• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algorithm on the Optimal Vertex-Distinguishing Total Coloring of mC9

    2019-10-30 10:13:36HEYupingCHENXiangen

    HE Yu-ping, CHEN Xiang’en

    (College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P. R. China)

    Abstract: Let G be a simple graph and f be a proper total coloring (or a total coloring in brief)of G. For any vertex u in G,Cf(u)denote the set of colors of vertex u and edges which incident with vertex u. Cf(u)is said to be the color set of vertex u under f. If Cf(u)Cf(v)for any two distinct vertices u and v of G,then f is called vertex-distinguishing total coloring of G (in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G (in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of mC9 in this paper.

    Key words: the union of graphs; proper total coloring; vertex-distinguishing total coloring;vertex-distinguishing total chromatic number

    §1. Introduction

    With coloring problem of graphs is widely applied in reality, it has gradually become one of important fields which were studied by many scholars. The vertex-distinguishing proper edge coloring was discussed in [1-4].

    Let G be a simple graph and let f be a proper total coloring of G. For any vertex u in G,Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u)Cf(v) for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G (in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertex-distinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). That is, χvt(G)=min { k | G has a k-VDTC}.

    For a graph G, let ni(G) denote the number of vertices of degree i. Set

    Obviously, χvt(G)≥μ(G).

    Vertex distinguishing (proper) total coloring of a graph is introduced by Zhang et al in[5]. The vertex distinguishing total chromatic numbers of complete graph, complete bipartite graph, wheel, fan, double star, cycle, path, Pn∨Pn, Pn∨Cn, Cn∨Cn, etc, are determined and the following conjecture were proposed in [5].

    The vertex-distinguishing total chromatic numbers of 2Cn, mC3, mC4, mC5and mC7have been discussed in [6-10]. The vertex-distinguishing total chromatic number of the union mC9of m disjoint cycles of order 9 will be discussed and give the following Theorem 1. Its proof is obtained by the algorithm on the optimal vertex-distinguishing total coloring of mC9given in Section 4.

    The vertex-distinguishing VE and IE-total colorings of graphs were discussed in [11, 12].

    §2. Preliminaries

    Firstly, for each n ≥3, we construct an (n ?2)×(n ?2) square matrix Anas follows.

    The first row of Anis ( {n,1,2},{n,2,3},{n,3,4},··· ,{n,n ?3,n ?2},{n,n ?2,n ?1} );

    The second row of Anis ( {n,1,3},{n,2,4},{n,3,5},··· ,{n,n ?3,n ?1},?);

    The third row of Anis ( {n,1,4},{n,2,5},{n,3,6},··· ,?,?);

    ······

    The (n ?3)-th row of Anis ( {n,1,n ?2},{n,2,n ?1},?,··· ,?,?);

    The (n ?2)-th row of Anis ( {n,1,n ?1},?,?,··· ,?,?).

    Note that each element of Anis either an empty set or a 3-subset of {1,2,··· ,n}, which contains n.

    Let 1 ≤i1

    Submatrix An[i1,i2,··· ,ir|j1,j2,··· ,js] of Anis an r×s matrix which is comprised by all the elements of Anin i1-, i2-, ···, or ir-th rows and in j1-, j2-, ···, or js-th columns of An. If elements in a 9×2 submatrix B of Anare exactly the color sets of all vertices of 2C9under some its vertex-distinguishing proper total coloring, then a submatrix B is called good. If nine elements(not empty set)of Anare exactly the color sets of all vertices of one C9under some its vertex-distinguishing proper total coloring, then the group which consists of the nine elements is called good.

    Nnie elements in a good 9×2 submatrix of Anmay become a good group,but nine elements in a good group are not necessarily the elements of a good 9×2 submatrix of An.

    The total coloring of C9is shown in Fig. 1,we denote it by f(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18).

    Fig. 1: VDTC f(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14c15,c16,c17,c18) of C9

    Lemma 1When i ≡1(mod 9),j ≡1(mod 2),if all elements in An[i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,i+8|j,j+1]are not empty sets,then An[i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,i+8|j,j+1] is a good 9×2 submatrix.

    ProofNote that

    Obviously,eighteen subsets in the first and second columns of An[i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,i+8|j,j+1] are the color sets of all vertices of 2C9under vertex-distinguishing total coloring f(j,n,j+i,j+i+1,n,j+i+2,j+1,j+i+3,n,j+i+4,j+1,j+i+5,n,j+i+6,j+1,j+i+7,n,j+i+1) and f(j,j+i+2,n,j+i+3,j,j+i+4,n,j+i+5,j,j+i+6,n,j+i+9,j+1,n,j+i+8,j,n,j+i+7). The proof is completed.

    If an element of Anis neither element of any good 9×2 submatrix appeared in Lemma 1 nor an empty set, then the element of Anis called the element left of An.

    Lemma 2If n ≡0,3,6(mod 9),n ≥3, then all nonempty elements of Anexcept for{n,1,n ?1} can be partitioned intogroups, such that each group has nine subsets and is good.

    ProofBy Lemma 1, we only consider the elements left of An.

    Case 1n ≡3(mod 9).

    Let n ≥3,i ≡1(mod 9), 1 ≤i ≤n ?2. The only element of Anis just the element left of

    Suppose n ≥12, the elements left in the 3, 4, 5, 6, 7, 8, 9 and 10 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n?8,3,n?7,n,n?6,3,n?5,n,n?4,3,n?3,n,n?2,3,n,n?1,10),f(n,n?7,4,n?6,n,n?5,4,n?4,n,n?3,4,n?2,n,4,n?1,n,9,n?2),f(n,n?6,5,n?5,n,n?4,5,n?3,n,n?2,5,n,n?1,8,n,n?2,8,n?3)and f(n,n ?5,6,n ?4,n,n ?3,6,n ?2,n,6,n ?1,n,7,n ?2,n,n ?3,7,n ?4), respectively.when n=2, the conclusion is obtained. Suppose n ≥21 as follows.

    Let n ≥21,i ≡2(mod 9),11 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n ?9,i,n ?8,n,n ?7,i,n ?6,n,n ?5,i,n ?4,n,n ?3,i,n,i+8,n ?1),f(n,n ?8,i+1,n ?7,n,n ?6,i+1,n ?5,n,n ?4,i+1,n ?3,n,n ?2,i+1,n,n ?1,i),f(n,n ?7,i+2,n ?6,n,n ?5,i+2,n ?4,n,n ?3,i+2,n ?2,n,i+2,n ?1,n,i+7,n ?2),f(n,n ?6,i+3,n ?5,n,n ?4,i+3,n ?3,n,n ?2,i+3,n,n ?1,i+6,n,n ?2,i+6,n ?3) and f(n,n ?5,i+4,n ?4,n,n ?3,i+4,n ?2,n,i+4,n ?1,n,i+5,n ?2,n,n ?3,i+5,n ?4),respectively.

    Case 2Let n ≥6,n ≡6(mod 9). The elements left in the 1, 2 and 3 -th columns of Ancan be partitioned into one good groups, then corresponding VDTC of C9is f(n,n ?4,1,n ?3,n,1,n ?2,n ?1,n,n ?2,3,n,n ?1,2,n,n ?2,2,n ?3).

    Let n ≥15,i ≡5(mod 9),5 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n ?9,i,n ?8,n,n ?7,i,n ?6,n,n ?5,i,n ?4,n,n ?3,i,n,i+8,n ?1),f(n,n ?8,i+1,n ?7,n,n ?6,i+1,n ?5,n,n ?4,i+1,n ?3,n,n ?2,i+1,n,n ?1,i),f(n,n ?7,i+2,n ?6,n,n ?5,i+2,n ?4,n,n ?3,i+2,n ?2,n,i+2,n ?1,n,i+7,n ?2),f(n,n ?6,i+3,n ?5,n,n ?4,i+3,n ?3,n,n ?2,i+3,n,n ?1,i+6,n,n ?2,i+6,n ?3) and f(n,n ?5,i+4,n ?4,n,n ?3,i+4,n ?2,n,i+4,n ?1,n,i+5,n ?2,n,n ?3,i+5,n ?4).when n=15, the conclusion is obtained. Suppose n ≥24 as follows.

