• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Normality Criteria of Zero-free Meromorphic Functions

    2019-10-30 10:11:02XIEJiaDENGBingmao

    XIE Jia, DENG Bing-mao

    (1School of Mathematics and Information Science, Guangzhou University, Guangzhou, Guangdong,510006, P.R. China; 2School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou, Guangdong, 510521, P.R. China)

    Abstract: Let k be a positive integer, let h(z)0 be a holomorphic functions in a domain D, and let F be a family of zero-free meromorphic functions in D, all of whose poles have order at least l. If, for each f ∈F, P(f)(z)?h(z) has at most k +l ?1 distinct zeros(ignoring multiplicity) in D, where P(f)(z)=f(k)(z)+a1(z)f(k?1)(z)+···+ak(z)f(z) is a differential polynomial of f and aj(z)(j =1,2,··· ,k) are holomorphic functions in D, then F is normal in D.

    Key words: Meromorphic Function; Normality; Zero-free

    §1. Introduction and Main Result

    Let D be a domain in C and F a family of meromorphic functions in D. F is said to be normal in D (in the sense of Montel) if each sequence {fn} ?F has a subsequence {fnj}which converges locally uniformly in D with respect to the spherical metric, to a meromorphic function or ∞.

    We define that P(f)(z) is a differential polynomial of f, where P(f)(z) = f(k)(z) +a1(z)f(k?1)(z)+···+ak(z)f(z) and aj(z)(j =1,2,··· ,k) are holomorphic functions in D.

    In 1959, Hayman[4]proved the following result.

    Theorem ALet f be a nonconstant meromorphic function in C and k be a positive integer. Then f or f(k)?1 has at least a zero. Moreover, if f is transcendental, then f or f(k)?1 has infinitely many zeros.

    The normality corresponding to Theorem A was conjectured by Hayman[5]and confirmed by Gu[3]in 1979.

    Theorem BLet F be a family of zero-free meromorphic functions in a domain D and k be a positive integer. If f(k)1 for each f ∈F, then F is normal in D.

    In 1986, Yang[9]extended Theorem B as follows.

    Theorem CLet F be a family of zero-free meromorphic functions in a domain D and h(0) be a holomorphic function in D. If, for each f ∈F, f0 and f(k)h for z ∈D, then F is normal in D.

    Chang[1]improved Theorem B and proved the following result.

    Theorem DLet F be a family of zero-free meromorphic functions in a domain D and k be a positive integer. If, for each f ∈F, the function f(k)?1 has at most k distinct zeros(ignoring multiplicity) in D, then F is normal in D.

    Deng, Fang and Liu[2]extended Theorem C and proved the following result.

    Theorem ELet F be a family of zero-free meromorphic functions in a domain D, let h(0) be a holomorphic function in D, and let k be a positive integer. If, for each f ∈F,f(k)?h has at most k distinct zeros (ignoring multiplicity) in D, then F is normal in D.

    In 2013, Liu, Deng and Yang[6]replaced f(k)(z)?h(z) by P(f)(z)?h(z), and proved the following result.

    Theorem FLet F be a family of zero-free meromorphic functions in a domain D, let h(0) be a holomorphic function in D, and let k be a positive integer. If, for each f ∈F,P(f)(z)?h(z) has at most k distinct zeros (ignoring multiplicity) in D, then F is normal in D.

    In this paper, we consider about the order of poles of f. Here is our main result.

    Theorem 1Let k be a positive integer,let h(0)be a holomorphic functions in a domain D,and let F be a family of zero-free meromorphic functions in D,all of whose poles have order at least l. If, for each f ∈F, the function P(f)(z)?h(z) has at most k+l ?1 distinct zeros(ignoring multiplicity) in the domain D, then F is normal in D.

    ExampleSuppose that F ={fn(z)=1/nzl:n ≥(k+l?1)!+1},that P(fn)(z)=that D = {z : |z| < 1} and that h(z) = 1/(z ?1)k+l, where k is a positive integer. Then, for each fn∈F, the function P(fn)(z)?h(z) has k+l distinct zeros (ignoring multiplicity) in D,but F is not normal in D. This shows that the condition in Theorem 1 that P(f)?h has at most k+l ?1 distinct zeros (ignoring multiplicity) in D is best possible.

