advection-diffusion Equation

    First, we introduce a uniform grid of mesh points (xi,tn), with xi=ih,i=0,1,...,M and tn=nτ, n=0,1,...,N, where M and N are positive integers, h=is the spatial step size in the x direction and τ =is the time step size in the t direction. The notations uniand finare used for the exact values of u and f at the points (xi,tn).

    2.1 Implicit backward time central space (BTCS) method

    In this section,the implicit BTCS scheme is developed for time fractional advection-diffusion equation (FADE) at time level (n+1) by using right shifted Gr¨unwald-Letnikov formula (7)to discretize the time fractional term of equation (1) and replacing the first and second spatial derivatives by central difference approximations. We set

    Substitute Eqs.(9),(10) and (11) into Eq.(1) and neglect the truncation error terms, we get

    where r1=is the fractional advection number and r2=is the fractional diffusion number.

    This scheme is second order accurate in space and has no restriction for choosing the size of the time increment so that it is unconditionally stable.

    Note that if the first and second order derivative in space in Eq.(1) are approximated at time level n=0,1,...,N, then the obtained scheme is called forward time central space which is unconditionally unstable for all values of u at D = 0,α = 1 and large values of D and conditionally stable for small values of D0 [19].

    2.2 Crank-Nicolson (CN) method

    In this method, Eq.(1) is evaluated at the non-grid point (xi,tn+, and set

    Substitute Eqs.(13),(14) and (9) into Eq.(1) and neglect the truncation error terms, we obtain

    It is well known that the disadvantage of the central difference approximations to the advection diffusion equation is that the numerical solutions under certain condition present spurious node to node oscillations even though the analytical solution is smooth [20]. The ratio of advective to diffusive coefficient is a measure of inadequate resolution [21]. When> 2, the implicit BTCS method (12) and Crank-Nicolson method (15) will contain oscillations. The quantity vh/D is called Peclet number (Pe) in heat flow and Reynold’s number (Re) in fluid[20].

    2.3 Implicit upwind method

    The two methods that have been considered above for time fractional advection-diffusion equation have symmetric approximation to first order spatial derivative. The estimation of the new implicit upwind method is based on non-symmetric approximation to uxfor the equation(1), so the data can be used only to one side or the other of the discrete point xi. The implicit upwind method at time level (n+1) can be derived. We have

    Substitute Eqs.(16),(17) and (9) into Eq.(1) and neglect the truncation error terms, we obtain

    It should be noted that this method have first order in space and time O(τ +h). By using one side approximation to first derivative in space, the implicit upwind method (18) eliminates the nonphysical oscillations even for very complicated multiphase and multicomponent flows[22].

    §3. Stability Analysis of Fractional Implicit Finite difference methods

    We apply von Neumann method to investigate the stability of these three implicit finite difference methods. The approach of [23] in analyzing the stability of finite difference scheme for a fractional reaction-subdiffusion equation will be used. Let Unibe the approximate solution of the numerical schemes (12), (15) and (18). For simplicity, let us write these equations with no source (homogeneous case). Then Eqs.(12),(15) and (18) become

    First, we introduce the following Lemma [24].

    Lemma 3.1 The coefficients ω(k =0,1,...) satisfy

    The round-off error is defined as

    and

    Let us represent the error function ε(ih)=εi,i=0,1,...,M of an initial value as a Fourier series [25]

    where qm=and L is the interval of the function.

    To study the propagation of error as time increases, let us omit the summation and the constant Amand take only a single termwhere

    To measure the magnitude of the error vectorn=0,1,...,N,we introduce the discrete l2norm

    For the continuous function,the l2norm is given by integrals over[0,1]instead of sums over the vector elements [26]

    Suppose the solution of equations (23)-(26) is in the form

    where ξn= eβnτis termed the temporal or amplification factor and β is complex temporal number which depends upon q.

    It can be easily seen that at n=0, the solution reduces toand ξ0=1.

    3.1 Stability analysis of the implicit backward time central space method

    Substituting Eq.(30) into Eq.(23) and using the identity

    we get

    which can be reduced to

    where μ=1+4r2sin2

    Proposition 3.1Assuming that ξn+1(n = 0,1,...,N) is the solution of equation(33),then we have |ξn+1|≤|ξ0|, n=0,1,...,N.