    Let n ≥24,i ≡6(mod 9),15 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7-th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4).

    Case 3Let n ≥9,n ≡0(mod 9). The elements left in the 1, 2, 3, 4, 5, 6 and 7 -th columns of Ancan be partitioned into three good groups, then corresponding VDTC of C9is f(n,n ?7,1,n ?6,n,n ?5,1,n ?4,n,n ?3,1,n ?2,n,7,n ?1,n,6,n ?2), f(n,n ?6,2,n ?5,n,n ?4,2,n ?3,n,n ?2,2,n,n ?1,5,n,n ?2,5,n ?3) and f(n,n ?5,3,n ?4,n,n ?3,3,n ?2,n,3,n ?1,n,4,n ?2,n,n ?3,4,n ?4).

    Let n ≥18,i ≡0(mod 9),0 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4).when n=18, the conclusion is obtained. Suppose n ≥27 as follows.

    Let n ≥27,i ≡8(mod 9),17 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n ?9,i,n ?8,n,n ?7,i,n ?6,n,n ?5,i,n ?4,n,n ?3,i,n,i+8,n ?1),f(n,n ?8,i+1,n ?7,n,n ?6,i+1,n ?5,n,n ?4,i+1,n ?3,n,n ?2,i+1,n,n ?1,i),f(n,n ?7,i+2,n ?6,n,n ?5,i+2,n ?4,n,n ?3,i+2,n ?2,n,i+2,n ?1,n,i+7,n ?2),f(n,n ?6,i+3,n ?5,n,n ?4,i+3,n ?3,n,n ?2,i+3,n,n ?1,i+6,n,n ?2,i+6,n ?3) and f(n,n ?5,i+4,n ?4,n,n ?3,i+4,n ?2,n,i+4,n ?1,n,i+5,n ?2,n,n ?3,i+5,n ?4).

    We can easily know that {n,1,n ?1} do not belong to any good group.

    Lemma 3If n ≡4,8(mod 9),n ≥4, then all nonempty elements of Anexcept for{n,1,n ?2}, {n,1,n ?1} and {n,2,n ?1} can be partitioned intogroups, such that each group has nine subsets and is good.

    ProofBy Lemma 1, we only consider the elements left of An.

    Case 1Let n ≥4,n ≡4(mod 9).

    Let i ≡1(mod 9), 1 ≤i ≤n ?2, The three elements of Anis just the element left of An.

    Let n ≥13,i ≡3(mod 9), 3 ≤i ≤n ?2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,i+5),f(n,n?4,i+2,n?3,n,n?2,i+2,n?1,n,n?2,i+4,n?1),f(n,n?5,i+7,n?4,n,n?3,i+7,n ?2,n,i+7,n ?1,i+11), f(n,n ?4,i+8,n ?3,n,n ?2,i+8,n ?1,n,n ?2,i+10,n ?1)and f(n,n ?3,i+3,n ?2,n,i+3,n ?1,i+9,n,n ?3,i+9,n ?2), respectively. when n=13,the conclusion is obtained. Suppose n ≥22 as follows.

    Let n ≥22,i ≡4(mod 9),13 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4),respectively.

    We can easily know that {n,1,n ?2}, {n,1,n ?1} and {n,2,n ?1} do not belong to any good group.

    Case 2Let n ≥8,n ≡8(mod 9). The elements left in the 1, 2, 3, 4, 5 and 6-th columns of Ancan be partitioned into two good groups, then corresponding VDTC of C9is f(n,n ?6,1,n ?5,n,n ?4,1,n ?3,n,n ?5,2,n ?4,n,n ?3,2,n,6,n ?1)and f(n,n ?4,3,n ?3,n,n ?2,3,n ?1,n,n ?3,4,n ?2,n,4,n ?1,n,5,n ?2).

    Let n ≥17,i ≡7(mod 9), 7 ≤i ≤n ?2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,i+5),f(n,n?4,i+2,n?3,n,n?2,i+2,n?1,n,n?2,i+4,n?1),f(n,n?5,i+7,n?4,n,n?3,i+7,n ?2,n,i+7,n ?1,i+11), f(n,n ?4,i+8,n ?3,n,n ?2,i+8,n ?1,n,n ?2,i+10,n ?1)and f(n,n ?3,i+3,n ?2,n,i+3,n ?1,i+9,n,n ?3,i+9,n ?2), respectively. when n=17,the conclusion is obtained. Suppose n ≥26 as follows.

    Let n ≥26,i ≡8(mod 9),17 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4),respectively.

    We can easily know that {n,1,n ?2}, {n,1,n ?1} and {n,2,n ?1} do not belong to any good group.

    Lemma 4If n ≡5,7(mod 9),n ≥5, then all nonempty elements of Anexcept for{n,1,n ?3}, {n,1,n ?2}, {n,1,n ?1}, {n,2,n ?2}, {n,2,n ?1} and {n,3,n ?1} can be partitioned intogroups, such that each group has nine subsets and is good.

    ProofBy Lemma 1, we only consider the elements left of An.

    Case 1Let n ≥5,n ≡5(mod 9). Let i ≡1(mod 9), 1 ≤i ≤n ?2. The six elements of Anis just the left element of An.

    Let n ≥14,i ≡5(mod 9),5 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4),respectively. when n=14, the conclusion is obtained. Suppose n ≥23 as follows.

    Let n ≥23,i ≡4(mod 9), 13 ≤i ≤n ?2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8 -th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,i+5),f(n,n?4,i+2,n?3,n,n?2,i+2,n?1,n,n?2,i+4,n?1),f(n,n?5,i+7,n?4,n,n?3,i+7,n ?2,n,i+7,n ?1,i+11), f(n,n ?4,i+8,n ?3,n,n ?2,i+8,n ?1,n,n ?2,i+10,n ?1)and f(n,n ?3,i+3,n ?2,n,i+3,n ?1,i+9,n,n ?3,i+9,n ?2), respectively.

    We can easily know that {n,1,n ?3}, {n,1,n ?2}, {n,1,n ?1}, {n,2,n ?2}, {n,2,n ?1}and {n,3,n ?1} do not belong to any good group.

    Case 2Let n ≥7,n ≡7(mod 9). The elements left in the 1, 2, 3, 4 and 5-th columns of Ancan be partitioned into one good groups, then corresponding VDTC of C9is f(n,n ?5,1,n ?4,n,n ?3,2,n ?4,n,n ?3,3,n ?2,n,n ?1,4,n,5,n ?1).

    Let n ≥16,i ≡7(mod 9),7 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4),respectively. when n=16, the conclusion is obtained. Suppose n ≥25 as follows.

    Let n ≥25,i ≡6(mod 9), 15 ≤i ≤n ?2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,i+5),f(n,n?4,i+2,n?3,n,n?2,i+2,n?1,n,n?2,i+4,n?1),f(n,n?5,i+7,n?4,n,n?3,i+7,n ?2,n,i+7,n ?1,i+11), f(n,n ?4,i+8,n ?3,n,n ?2,i+8,n ?1,n,n ?2,i+10,n ?1)and f(n,n ?3,i+3,n ?2,n,i+3,n ?1,i+9,n,n ?3,i+9,n ?2), respectively.

    We can easily know that {n,1,n ?3}, {n,1,n ?2}, {n,1,n ?1}, {n,2,n ?2}, {n,2,n ?1}and {n,3,n ?1} do not belong to any good group.

    Lemma 5If n ≡1,2(mod 9),n ≥10, then all elements of Anexcept forcan be partitioned intogroups, such that each group has exactly 9 subsets and is good.

    ProofBy Lemma 1, we only consider the elements left of An.

    Case 1Let n ≥10,n ≡1(mod 9). The elements left in the 1, 2, 3, 4, 5, 6, 7 and 8 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n?8,1,n?7,n,n?6,1,n?5,n,n?4,1,n?3,n,n?2,1,n,n?1,8),f(n,n?7,2,n?6,n,n?5,2,n?4,n,n?3,2,n?2,n,2,n?1,n,7,n?2),f(n,n?6,3,n?5,n,n?4,3,n?3,n,n?2,3,n,n?1,6,n,n?2,6,n?3)and f(n,n?5,4,n?4,n,n?3,4,n?2,n,4,n?1,n,5,n?2,n,n?3,5,n?4).

    Let n ≥18,i ≡0(mod 9), 0 ≤i ≤n ?2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,i+5),f(n,n?4,i+2,n?3,n,n?2,i+2,n?1,n,n?2,i+4,n?1),f(n,n?5,i+7,n?4,n,n?3,i+7,n ?2,n,i+7,n ?1,i+11), f(n,n ?4,i+8,n ?3,n,n ?2,i+8,n ?1,n,n ?2,i+10,n ?1)and f(n,n ?3,i+3,n ?2,n,i+3,n ?1,i+9,n,n ?3,i+9,n ?2), respectively. when n=18,the conclusion is obtained. Suppose n ≥28 as follows.

    Let n ≥28,i ≡1(mod 9),19 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4),respectively.

    Case 2Let n ≥12,n ≡2(mod 9). The elements left in the 1, 2, 3, 4, 5, 6, 7, 8 and 9-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n?9,1,n?8,n,n?7,1,n?6,n,n?5,1,n?4,n,n?3,1,n,9,n?1),f(n,n?8,2,n?7,n,n?6,2,n?5,n,n?4,2,n?3,n,n?2,2,n,n?1,1),f(n,n?7,3,n?6,n,n?5,3,n?4,n,n?3,3,n?2,n,i+2,n?1,n,8,n?2),f(n,n?6,4,n?5,n,n?4,4,n?3,n,n?2,4,n,n?1,7,n,n?2,7,n?3)and f(n,n ?5,5,n ?4,n,n ?3,5,n ?2,n,5,n ?1,n,6,n ?2,n,n ?3,6,n ?4), respectively.

    Let n ≥20,i ≡2(mod 9),2 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n ?8,i,n ?7,n,n ?6,i,n ?5,n,n ?4,i,n ?3,n,n ?2,i,n,n ?1,i+7),f(n,n ?7,i+1,n ?6,n,n ?5,i+1,n ?4,n,n ?3,i+1,n ?2,n,i+1,n ?1,n,i+6,n ?2),f(n,n ?6,i+2,n ?5,n,n ?4,i+2,n ?3,n,n ?2,i+2,n,n ?1,i+5,n,n ?2,i+5,n ?3) and f(n,n ?5,i+3,n ?4,n,n ?3,i+3,n ?2,n,i+3,n ?1,n,i+4,n ?2,n,n ?3,i+4,n ?4),respectively. when n=20, the conclusion is obtained. Suppose n ≥29 as follows.

    Let n ≥29,i ≡1(mod 9),19 ≤i ≤n?2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n ?9,i,n ?8,n,n ?7,i,n ?6,n,n ?5,i,n ?4,n,n ?3,i,n,i+8,n ?1),f(n,n ?8,i+1,n ?7,n,n ?6,i+1,n ?5,n,n ?4,i+1,n ?3,n,n ?2,i+1,n,n ?1,i),f(n,n ?7,i+2,n ?6,n,n ?5,i+2,n ?4,n,n ?3,i+2,n ?2,n,i+2,n ?1,n,i+7,n ?2),f(n,n ?6,i+3,n ?5,n,n ?4,i+3,n ?3,n,n ?2,i+3,n,n ?1,i+6,n,n ?2,i+6,n ?3) and f(n,n ?5,i+4,n ?4,n,n ?3,i+4,n ?2,n,i+4,n ?1,n,i+5,n ?2,n,n ?3,i+5,n ?4),respectively. The proof is completed.

    §3. The Thought of Algorithm

    How to obtain the optimal vertex-distinguishing total coloring of mC9(i.e. which use the minimum number of colors)? Firstly, let 2 ≤m ≤406, we determine the vertex-distinguishing total coloring of mC9. When m = 406, VDTC of mC9has used 29 colors and all 3-subsets of the set {1,2,··· ,29} of all colors used are the color sets of vertices in mC9, i.e, all 3-subsets of{1,2,··· ,29}has been used up. Secondly,we will give k?V DTC of mC9using colors 1,2,··· ,k whenrecursively. Finally,mC9are colored by the colors 1,2,··· ,k. Actually,k ?V DTC ofcolored by the colors 1,2,··· ,k are only needed. Because of lettingthe restriction of k ?V DTC ofin the former m C,9s is the k ?V DTC of mC9. When the number of colors used in coloring varies from 3 to 29, the left 3-subsets in each cases are listed in Table-1.

    Table-1

    §4. Procedure of Algorithm

    Procedure of algorithm on the optimal VDTC ofmC9.

    For given m ≥2, find positive integer k such thatIf in some step the optimal vertex-distinguishing total coloring f ofhas been given, then the procedure should be stopped and optimal VDTC of mC9will be obtained by restricting f in first m C,9s.

    Step 1When m=2, χvt(mC9)≥6. The 6-VDTC of mC9will be given as follows. We use f(1,2,3,4,1,2,4,3,2,5,1,3,5,4,2,3,5,4)to color the first C9,all the color sets of 9 vertices in the first C9are given in the lines of n = 3,4,5 in Table 1 except {5,3,4}, the second C9can be obtained by Lemma 2, and all 3?element subsets of {1,2,··· ,6} except for {5,3,4},{6,1,5} are used up.

    When m=3, χvt(mC9)≥7, then based on the 6-VDTC of 2C9, we can obtain a k-VDTC of the three C9by Lemma 4, and all 3?element subsets of {1,2,··· ,7} except for {5,3,4},{6,1,5}, {7,1,4}, {7,1,5}, {7,1,6}, {7,2,5}, {7,2,6}, {7,3,6} are used up.

    When 4 ≤m ≤6, χvt(mC9) ≥8, then based on the 7-VDTC of 3C9, we can obtain a k-VDTC of the fourth, fifth C9by Lemma 3. These { {5,3,4}, {6,1,5}, {7,1,4}, {7,1,5},{7,1,6}, {7,2,5}, {7,2,6}, {7,3,6}, {8,1,6} } of unused 3?element subsets consist of a good group. We use the coloring f(1,6,5,3,4,7,1,5,7,1,6,7,2,5,7,3,6,8) to color the six-th C9, all the color sets of 9 vertices in the six-th C9are given in the lines of n = 5,6,7,8 in Table-1 except {8,1,7}, {8,2,7}, and all 3- element subsets of {1,2,··· ,8} except for {8,1,7}, {8,2,7}are used up.

    If a 3-subset of {1,2,··· ,k} is a color set of a vertex of mC9under a k-VDTC g of mC9,then this 3-subset is called used up under g.

    When 7 ≤m ≤9, χvt(mC9) ≥9, then based on the 8-VDTC of 6C9, we can obtain a k-VDTC of the seventh, eighth, ninth C9by Lemma 2, and all 3?element subsets of{1,2,··· ,9}except for {8,1,7}, {8,2,7}, {9,1,8} are used up.