    ProofWe use the mathematical induction for the proof as in[23]. From Eq.(33)at n=0,then

    and

    and it follows that

    Since μ≥0 and 0<α<1, then |ξ1|≤|ξ0|.

    Now suppose that |ξm+1|≤|ξ0|,m=0,1,...,n,using Lemma 3.1 and from Eq.(33), we get

    Proposition 3.2The implicit backward time central space scheme(12) for the time fractional advection-diffusion equation is unconditionally stable.

    ProofFrom (28) and Proposition 3.1, then, n=0,1,...,N.

    This completes the proof.

    3.2 Stability analysis of the Crank-Nicolson method

    Substituting Eq.(30) into Eq.(24) gives

    Simplifying Eq.(35), we get

    where μ=2r2sin2

    Proposition 3.3If ξn+1(n=0,1,...,N)satisfy the equation(36),then we have|ξn+1|≤|ξ0|, n=0,1,...,N.

    ProofBegin with n=0 from Eq.(36),we have

    then

    Since the maximum value of sin= 1, then |ξ1| ≤for all values of r2>0 and 0<α<1.

    Now suppose that|ξm|≤|ξ0|,m=1,2,...,n,using Lemma 3.1 and from Eq.(36),we obtain at the maximum value of sin(1, we have

    This completes the proof.

    Proposition 3.4The Crank-Nicolson(CN)scheme(15)for the time fractional advectiondiffusion equation is unconditionally stable.

    ProofFrom (28) and Proposition 3.3, thenn=0,1,...,N.

    This completes the proof.

    3.3 Stability analysis of the implicit upwind method

    Substituting Eq.(30) into (25) gives

    Simplifying Eq.(38) once,we get

    where μ=r1sin2+2r2sin2

    Proposition 3.5If ξn+1(n=0,1,...,N) is the solution of equation (39), then we have

    ProofAt n=0 from Eq.(39), we have

    Since μ≥0 and 0<α<1 then

    and

    Now suppose that |ξm+1| ≤|ξ0|,m = 0,1,...,n, using Lemma 3.1 and from Eq.(39), we obtain

    Proposition 3.6The implicit upwind scheme(18) for the time fractional advectiondiffusion equation is unconditionally stable.

    ProofFrom (28) and Proposition 3.5, then

    This completes the proof.

    §4. Numerical Experiments

    In this section, we present some numerical results to confirm our theoretical analysis.

    Example 4.1Let us consider the equation from [27]

    with the initial condition

    and the boundary conditions

    The exact solution of Eqs.(41)-(43) is

    We choose α = 0.5. The three numerical methods discussed in this paper for solving the above example are implemented and their solutions are compared with the exact solution. Fig.4.1 illustrates the numerical results of the proposed methods and the exact solution.

    Fig.4.1 Comparison between the results of BTCS, CN, upwind and the exact solution at τ =1.3379×10?5 and h=0.1.

    The results of the errors of BTCS, CN and upwind method for time fractional advectiondiffusion problem in discrete l∞and l2norm are listed respectively in table 4.1, 4.2 and 4.3 together with the order of convergence. We first take h = τ =and then decrease the mesh size of h to the half and τ to. The maximum error and l2error are evaluated by the following formulas [24]

    and

    The order of convergence r(τ,h) is evaluated by the following formula

    From the tables 4.1-4.3, it can be seen that the numerical methods are straight forward and in good agreement with the analytical solution. It should be noted that although the implicit CN and BTCS method have a truncation error of second order in space and first order in time,the CN method produced slightly more accurate results than the implicit BTCS due to the half time step derivation of the CN method. The implicit upwind method has the truncation error of the order O(τ +h), so that it is slightly less accurate than the implicit BTCS method.

    Table 4.1 Errors and order of convergence of BTCS method at α=0.5.

    Table 4.2 Errors and order of convergence of CN method at α=0.5.

    Table 4.3 Errors and order of convergence of upwind method at α=0.5.