    When 10 ≤m ≤13, χvt(mC9) ≥10, then based on the 9-VDTC of 9C9, we can obtain a k-VDTC of the tenth, eleventh, twelfth, thirteenth C9by Lemma 5, and all 3?element subsets of {1,2,··· ,10} except for {8,1,7}, {8,2,7}, {9,1,8} are used up.

    When 14 ≤m ≤18, χvt(mC9)≥11, then based on the 10-VDTC of 13C9, we can obtain a k-VDTC of the 14,15,··· ,18-th C9by Lemma 5, and all 3?element subsets of {1,2,··· ,11}except for {8,1,7}, {8,2,7}, {9,1,8} are used up.

    When 19 ≤m ≤24, χvt(mC9)≥12, then based on the 11-VDTC of 18C9, we can obtain a k-VDTC of the 19,20,··· ,24-th C9by Lemma 2, and all 3?element subsets of {1,2,··· ,12}except for {8,1,7}, {8,2,7}, {9,1,8}, {12,1,11} are used up.

    When 25 ≤m ≤31, χvt(mC9)≥13, then based on the 12-VDTC of 24C9, we can obtain a k-VDTC of the 25,26,··· ,31-th C9by Lemma 3, and all 3?element subsets of {1,2,··· ,13}except for{8,1,7},{8,2,7},{9,1,8},{12,1,11},{13,1,11},{13,1,12},{13,2,12}are used up.

    When 32 ≤m ≤40,χvt(mC9)≥14,then based on the 13-VDTC of 31C9,we can obtain a k-VDTC of the 32,33,··· ,40-th C9by Lemma 4. These{{8,1,7}, {8,2,7}, {9,1,8}, {12,1,11},{13,1,11}, {13,1,12}, {13,2,12}, {14,1,12}, {14,1,13} } of unused 3?element subsets consist of a good group. We use the coloring f(1,8,7,2,8,9,1,12,11,13,1,12,13,2,12,1,14,13) to color the 40-th C9, all the color sets of 9 vertices in the 40-th C9are given in the lines of n = 8,9,12,13,14 in Table-1 except {14,1,11}, {14,2,13}, {14,2,12}, {14,3,13}, and all 3-element subsets of {1,2,··· ,14} except for {14,1,11}, {14,2,13}, {14,2,12}, {14,3,13} are used up.

    When 41 ≤m ≤50, χvt(mC9)≥15, then based on the 14-VDTC of 40C9, we can obtain a k-VDTC of the 41,42,··· ,50-th C9by Lemma 2, and all 3?element subsets of {1,2,··· ,15}except for {14,1,11}, {14,2,13}, {14,2,12}, {14,3,13}, {15,1,14} are used up.

    When 51 ≤m ≤62, χvt(mC9) ≥16, then based on the 15-VDTC of 51C9, we can obtain a k-VDTC of the 51,52,··· ,62-th C9by Lemma 4. These { {14,1,11}, {14,2,12}, {14,3,13},{15,1,14},{16,1,13},{16,1,15},{16,2,14},{16,2,15},{14,2,13}}of unused 3?element subsets consist of a good group. We use the coloring f(1,11,14,13,2,12,14,3,13,16,1,14,15,16,2,14,16,15) to color the 62-th C9, all the color sets of 9 vertices in the 62-th C9are given in the lines of n = 14,15,16 in Table-1 except {16,1,14}, {16,3,15}, and all 3- element subsets of{1,2,··· ,16} except for {16,1,14}, {16,3,15} are used up.

    When 63 ≤m ≤75, χvt(mC9)≥17, then based on the 16-VDTC of 62C9, we can obtain a k-VDTC of the 63,64,··· ,75-th C9by Lemma 3, and all 3?element subsets of {1,2,··· ,17}except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16} are used up.

    When 76 ≤m ≤90, χvt(mC9)≥18, then based on the 17-VDTC of 75C9, we can obtain a k-VDTC of the 76,77,··· ,90-th C9by Lemma 2, and all 3?element subsets of {1,2,··· ,18}except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17} are used up.

    When 91 ≤m ≤107,χvt(mC9)≥19,then based on the 18-VDTC of 91C9,we can obtain a k-VDTC of the 91,92,··· ,107-th C9by Lemma 5, and all 3?element subsets of {1,2,··· ,19}except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17} are used up.

    When 108 ≤m ≤126, χvt(mC9) ≥20, then based on the 19-VDTC of 107C9, we can obtain a k-VDTC of the 108,109,··· ,126-th C9by Lemma 5, and all 3?element subsets of{1,2,··· ,20} except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17}are used up.

    When 127 ≤m ≤147, χvt(mC9) ≥21, then based on the 20-VDTC of 126C9, we can obtain a k-VDTC of the 127,128,··· ,147-th C9by Lemma 2, and all 3?element subsets of{1,2,··· ,21} except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17},{21,1,20} are used up.

    When 148 ≤m ≤171, χvt(mC9) ≥22, then based on the 21-VDTC of 147C9, we can obtain a k-VDTC of the 148,149,··· ,171-th C9by Lemma 3. These { {16,1,14}, {16,3,15},{17,1,15}, {17,1,16}, {17,2,16}, {18,1,17}, {21,1,20}, {22,1,20}, {22,1,21} } of unused 3?element subsets consist of a good group. We use the coloring f(1,14,16,3,15,1,17,2,16,1,17,18,1,21,20,1,22,21) to color the 171-th C9, all the color sets of 9 vertices in the 171-th C9are given in the lines of n = 16,17,18,21,22 in Table-1 except {22,2,21}, and all 3- element subsets of {1,2,··· ,22} except for {22,2,21} are used up.

    When 172 ≤m ≤196, χvt(mC9) ≥23, then based on the 22-VDTC of 171C9, we can obtain a k-VDTC of the 172,173,··· ,196-th C9by Lemma 4, and all 3?element subsets of{1,2,··· ,23} except for {22,2,21}, {23,1,20}, {23,1,21}, {23,1,22}, {23,2,21}, {23,2,22},{23,3,22} are used up.

    When 197 ≤m ≤224, χvt(mC9) ≥24, then based on the 23-VDTC of 196C9, we can obtain a k-VDTC of the 197,198,··· ,224-th C9by Lemma 2, and all 3?element subsets of{1,2,··· ,24} except for {22,2,21}, {23,1,20}, {23,1,21}, {23,1,22}, {23,2,21}, {23,2,22},{23

    ,3,22}, {24,1,23} are used up.

    When 225 ≤m ≤255, χvt(mC9) ≥25, then based on the 24-VDTC of 224C9, we can obtain a k-VDTC of the 225,226,··· ,255-th C9by Lemma 4. These { {22,2,21}, {23,1,20},{23,1,21}, {23,1,22}, {23,2,21}, {23,2,22}, {23,3,22}, {25,1,22}, {25,1,23} } of unused 3?element subsets consist of a good group. We use the coloring f(1,20,23,1,21,2,22,1,23,21,2,22,23,3,22,1,25,23)to color the 255-th C9,all the color sets of 9 vertices in 255-th C9are given in the lines of n = 22,23,25 in Table-1 except {25,1,24}, {25,2,23}, {25,2,24}, {25,3,24},{24,1,23},and all 3-element subsets of{1,2,··· ,25}except for{25,1,24},{25,2,23},{25,2,24},{25,3,24}, {24,1,23} are used up.

    When 256 ≤m ≤288, χvt(mC9) ≥26, then based on the 25-VDTC of 255C9, we can obtain a k-VDTC of the 256,257,··· ,288-th C9by Lemma 3, and all 3?element subsets of{1,2,··· ,26} except for {25,1,24}, {25,2,23}, {25,2,24}, {25,3,24}, {24,1,23}, {26,1,24},{26,1,25}, {26,2,25} are used up.

    When 289 ≤m ≤325, χvt(mC9) ≥27, then based on the 26-VDTC of 288C9, we can obtain a k-VDTC of the 289,290,··· ,325-th C9by Lemma 2. These { {25,1,24}, {25,2,23},{25,2,24}, {25,3,24}, {24,1,23}, {26,1,24}, {26,1,25}, {26,2,25}, {27,1,26} } of unused 3?element subsets consist of a good group. We use the coloring f(1,23,24,1,25,2,24,3,25,23,2,25,26,24,1,25,26,27) to color the 325-th C9, all the color sets of 9 vertices in the 325-th C9are given in the lines of n=24,25,26,27 in Table-1,and all 3-element subsets of{1,2,··· ,27}are used up.

    When 326 ≤m ≤364, χvt(mC9) ≥28, then based on the 27-VDTC of 325C9, we can obtain a k-VDTC of the 326,327,··· ,364-th C9by Lemma 5, and all 3?element subsets of{1,2,··· ,28} are used up.

    When 365 ≤m ≤406, χvt(mC9) ≥29, then based on the 28-VDTC of 364C9, we can obtain a k-VDTC of the 365,366,··· ,406-th C9by Lemma 5, and all 3?element subsets of{1,2,··· ,29} are used up.

    Now 406C9has been already colored using colors 1,2,··· ,29. When m ≥407, let 9m ≤k =30, goto Step 2.

    Step 2If k ≡3(mod 27), then based on thewe can obtain a k-VDTC ofby Lemma 2, and all 3?element subsets of {1,2,··· ,k} except for{k,1,k ?1} are used up.

    Step 3If k ≡4(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 3,and all 3?element subsets of{1,2,··· ,k}except for {k ?1,1,k ?2}, {k,1,k ?2}, {k,1,k ?1}, {k,2,k ?1} are used up.

    Step 4If k ≡5(mod 27), then based on the (k ?1)-VDTC of, we can obtain a k-VDTC of?10]C9by Lemma 4. These {{k ?2,1,k ?3},{k ?1,1,k ?3},{k ?1,1,k ?2},{k ?1,2,k ?2},{k,1,k ?3},{k,1,k ?2},{k,1,k ?1},{k,2,k ?2},{k,2,k ?1}} of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?3,k ?2,k ?1,1,k ?3,k ?1,k ?2,2,k,1,k ?2,k,k ?1,2,k ?2,k,k ?1) to color the?1]C9-th, and all 3- element subsets of {1,2,··· ,k} except for {k,3,k ?1} are used up.

    Step 5If k ≡6(mod 27), then based on the (k ?1)-VDTC of, we can obtain a k-VDTC ofby Lemma 2,and all 3?element subsets of{1,2,··· ,k}except for {k ?1,3,k ?2}, {k,1,k ?1} are used up.

    Step 6If k ≡7(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4, and all 3?element subsets of {1,2,··· ,k}except for{k ?2,3,k ?3}, {k ?1,1,k ?2}, {k,1,k ?3}, {k,1,k ?2}, {k,1,k ?1}, {k,2,k ?2},{k,2,k ?1}, {k,3,k ?1} are used up.

    Step 7If k ≡8(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 3. These { {k ?3,3,k ?4}, {k ?2,1,k ?3},{k?1,1,k?4},{k?1,1,k?3},{k?1,1,k?2},{k?1,2,k?3},{k?1,2,k?2},{k?1,3,k?2},{k,1,k ?2} } of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?2,k ?3,3,k ?4,k ?1,1,k ?3,k ?1,1,k ?2,k ?1,2,k ?3,k ?1,3,k ?2,k)to color theand all 3- element subsets of {1,2,··· ,k} except for {k,1,k ?1}, {k,2,k ?1}are used up.

    Step 8If k ≡9(mod 27), then based on the (k ?1)-VDTCwe can obtain a k-VDTC ofby Lemma 2,and all 3?element subsets of{1,2,··· ,k}except for {k ?1,1,k ?2}, {k ?1,2,k ?2} are used up.

    Step 9If k ≡10(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5,and all 3?element subsets of{1,2,··· ,k}except for {k ?2,1,k ?3}, {k ?2,2,k ?3}, {k ?1,1,k ?2} are used up.

    Step 10If k ≡11(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3?element subsets of {1,2,··· ,k}except for {k ?3,1,k ?4}, {k ?3,2,k ?4}, {k ?2,1,k ?3} are used up.

    Step 11If k ≡12(mod 27), then based on the (k ?1)-VDTC ofcan obtain a k-VDTCC9by Lemma 2, and all 3?element subsets of {1,2,··· ,k}except for {k ?4,1,k ?5}, {k ?4,2,k ?5}, {k ?3,1,k ?4}, {k,1,k ?1} are used up.

    Step 12If k ≡13(mod 27), then based on the (k ?1)-VDTC of, we can obtain a k-VDTC ofby Lemma 3, and all 3?element subsets of {1,2,··· ,k}except for {k ?5,1,k ?6}, {k ?5,2,k ?6}, {k ?4,1,k ?5}, {k ?1,1,k ?2}, {k,1,k ?2},{k,1,k ?1}, {k,2,k ?1} are used up.

    Step 13If k ≡14(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4. These { {k ?6,1,k ?7}, {k ?6,2,k ?7},{k ?5,1,k ?6}, {k ?2,1,k ?3}, {k ?1,1,k ?3}, {k ?1,1,k ?2}, {k ?1,2,k ?2}, {k,1,k ?2},{k,1,k ?1} } of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?6,k ?7,2,k ?6,k ?5,1,k ?2,k ?3,k ?1,1,k ?2,k ?1,2,k ?2,1,k,k ?1)to color theand all 3- element subsets of {1,2,··· ,k} except for {k,1,k ?3}, {k,2,k ?2},{k,2,k ?1}, {k,3,k ?1} are used up.

    Step 14If k ≡15(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC of?5]C9by Lemma 2, and all 3?element subsets of {1,2,··· ,k}except for {k ?1,1,k ?4}, {k ?1,2,k ?3}, {k ?1,2,k ?2}, {k ?1,3,k ?2}, {k,1,k ?1} are used up.

    Step 15If k ≡16(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC of11]C9by Lemma 4. These { {k ?2,1,k ?5}, {k ?2,2,k ?4},{k ?2,2,k ?3}, {k ?2,3,k ?3}, {k ?1,1,k ?2} {k,1,k ?3}, {k,2,k ?1}, {k,2,k ?2},{k,2,k ?1} } of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?5,k ?2,k ?3,2,k ?4,k ?2,3,k ?3,k,1,k ?2,k ?1,k,2,k ?2,k,k ?1) to color the2]C9-th, and all 3- element subsets of {1,2,··· ,k} except for {k,1,k ?2}, {k,3,k ?1}are used up.

    Step 16If k ≡17(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3?element subsets of {1,2,··· ,k}except for {k ?1,1,k ?3}, {k ?1,3,k ?2}, {k,1,k ?2}, {k,1,k ?1}, {k,2,k ?1} are used up.

    Step 17If k ≡18(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2, and all 3?element subsets of {1,2,··· ,k}except for {k ?2,1,k ?4}, {k ?2,3,k ?3}, {k ?1,1,k ?3}, {k ?1,1,k ?2}, {k ?1,2,k ?2},{k,1,k ?1} are used up.

    Step 18If k ≡19(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3?element subsets of {1,2,··· ,k}except for {k ?3,1,k ?5}, {k ?3,3,k ?4}, {k ?2,1,k ?4}, {k ?2,1,k ?3}, {k ?2,2,k ?3},{k ?1,1,k ?2} are used up.

    Step 19If k ≡20(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3?element subsets of {1,2,··· ,k }except for {k ?4,1,k ?6}, {k ?4,3,k ?5}, {k ?3,1,k ?5}, {k ?3,1,k ?4}, {k ?3,2,k ?4},{k ?2,1,k ?3} are used up.