    Example 4.2Consider the time fractional advection-diffusion problem in Example 4.1 with nonzero initial condition, taking into consideration that the temporal fractional derivative term here is defined by the Riemann-Liouville derivative definition (4) at t ∈(a,T]. Then the problem is defined as

    with nonzero initial condition

    and the boundary conditions

    A comparison of the exact values of u, the computed values using BTCS, CN and upwind method are shown in figure 4.2 at different values of a. It can be seen that the accuracy of numerical results of the methods decreases as the values of a decreases. This is due to the rounding error and the number of arithmetic operations that increase when the initial value of time becomes smaller for this problem and parameter values considered.

    Fig.4.2 Comparison between the results of BTCS, CN, upwind and the exact solution at τ =1.3379×10?2,h=0.1 and α=0.5.

    §5. Conclusion

    Three implicit finite difference methods were introduced in this article to solve one dimensional time fractional advection-diffusion equation. The methods are unconditionally stable.

    The comparison between the methods is made and tested against the analytical solution. It should be noted that the proposed algorithms produced reasonable results and can be applied to solve other kind of fractional advection-diffusion equations(i.e. fractional in space or fractional in time and space).

    观看av在线不卡| 男女下面插进去视频免费观看| 国产日韩欧美亚洲二区| 五月天丁香电影| 日韩成人av中文字幕在线观看| 亚洲欧洲日产国产| 国产极品粉嫩免费观看在线| 欧美xxⅹ黑人| 精品少妇黑人巨大在线播放| 午夜影院在线不卡| 成年av动漫网址| 啦啦啦啦在线视频资源| 亚洲欧美清纯卡通| 丰满迷人的少妇在线观看| 成人国语在线视频| 免费播放大片免费观看视频在线观看| 国产精品国产三级专区第一集| 久久精品国产亚洲av高清一级| 黄片小视频在线播放| 男人添女人高潮全过程视频| 新久久久久国产一级毛片| 国产欧美日韩一区二区三区在线| 国产成人aa在线观看| 国产免费一区二区三区四区乱码| 中国国产av一级| 777米奇影视久久| 国产一区二区三区av在线| 成人毛片60女人毛片免费| 国产精品一区二区在线观看99| 日本黄色日本黄色录像| 伦精品一区二区三区| 久久毛片免费看一区二区三区| 91成人精品电影| www.