    Step 20If k ≡21(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2, and all 3?element subsets of {1,2,··· ,k}except for {k ?5,1,k ?7}, {k ?5,3,k ?6}, {k ?4,1,k ?6}, {k ?4,1,k ?5}, {k ?4,2,k ?5},{k ?3,1,k ?4}, {k,1,k ?1} are used up.

    Step 21If k ≡22(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 3. These { {k ?6,1,k ?8}, {k ?6,3,k ?7},{k ?5,1,k ?7}, {k ?5,1,k ?6}, {k ?5,2,k ?6}, {k ?4,1,k ?5}, {k ?1,1,k ?2}, {k,1,k ?2},{k,1,k ?1} } of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?8,k ?6,3,k ?7,1,k ?5,2,k ?6,1,k ?5,k ?4,1,k ?1,k ?2,1,k,k ?1) to color theand all 3- element subsets of {1,2,··· ,k} except for {k,2,k ?1} are used up.

    Step 22If k ≡23(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4, and all 3?element subsets of {1,2,··· ,k}except for {k ?1,2,k ?2}, {k,1,k ?3}, {k,1,k ?2}, {k,1,k ?1}, {k,2,k ?2}, {k,2,k ?1},{k,3,k ?1} are used up.

    Step 23If k ≡24(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2, and all 3?element subsets of {1,2,··· ,k}except for {k ?2,2,k ?3}, {k ?1,1,k ?4}, {k ?1,1,k ?3}, {k ?1,1,k ?2}, {k ?1,2,k ?3},{k ?1,2,k ?2}, {k ?1,3,k ?2}, {k,1,k ?1} are used up.

    Step 24If k ≡25(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4. These { {k ?3,2,k ?4}, {k ?2,1,k ?5},{k ?2,1,k ?4}, {k ?2,1,k ?3}, {k ?2,2,k ?4}, {k ?2,2,k ?3}, {k ?2,3,k ?3}, {k,1,k ?3},{k,1,k ?2} } of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?5,k ?2,1,k ?4,2,k ?3,1,k ?2,k ?4,2,k ?3,k ?2,3,k ?3,1,k,k ?2) to color theand all 3-element subsets of{1,2,··· ,k}except for{k?1,1,k?2},{k,1,k?1},{k,2,k ?2}, {k,2,k ?1}, {k,3,k ?1} are used up.

    Step 25If k ≡26(mod 27), then based on the (k ?1)-VDTC of, we can obtain a k-VDTC ofby Lemma 3, and all 3?element subsets of {1,2,··· ,k}except for {k ?2,1,k ?3}, {k ?1,1,k ?2}, {k ?1,2,k ?3}, {k ?1,2,k ?2}, {k ?1,3,k ?2},{k,1,k ?2}, {k,1,k ?1}, {k,2,k ?1} are used up.

    Step 26If k ≡0(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2. These { {k ?3,1,k ?4}, {k ?2,1,k ?3},{k?2,2,k?4},{k?2,2,k?3},{k?2,3,k?3},{k?1,1,k?3},{k?1,1,k?2},{k?1,2,k?2},{k,1,k ?1} } of unused 3?element subsets consist of a good group. We use the coloring f(1,k ?4,k ?3,1,k ?2,2,k ?3,3,k ?2,k ?4,2,k ?2,k ?1,k ?3,1,k ?2,k ?1,k) to color the-th, and all 3- element subsets of {1,2,··· ,k} are used up.

    Step 27If k ≡1(mod 27), then based on the (k ?1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3?element subsets of {1,2,··· ,k} are used up.