自偷自拍.com| 制服人妻中文乱码| 亚洲精品视频女| 亚洲av日韩在线播放| 亚洲人成77777在线视频| 女性生殖器流出的白浆| 亚洲视频免费观看视频| 伊人久久国产一区二区| 丝袜在线中文字幕| 久久人人爽人人片av| 亚洲精品第二区| 免费在线观看视频国产中文字幕亚洲 | 26uuu在线亚洲综合色| 看十八女毛片水多多多| 午夜免费男女啪啪视频观看| 成人午夜精彩视频在线观看| 国产精品香港三级国产av潘金莲 | 麻豆av在线久日| 丝袜美腿诱惑在线| 国产精品.久久久| 欧美变态另类bdsm刘玥| 国产成人午夜福利电影在线观看| 亚洲精品久久成人aⅴ小说| 欧美成人午夜免费资源| 国产无遮挡羞羞视频在线观看| 日韩免费高清中文字幕av| 99九九在线精品视频| av国产精品久久久久影院| 最近中文字幕高清免费大全6| 国产综合精华液| 成人18禁高潮啪啪吃奶动态图| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品秋霞免费鲁丝片| 99热国产这里只有精品6| 香蕉国产在线看| 亚洲精品aⅴ在线观看| 国产福利在线免费观看视频| 国产免费福利视频在线观看| 精品国产一区二区三区久久久樱花| 国产男女超爽视频在线观看| 精品国产露脸久久av麻豆| 黑丝袜美女国产一区| 永久网站在线| 亚洲精品美女久久av网站| 亚洲视频免费观看视频| 久久av网站| 亚洲欧美成人精品一区二区| 精品人妻在线不人妻| 久久久a久久爽久久v久久| 91成人精品电影| 亚洲第一av免费看| 免费少妇av软件| 免费少妇av软件| 成年动漫av网址| 午夜福利一区二区在线看| 久久久欧美国产精品| 久久婷婷青草| 精品国产超薄肉色丝袜足j| 水蜜桃什么品种好| 亚洲五月色婷婷综合| 亚洲av电影在线观看一区二区三区| 亚洲综合色网址| 国产精品一国产av| 波多野结衣一区麻豆| 国产精品成人在线| 成人手机av| 日韩精品有码人妻一区| 久久这里只有精品19| 国产亚洲欧美精品永久| 2018国产大陆天天弄谢| 国产精品免费大片| 日本猛色少妇xxxxx猛交久久| 国产激情久久老熟女| 欧美精品av麻豆av| 在线观看美女被高潮喷水网站| 中国国产av一级| 最近中文字幕高清免费大全6| 91精品伊人久久大香线蕉| 午夜福利视频精品| 高清欧美精品videossex| 狂野欧美激情性bbbbbb| 在线 av 中文字幕| 狂野欧美激情性bbbbbb| 亚洲精品中文字幕在线视频| 韩国高清视频一区二区三区| 国产亚洲一区二区精品| 韩国精品一区二区三区| 亚洲国产毛片av蜜桃av| 美女午夜性视频免费| 国产成人午夜福利电影在线观看| 黄色配什么色好看| 免费高清在线观看日韩| 久久人妻熟女aⅴ| 2022亚洲国产成人精品| 国产男女内射视频| 欧美精品国产亚洲| 大码成人一级视频| 国产激情久久老熟女| 一级毛片电影观看| 国产综合精华液| 在线观看免费高清a一片| 免费观看a级毛片全部| 午夜福利,免费看| 日本黄色日本黄色录像| 久久久久久久久久人人人人人人| 久久久久久久久久人人人人人人| 亚洲国产精品一区二区三区在线| av网站免费在线观看视频| 午夜日本视频在线| 免费高清在线观看视频在线观看| 亚洲精品视频女| 大香蕉久久成人网| 国产国语露脸激情在线看| 成年女人毛片免费观看观看9 | 国产伦理片在线播放av一区| 欧美老熟妇乱子伦牲交| 亚洲成av片中文字幕在线观看 | 2022亚洲国产成人精品| 少妇被粗大猛烈的视频| 欧美精品一区二区免费开放| 国产欧美日韩综合在线一区二区| 亚洲美女视频黄频| 成人国产av品久久久| 欧美亚洲日本最大视频资源| 999久久久国产精品视频| av线在线观看网站| 欧美精品高潮呻吟av久久| kizo精华| 国产男女内射视频| 国产免费又黄又爽又色| 欧美97在线视频| 91精品三级在线观看| 精品国产一区二区三区久久久樱花| 日韩av不卡免费在线播放| 男人操女人黄网站| 免费久久久久久久精品成人欧美视频| 9色porny在线观看| av电影中文网址| 少妇熟女欧美另类| 老熟女久久久| h视频一区二区三区| 在线天堂中文资源库| 中文字幕人妻丝袜制服| 伊人亚洲综合成人网| 哪个播放器可以免费观看大片| 国产成人91sexporn| 黑人猛操日本美女一级片| 综合色丁香网| 99久国产av精品国产电影| 飞空精品影院首页| 久久久国产欧美日韩av| a级片在线免费高清观看视频| 成人亚洲精品一区在线观看| 丝袜人妻中文字幕| 性少妇av在线| 97在线视频观看| 亚洲国产欧美网| 一级黄片播放器| 丁香六月天网| 精品少妇黑人巨大在线播放| 亚洲av日韩在线播放| 人人妻人人澡人人看| 97在线视频观看| 国语对白做爰xxxⅹ性视频网站| 男人爽女人下面视频在线观看| 三级国产精品片| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说| 久久精品亚洲av国产电影网| 国产97色在线日韩免费| 综合色丁香网| 久久久久网色| 丰满饥渴人妻一区二区三| 99久久人妻综合| 人妻系列 视频| 国产精品蜜桃在线观看| 午夜免费观看性视频| 国产av精品麻豆| 久久99蜜桃精品久久| av网站在线播放免费| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区四区第35| 色94色欧美一区二区| freevideosex欧美| 精品久久蜜臀av无| 黄色毛片三级朝国网站| 亚洲国产成人一精品久久久| 精品酒店卫生间| 精品国产乱码久久久久久小说| 大片免费播放器 马上看| 亚洲国产精品国产精品| 国产成人一区二区在线| 国产福利在线免费观看视频| 又大又黄又爽视频免费| 国产成人精品婷婷| 国产成人免费无遮挡视频| 亚洲av电影在线观看一区二区三区| 日韩免费高清中文字幕av| 国产在线一区二区三区精| 亚洲国产日韩一区二区| 麻豆av在线久日| xxx大片免费视频| 亚洲色图综合在线观看| 亚洲av免费高清在线观看| 国产亚洲av片在线观看秒播厂| 国产一区二区激情短视频 | 欧美激情高清一区二区三区 | 中文欧美无线码| 日韩av免费高清视频| 一区二区三区乱码不卡18| 纯流量卡能插随身wifi吗| 亚洲,欧美,日韩| 汤姆久久久久久久影院中文字幕| √禁漫天堂资源中文www| 国语对白做爰xxxⅹ性视频网站| 女的被弄到高潮叫床怎么办| 亚洲在久久综合| 欧美日韩成人在线一区二区| 夫妻午夜视频| a级毛片黄视频| 国产精品麻豆人妻色哟哟久久| 免费高清在线观看日韩| 亚洲欧美成人综合另类久久久| 两个人看的免费小视频| 美女国产高潮福利片在线看| av在线老鸭窝| 99国产精品免费福利视频| 亚洲精品日韩在线中文字幕| 男女国产视频网站| 亚洲欧美精品综合一区二区三区 | 宅男免费午夜| av网站免费在线观看视频| 亚洲成国产人片在线观看| 亚洲成人手机| 亚洲三区欧美一区| h视频一区二区三区| 亚洲av日韩在线播放| 国产成人91sexporn| 一二三四中文在线观看免费高清| 最近的中文字幕免费完整| 欧美在线黄色| 女人久久www免费人成看片| 波多野结衣一区麻豆| 黄色怎么调成土黄色| 超碰97精品在线观看| 深夜精品福利| 亚洲精品,欧美精品| 欧美日韩亚洲国产一区二区在线观看 | 赤兔流量卡办理| 欧美日韩一区二区视频在线观看视频在线| 日韩精品有码人妻一区| 国产精品久久久久久av不卡| 男人舔女人的私密视频| 亚洲久久久国产精品| 黄色配什么色好看| 成人手机av| 97在线视频观看| 超碰成人久久| 水蜜桃什么品种好| 久久久国产欧美日韩av| 在线观看免费视频网站a站| 久久久久久久久久久免费av| 欧美日韩视频精品一区| 国产精品女同一区二区软件| 亚洲欧美中文字幕日韩二区| 天天影视国产精品| 99国产综合亚洲精品| 日韩大片免费观看网站| 最近手机中文字幕大全| 欧美av亚洲av综合av国产av | 岛国毛片在线播放| 午夜av观看不卡| 黄色怎么调成土黄色| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 日本色播在线视频| 大片电影免费在线观看免费| 中文字幕精品免费在线观看视频| 亚洲av在线观看美女高潮| 久久久久久久久久人人人人人人| 国产麻豆69| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区 | 亚洲av男天堂| 丰满少妇做爰视频| 欧美成人午夜免费资源| 欧美黄色片欧美黄色片| 电影成人av| 一级毛片电影观看| 亚洲精品成人av观看孕妇| 日韩一区二区视频免费看| 精品人妻偷拍中文字幕| av一本久久久久| 亚洲五月色婷婷综合| 黄片小视频在线播放| 国产精品成人在线| 久久午夜综合久久蜜桃| 韩国高清视频一区二区三区| 