    netflix在线观看网站| 亚洲九九香蕉| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说| 国产区一区二久久| 人妻 亚洲 视频| 久9热在线精品视频| 日韩大片免费观看网站| 黄色 视频免费看| 老司机午夜十八禁免费视频| 国产精品国产av在线观看| 脱女人内裤的视频| 国产福利在线免费观看视频| 飞空精品影院首页| 欧美日韩亚洲综合一区二区三区_| 好男人电影高清在线观看| 免费在线观看日本一区| 精品久久久精品久久久| 亚洲五月色婷婷综合| 999精品在线视频| 99九九在线精品视频| 在线天堂中文资源库| 水蜜桃什么品种好| 伦理电影免费视频| 国产精品偷伦视频观看了| 女同久久另类99精品国产91| 电影成人av| 国产精品久久久av美女十八| 两个人看的免费小视频| 日韩视频一区二区在线观看| 婷婷成人精品国产| 久久久久久久久免费视频了| 黄片大片在线免费观看| 日韩人妻精品一区2区三区| 99香蕉大伊视频| 久久久久久亚洲精品国产蜜桃av| 最新美女视频免费是黄的| 国产成人免费无遮挡视频| 不卡av一区二区三区| 老司机在亚洲福利影院| 美女视频免费永久观看网站| 一区福利在线观看| av有码第一页| 汤姆久久久久久久影院中文字幕| 久久久久视频综合| 久久99一区二区三区| 美女午夜性视频免费| 一本色道久久久久久精品综合| 国产精品麻豆人妻色哟哟久久| 91精品国产国语对白视频| 无限看片的www在线观看| 在线观看免费视频日本深夜| 波多野结衣av一区二区av| 国产欧美日韩一区二区三| 日韩欧美一区二区三区在线观看 | 精品高清国产在线一区| 亚洲午夜精品一区,二区,三区| 蜜桃国产av成人99| 精品一区二区三区视频在线观看免费 | 美女国产高潮福利片在线看| 老熟女久久久| 少妇精品久久久久久久| kizo精华| 亚洲七黄色美女视频| 久久久久久久精品吃奶| 久久精品人人爽人人爽视色| 亚洲av日韩在线播放| tocl精华| 国产成人一区二区三区免费视频网站| 老司机午夜福利在线观看视频 | 国产精品自产拍在线观看55亚洲 | 亚洲国产欧美在线一区| 日韩欧美免费精品| 欧美午夜高清在线| 精品亚洲成国产av| 午夜福利一区二区在线看| 90打野战视频偷拍视频| 青草久久国产| 精品第一国产精品| av不卡在线播放| 亚洲欧美激情在线| 日韩欧美一区视频在线观看| 在线观看免费高清a一片| 精品午夜福利视频在线观看一区 | 久久国产精品影院| 99国产精品99久久久久| 建设人人有责人人尽责人人享有的| 精品亚洲乱码少妇综合久久| 久久久国产精品麻豆| 国产成人影院久久av| 首页视频小说图片口味搜索| 一区二区三区乱码不卡18| 久久久久久免费高清国产稀缺| 国产不卡一卡二| 一本一本久久a久久精品综合妖精| 黄频高清免费视频| 美女主播在线视频| 国产高清videossex| 一本大道久久a久久精品| 中文字幕制服av| 他把我摸到了高潮在线观看 | 青青草视频在线视频观看| av网站在线播放免费| 狠狠精品人妻久久久久久综合| 亚洲三区欧美一区| 在线亚洲精品国产二区图片欧美| 成人av一区二区三区在线看| 欧美 日韩 精品 国产| 国产欧美日韩一区二区三区在线| 麻豆成人av在线观看| 极品人妻少妇av视频| 国产一区二区在线观看av| 亚洲综合色网址| 欧美另类亚洲清纯唯美| 欧美精品av麻豆av| 两个人看的免费小视频| 美女福利国产在线| 97人妻天天添夜夜摸| 久久国产精品影院| 亚洲精品国产区一区二| 无遮挡黄片免费观看| 一进一出好大好爽视频| 久久久水蜜桃国产精品网| 精品亚洲乱码少妇综合久久| videos熟女内射| 他把我摸到了高潮在线观看 | 国产又色又爽无遮挡免费看| 少妇粗大呻吟视频| 亚洲中文字幕日韩| www日本在线高清视频| 欧美精品av麻豆av| 亚洲国产av影院在线观看| 一区二区av电影网| 青草久久国产| 国产精品免费一区二区三区在线 | 成人亚洲精品一区在线观看| 免费观看av网站的网址| 国产精品久久久久久人妻精品电影 | 岛国毛片在线播放| 黄色视频不卡| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久久久久人妻精品电影 | 黄色视频,在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲熟妇熟女久久| 91成人精品电影| 国产日韩欧美在线精品| 欧美在线黄色| 精品一区二区三卡| 久久久精品免费免费高清| 欧美变态另类bdsm刘玥| 美女高潮喷水抽搐中文字幕| 久久av网站| 欧美在线黄色| 99re6热这里在线精品视频| 亚洲精品粉嫩美女一区| 国产精品.久久久| 在线看a的网站| 成年人黄色毛片网站| 国产一区二区在线观看av| www.精华液| 久久热在线av| 99久久99久久久精品蜜桃| 高潮久久久久久久久久久不卡| 亚洲av片天天在线观看| 中文字幕av电影在线播放| 天堂8中文在线网| 久久国产亚洲av麻豆专区| 香蕉久久夜色| 久热爱精品视频在线9| 亚洲欧美激情在线| 国产亚洲av高清不卡| 国产精品久久久久久精品古装| 婷婷成人精品国产| 嫩草影视91久久| 天天影视国产精品| 蜜桃在线观看..| 露出奶头的视频| 国产成人精品久久二区二区91| 这个男人来自地球电影免费观看| 如日韩欧美国产精品一区二区三区| 99精品久久久久人妻精品| 99热网站在线观看| 午夜成年电影在线免费观看| xxxhd国产人妻xxx| 国产亚洲精品一区二区www | 亚洲中文日韩欧美视频| 日韩一区二区三区影片| 国产一卡二卡三卡精品| 日韩欧美一区视频在线观看| 欧美午夜高清在线| 黄色视频,在线免费观看| av网站免费在线观看视频| 黄片大片在线免费观看| 亚洲国产av影院在线观看| 多毛熟女@视频| 欧美久久黑人一区二区| 久久久久久久久免费视频了| 一区二区三区乱码不卡18| 亚洲五月色婷婷综合| 波多野结衣av一区二区av| 国产精品一区二区在线观看99| 最近最新免费中文字幕在线| 久久香蕉激情| 亚洲成国产人片在线观看| 亚洲欧洲日产国产| 脱女人内裤的视频| 五月天丁香电影| 亚洲精品国产区一区二| 老汉色∧v一级毛片| 久久精品国产a三级三级三级| 亚洲精品久久成人aⅴ小说| 日本精品一区二区三区蜜桃| 丝袜美腿诱惑在线| 国产欧美日韩精品亚洲av| 亚洲av第一区精品v没综合| 狠狠狠狠99中文字幕| 欧美日韩成人在线一区二区| 两人在一起打扑克的视频| 夫妻午夜视频| 精品一区二区三区av网在线观看 | 久久影院123| 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 丰满饥渴人妻一区二区三| 在线观看人妻少妇| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产区一区二| 日韩精品免费视频一区二区三区| 精品国产一区二区三区久久久樱花| 三级毛片av免费| 国产成人av教育| 久久ye,这里只有精品| 一本久久精品| 妹子高潮喷水视频| 老司机靠b影院| 国产又爽黄色视频| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区黑人| 免费观看a级毛片全部| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲色图综合在线观看| 欧美日韩精品网址| 亚洲专区中文字幕在线| 亚洲国产看品久久| 人人妻人人爽人人添夜夜欢视频| 精品福利永久在线观看| 国产成人一区二区三区免费视频网站| 大码成人一级视频| 亚洲精品av麻豆狂野| 国产日韩欧美视频二区| 欧美精品高潮呻吟av久久| 国产精品免费一区二区三区在线 | 久久精品91无色码中文字幕| 一区二区av电影网| 久久热在线av| 一本综合久久免费| 国产成人欧美| 动漫黄色视频在线观看| 蜜桃国产av成人99| 久久天堂一区二区三区四区| 国产有黄有色有爽视频| 亚洲一区二区三区欧美精品| 性少妇av在线| 久久国产精品人妻蜜桃| 国产精品国产高清国产av | e午夜精品久久久久久久| 日日爽夜夜爽网站| 国产一区二区三区视频了| 两个人免费观看高清视频| 成在线人永久免费视频| 极品教师在线免费播放| 亚洲男人天堂网一区| 黄色视频不卡| 天天操日日干夜夜撸| 色精品久久人妻99蜜桃| 亚洲国产欧美在线一区| 91成年电影在线观看| 国产不卡av网站在线观看| 18在线观看网站| 亚洲av欧美aⅴ国产| 亚洲欧美色中文字幕在线| 丝袜在线中文字幕| 欧美人与性动交α欧美软件| 国精品久久久久久国模美| 国产男女内射视频| 美女福利国产在线| 丰满饥渴人妻一区二区三| 人妻 亚洲 视频| 久久久国产精品麻豆| 视频区欧美日本亚洲| a在线观看视频网站| 一区二区av电影网| 欧美精品av麻豆av| 免费日韩欧美在线观看| 国产欧美日韩一区二区三区在线| 另类亚洲欧美激情| 男女之事视频高清在线观看| 99热网站在线观看| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 日韩欧美一区二区三区在线观看 | 老司机午夜十八禁免费视频| 夫妻午夜视频| av不卡在线播放| 涩涩av久久男人的天堂| 女人久久www免费人成看片| 久久久久国内视频| 美女扒开内裤让男人捅视频| 精品国产国语对白av| 亚洲专区国产一区二区| 国产又色又爽无遮挡免费看| 肉色欧美久久久久久久蜜桃| 制服诱惑二区| 欧美一级毛片孕妇| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三区在线| 天堂动漫精品| 丝袜人妻中文字幕| 国产精品欧美亚洲77777| av不卡在线播放| 精品人妻1区二区| 国产精品二区激情视频| 久久久久国内视频| 成人18禁在线播放| 成年版毛片免费区| 免费黄频网站在线观看国产| 国产一区二区激情短视频| 久久香蕉激情| av天堂久久9| 亚洲国产欧美网| 国产精品影院久久| 99国产精品免费福利视频| 中亚洲国语对白在线视频| 欧美日韩黄片免| 黄色视频不卡| 久久久国产一区二区| 黄色怎么调成土黄色| 国产精品麻豆人妻色哟哟久久| 男人操女人黄网站| 啦啦啦中文免费视频观看日本| 男女无遮挡免费网站观看| 亚洲国产av影院在线观看| 国产视频一区二区在线看| 大型av网站在线播放| 热re99久久国产66热| 亚洲精品美女久久久久99蜜臀| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产成人免费无遮挡视频| 亚洲av美国av| 久久热在线av| 久久天堂一区二区三区四区| 大码成人一级视频| 自线自在国产av| 一级,二级,三级黄色视频| 在线十欧美十亚洲十日本专区| 国产一区二区三区综合在线观看| 成人18禁高潮啪啪吃奶动态图| 久久精品aⅴ一区二区三区四区| 久久久久视频综合| 亚洲伊人色综图| 最黄视频免费看| 国产精品98久久久久久宅男小说| av网站免费在线观看视频| 国产精品久久久久成人av| 国产精品一区二区在线观看99| 啦啦啦中文免费视频观看日本| 十八禁网站免费在线| 制服人妻中文乱码| 日韩欧美一区二区三区在线观看 | 两个人看的免费小视频| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久| 国产不卡一卡二| 最新在线观看一区二区三区| 成人国产一区最新在线观看| 日本wwww免费看| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 999久久久精品免费观看国产| a在线观看视频网站| 一级a爱视频在线免费观看| 人成视频在线观看免费观看| 激情在线观看视频在线高清 | 日本vs欧美在线观看视频| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 三上悠亚av全集在线观看| 69精品国产乱码久久久| 成人av一区二区三区在线看| 日韩有码中文字幕| 亚洲专区中文字幕在线| 国产成人av教育| 亚洲专区中文字幕在线| 国产一区二区在线观看av| 91字幕亚洲| 18禁黄网站禁片午夜丰满| 狠狠精品人妻久久久久久综合| 欧美精品一区二区免费开放| 久久婷婷成人综合色麻豆| 亚洲国产精品一区二区三区在线| 国产1区2区3区精品| 亚洲熟妇熟女久久| 美女福利国产在线| 无遮挡黄片免费观看| 俄罗斯特黄特色一大片| 欧美人与性动交α欧美精品济南到| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 亚洲中文字幕日韩| 在线永久观看黄色视频| 满18在线观看网站| 国产欧美日韩综合在线一区二区| 久久国产亚洲av麻豆专区| 新久久久久国产一级毛片| 久久久国产精品麻豆| 日韩一卡2卡3卡4卡2021年| 在线观看舔阴道视频| 在线观看人妻少妇| 欧美精品一区二区大全| 欧美国产精品一级二级三级| 亚洲精品成人av观看孕妇| 欧美午夜高清在线| 成人手机av| 日日爽夜夜爽网站| 精品亚洲成国产av| 国产亚洲精品久久久久5区| 少妇猛男粗大的猛烈进出视频| 人人妻人人澡人人爽人人夜夜| 精品国产乱子伦一区二区三区| 亚洲成人国产一区在线观看| av国产精品久久久久影院| 色94色欧美一区二区| 99九九在线精品视频| 黄频高清免费视频| 国产精品98久久久久久宅男小说| 成人手机av| 久久久久久久国产电影| 成人国语在线视频| 午夜福利欧美成人| 成人18禁在线播放| 男女床上黄色一级片免费看| 法律面前人人平等表现在哪些方面| 天天影视国产精品| 成人18禁在线播放| 国产一区二区三区综合在线观看| 咕卡用的链子| 男女下面插进去视频免费观看| 国产精品一区二区精品视频观看| 欧美亚洲 丝袜 人妻 在线| 国产精品亚洲一级av第二区| 在线观看免费午夜福利视频| 国产日韩欧美亚洲二区| 午夜激情久久久久久久| 美女午夜性视频免费| 2018国产大陆天天弄谢| 高清视频免费观看一区二区| 99国产精品99久久久久| 免费观看av网站的网址| 欧美精品亚洲一区二区| 国产熟女午夜一区二区三区| 国产精品影院久久| 欧美一级毛片孕妇| 热99久久久久精品小说推荐| 精品少妇久久久久久888优播| 五月开心婷婷网| 一本综合久久免费| 久久亚洲真实| 999久久久精品免费观看国产| 国产成人av教育| 国产日韩欧美在线精品| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 91九色精品人成在线观看| 日本a在线网址| 亚洲欧美精品综合一区二区三区| 制服诱惑二区| 涩涩av久久男人的天堂| 香蕉国产在线看| 久久人人爽av亚洲精品天堂| 国产精品一区二区免费欧美| 国产精品麻豆人妻色哟哟久久| 一本久久精品| 亚洲第一av免费看| 18在线观看网站| 啦啦啦中文免费视频观看日本| 日本五十路高清| 麻豆av在线久日| 久久国产亚洲av麻豆专区| 久热这里只有精品99| 国产麻豆69| 国产日韩欧美视频二区| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 国产不卡一卡二| 日本wwww免费看| 纯流量卡能插随身wifi吗| 一边摸一边抽搐一进一小说 | 高潮久久久久久久久久久不卡| 国产av一区二区精品久久| 久久久久视频综合| 乱人伦中国视频| 精品国产乱码久久久久久小说| 一本大道久久a久久精品| videosex国产| 成人18禁在线播放| 丁香欧美五月| 日韩一卡2卡3卡4卡2021年| 在线观看66精品国产| 丝袜美腿诱惑在线| 一区二区三区国产精品乱码| 午夜福利乱码中文字幕| 亚洲免费av在线视频| 热re99久久精品国产66热6| 黄色视频不卡| 国产激情久久老熟女| 午夜免费成人在线视频| a在线观看视频网站| 757午夜福利合集在线观看| 国产精品九九99| 国产激情久久老熟女| 日韩制服丝袜自拍偷拍| 国产色视频综合| 在线观看66精品国产| 男女免费视频国产| 一本久久精品| 国产男女超爽视频在线观看| xxxhd国产人妻xxx| 久久天堂一区二区三区四区| 大片电影免费在线观看免费| 亚洲少妇的诱惑av| 在线观看免费午夜福利视频| 妹子高潮喷水视频| 99riav亚洲国产免费| 国产在视频线精品| 成年人免费黄色播放视频| 亚洲专区字幕在线| 欧美日韩成人在线一区二区| 丁香六月天网| 成人18禁高潮啪啪吃奶动态图| 黑丝袜美女国产一区| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩综合在线一区二区| 精品一品国产午夜福利视频| 啦啦啦在线免费观看视频4| 免费女性裸体啪啪无遮挡网站| 一边摸一边做爽爽视频免费| 日本wwww免费看| 热99久久久久精品小说推荐| 黑人操中国人逼视频| 亚洲精华国产精华精| 999久久久国产精品视频| 人妻久久中文字幕网| 亚洲精品美女久久久久99蜜臀| 欧美国产精品va在线观看不卡| 中文欧美无线码| 亚洲国产毛片av蜜桃av| 最新美女视频免费是黄的| 老司机影院毛片| 精品少妇一区二区三区视频日本电影| 夜夜夜夜夜久久久久| 久久中文看片网| 香蕉久久夜色| 中文欧美无线码| 在线亚洲精品国产二区图片欧美| 视频区图区小说| 国产成人精品久久二区二区免费| 人人妻,人人澡人人爽秒播| 精品一区二区三区四区五区乱码| 欧美+亚洲+日韩+国产| 国产精品美女特级片免费视频播放器 | 精品亚洲乱码少妇综合久久| 十分钟在线观看高清视频www| 午夜福利视频在线观看免费| 欧美日韩亚洲国产一区二区在线观看 | 淫妇啪啪啪对白视频| 国产精品二区激情视频| 成人精品一区二区免费| 99精国产麻豆久久婷婷| 久久久久网色| 国产黄色免费在线视频| 婷婷成人精品国产| bbb黄色大片| 男女午夜视频在线观看| 欧美一级毛片孕妇| 国产欧美日韩一区二区三| 王馨瑶露胸无遮挡在线观看| 超色免费av| tube8黄色片| 日日摸夜夜添夜夜添小说| 日韩人妻精品一区2区三区| 国产野战对白在线观看| 天堂8中文在线网| 日本a在线网址| 成人国产一区最新在线观看| 久久国产精品人妻蜜桃| 大型av网站在线播放| 国产精品影院久久| 色视频在线一区二区三区| cao死你这个sao货| www.自偷自拍.com| 91大片在线观看| 亚洲一码二码三码区别大吗| 好男人电影高清在线观看| 亚洲欧洲精品一区二区精品久久久| 狠狠婷婷综合久久久久久88av| 黄色 视频免费看| 欧美中文综合在线视频| 99精国产麻豆久久婷婷| 亚洲国产欧美日韩在线播放| www.熟女人妻精品国产| 黄频高清免费视频| www.自偷自拍.com| 我的亚洲天堂|