高清视频免费观看一区二区| 如日韩欧美国产精品一区二区三区| 久久久久久久精品精品| 欧美亚洲日本最大视频资源| 91精品三级在线观看| 欧美bdsm另类| 一区二区三区四区激情视频| 超碰97精品在线观看| 黄色一级大片看看| 99香蕉大伊视频| 毛片一级片免费看久久久久| 久久精品国产亚洲av天美| 夫妻性生交免费视频一级片| 久久久精品国产亚洲av高清涩受| 9191精品国产免费久久| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 午夜激情久久久久久久| 中文乱码字字幕精品一区二区三区| 午夜福利乱码中文字幕| 国产福利在线免费观看视频| 亚洲欧洲日产国产| 黄网站色视频无遮挡免费观看| 不卡视频在线观看欧美| 国产麻豆69| 成年人午夜在线观看视频| 亚洲视频免费观看视频| 日本午夜av视频| 人妻人人澡人人爽人人| 精品一品国产午夜福利视频| a级毛片在线看网站| 国产视频首页在线观看| 性色av一级| 午夜福利在线免费观看网站| 一本—道久久a久久精品蜜桃钙片| 超碰成人久久| 免费少妇av软件| 这个男人来自地球电影免费观看 | 搡老乐熟女国产| 欧美成人精品欧美一级黄| videosex国产| 成年女人毛片免费观看观看9 | 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 黄频高清免费视频| 一本—道久久a久久精品蜜桃钙片| 9热在线视频观看99| kizo精华| 亚洲av.av天堂| 国产日韩欧美视频二区| 精品一区二区三卡| 黄频高清免费视频| xxx大片免费视频| 国产精品免费视频内射| 十八禁网站网址无遮挡| 久久久精品国产亚洲av高清涩受| 夜夜骑夜夜射夜夜干| 久热这里只有精品99| 在线观看免费日韩欧美大片| 久久午夜福利片| 国产又爽黄色视频| 这个男人来自地球电影免费观看 | 久久人人爽av亚洲精品天堂| 久久久久久人妻| 免费观看在线日韩| 欧美另类一区| 国产欧美日韩一区二区三区在线| 精品国产乱码久久久久久男人| 欧美国产精品一级二级三级| 国产精品久久久久久久久免| 国产有黄有色有爽视频| av一本久久久久| 欧美成人午夜免费资源| 国产成人精品无人区| 午夜免费鲁丝| 在线观看人妻少妇| 18在线观看网站| 亚洲成人手机| 国产淫语在线视频| 国产一区二区三区av在线| 欧美日韩国产mv在线观看视频| 成年女人在线观看亚洲视频| 久久99蜜桃精品久久| 热99国产精品久久久久久7| 18禁国产床啪视频网站| 日本vs欧美在线观看视频| 久久精品夜色国产| 久久久久久久久久久免费av| 又粗又硬又长又爽又黄的视频| 久久久精品区二区三区| 久久久久久久久久久免费av| 久久久久国产一级毛片高清牌| 亚洲av综合色区一区| 99国产综合亚洲精品| 欧美日韩亚洲国产一区二区在线观看 | 国产精品 国内视频| 日本爱情动作片www.在线观看| 国产精品久久久av美女十八| 91国产中文字幕| 中文乱码字字幕精品一区二区三区| 成年人免费黄色播放视频| www.精华液| 香蕉精品网在线| 伊人亚洲综合成人网| 咕卡用的链子| 黄片小视频在线播放| 一级毛片 在线播放| 久久精品久久久久久久性| 99精国产麻豆久久婷婷| 亚洲国产精品一区三区| 波多野结衣av一区二区av| 欧美日韩成人在线一区二区| 男男h啪啪无遮挡| 黄片小视频在线播放| 各种免费的搞黄视频| 国产精品一二三区在线看| 成人亚洲欧美一区二区av| 丰满迷人的少妇在线观看| 九九爱精品视频在线观看| 午夜福利网站1000一区二区三区| 少妇的丰满在线观看| 亚洲伊人色综图| 国产成人精品在线电影| av片东京热男人的天堂| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 七月丁香在线播放| 亚洲国产最新在线播放| 80岁老熟妇乱子伦牲交| 极品人妻少妇av视频| 另类精品久久| 男的添女的下面高潮视频| 亚洲国产欧美网| 国产成人一区二区在线| 大片电影免费在线观看免费| 亚洲精品国产av蜜桃| 午夜日本视频在线| 超碰成人久久| 日韩熟女老妇一区二区性免费视频| 丰满乱子伦码专区| 巨乳人妻的诱惑在线观看| 亚洲欧洲国产日韩| 欧美成人午夜精品| 欧美激情高清一区二区三区 | 亚洲,一卡二卡三卡| 午夜福利乱码中文字幕| 成人国产av品久久久| 国产极品天堂在线| 亚洲av免费高清在线观看| 90打野战视频偷拍视频| 成人18禁高潮啪啪吃奶动态图| 国产又爽黄色视频| 亚洲国产av影院在线观看| 亚洲精品在线美女| 日韩av不卡免费在线播放| 一本大道久久a久久精品| 欧美最新免费一区二区三区| 国精品久久久久久国模美| a级片在线免费高清观看视频| 色哟哟·www| 国产免费又黄又爽又色| 午夜日本视频在线| a 毛片基地| 天堂中文最新版在线下载| 午夜91福利影院| videosex国产| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 中文精品一卡2卡3卡4更新| www.自偷自拍.com| 欧美bdsm另类| 热re99久久精品国产66热6| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 最近最新中文字幕大全免费视频 | 亚洲国产精品一区二区三区在线| av电影中文网址| 国产成人精品在线电影| 日日爽夜夜爽网站| 伦精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 国产97色在线日韩免费| 久久久久久人妻| 波多野结衣一区麻豆| 99热全是精品| 大话2 男鬼变身卡| 午夜91福利影院| 亚洲人成77777在线视频| 亚洲 欧美一区二区三区| 亚洲第一av免费看| av在线观看视频网站免费| 亚洲国产欧美网| 在线观看免费视频网站a站| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 久久婷婷青草| 欧美日韩视频精品一区| 久久午夜福利片| 国产精品香港三级国产av潘金莲 | 国产亚洲最大av| 久久久久久久国产电影| 成年美女黄网站色视频大全免费| 国产视频首页在线观看| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 亚洲精品国产一区二区精华液| 日韩中文字幕欧美一区二区 | 两性夫妻黄色片| 亚洲婷婷狠狠爱综合网| 成人午夜精彩视频在线观看| 国产 一区精品| 大片免费播放器 马上看| 日韩电影二区| 成人手机av| 婷婷色综合www| 亚洲第一青青草原| 久久这里只有精品19| 美女国产高潮福利片在线看| 国产成人一区二区在线| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 国产 一区精品| 亚洲av综合色区一区| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| 人成视频在线观看免费观看| 男人爽女人下面视频在线观看| 欧美最新免费一区二区三区| 99久久综合免费| 五月开心婷婷网| 热re99久久国产66热| 看十八女毛片水多多多| 日日爽夜夜爽网站| 捣出白浆h1v1| 最近中文字幕高清免费大全6| 久久久久国产网址| 啦啦啦中文免费视频观看日本| 国产在线视频一区二区| 免费日韩欧美在线观看| 日本免费在线观看一区| 啦啦啦视频在线资源免费观看| 国产欧美亚洲国产| 美女福利国产在线| 国产白丝娇喘喷水9色精品| 99久久综合免费| 性高湖久久久久久久久免费观看| 一二三四中文在线观看免费高清| 欧美日本中文国产一区发布| 一区二区三区四区激情视频| 亚洲,欧美,日韩| 亚洲精品久久午夜乱码| 国产一区二区激情短视频 | 日韩不卡一区二区三区视频在线| 国产 精品1| 久久99一区二区三区| av国产久精品久网站免费入址| kizo精华| 国产精品人妻久久久影院| 久久久久久久大尺度免费视频| 超色免费av| 日韩免费高清中文字幕av| 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 一区二区日韩欧美中文字幕| www.熟女人妻精品国产| 亚洲,欧美精品.| 久久久久久久精品精品| 看十八女毛片水多多多| 久久精品国产综合久久久| av.在线天堂| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 狂野欧美激情性bbbbbb| 黄片无遮挡物在线观看| 999久久久国产精品视频| 99热网站在线观看| tube8黄色片| 国产精品 欧美亚洲| 在线精品无人区一区二区三| 99久久综合免费| 亚洲av日韩在线播放| 国产日韩欧美视频二区|