    Corollary 1Let F be a family of zero-free meromorphic functions in a domain D, let h(0) be a holomorphic functions in D, and let k be a positive integer. If, for each f ∈F,all of whose poles have order at least l, and the function f(k)(z)?h(z) has at most k+l ?1 distinct zeros (ignoring multiplicity) in D, then F is normal in D.

    Corollary 2Let F be a family of zero-free meromorphic functions in a domain D, and k be a positive integer. If, for each f ∈F, all of whose poles have order at least l, and the function f(k)has at most k+l ?1 fixed points (ignoring multiplicity) in D, then F is normal in D.

    §2. Some Lemmas

    Lemma 1[7]Let α ∈R satisfying ?1 < α < ∞and let F be a family of zero-free meromorphic functions in a domain D. If F is not normal at z0∈D,then there exist points zj(∈D)→z0, functions fj∈F, and positive numbers ρj→0+, such that gj(ξ)=f(zj+ρjξ)converges locally spherically uniformly in C to a nonconstant zero-free meromorphic function g(ξ).

    Lemma 2[8]Let f be a transcendental meromorphic function,let a(0)be a polynomial,and let k be a positive integer. If f0, then f(k)?a has infinitely many zeros.

    Lemma 3Let f be a nonconstant zero-free rational function,all of whose poles have order at least l, let a(0) be a polynomial and let k be a positive integer. Then f(k)?a has at least k+l distinct zeros (ignoring multiplicity) in C.

    ProofSuppose that

    since f is a nonconstant zero-free rational function, f is not a polynomial, and hence has at least one finite pole with order at least l. Further, by calculation, the function f(k)?a has at least one zero in C. Thus, we can write

    Where C1and C2are nonzero constants, m, n, s, li, mi, and ni≥1(1 ≤i ≤n) are positive integers, the vi(when 1 ≤i ≤m) are distinct complex numbers, and the zi(when 1 ≤i ≤n)and wi(when 1 ≤i ≤s) are distinct complex numbers. Set

    Then by induction, we deduce from (2) that

    where Pkis a polynomial of deg Pk=(n ?1)k. Thus, by (1), (3), and (4),

    and C2=?A. Thus by (5), we get

    where Q(t)=t(n?1)kPk(1/t)/A is a polynomial of deg Q ≤(n ?1)k, and it follows that

    Logarithmic differentiation of (6) shows that

    We consider two cases.

    Case 1If deg a=M =0then a is constant. Thus (7) may be rewritten:

    Comparing the coefficients of tj(j =0,1,··· ,N +k+n(l ?1)?2), we deduce that

    Let zn+i=wi(1 ≤i ≤s).

    Subcase 1.10 for each i ∈{1,··· ,n+s}. Noting that0 and using (8), we deduce that the system of linear equations

    has a nonzero solution

    If n+s ≤N +k+n(l ?1), then by Cramers rule,

    where 0 ≤j ≤N+k+n(l ?1)?1. However, the determinant is a Vandermonde determinant,so cannot be 0, which is a contradiction. Hence, we conclude that n+s>N +k+n(l ?1). It follows from this and the inequality N =≥n that s ≥k+l.

    Subcase 1.2There exist i ∈{1,··· ,n+s} such that zi= 0, for all. Without loss of generality, we assume that zn+s=0, then it follows from (8) that

    has a nonzero solution. Next, using the same argument as in Subcase 1.1, we deduce that s ≥k+l.

    Case 2deg a=M ≥1. Comparing the coefficients of tj(j =0,1,··· ,M+N+k+n(l ?1)?2) in (7), we deduce that

    Set

    Obviously, S2∩S3=?.

    Subcase 2.1S1∩S2=and S1∩S3=. Let zn+1= vi(1 ≤i ≤m), and zn+m+i=wi(1 ≤i ≤s).

    Subsubcase 2.1.10 for all i ∈{1,...,n+m+s}. Since

    it follows from (9) that

    has a nonzero solution. Then using the same argument as Subcase 1.1,we deduce that s ≥k+l.

    Subsubcase 2.1.2There exist i ∈{1,··· ,n+m+s} such that zi=0, for all. Without loss of generality, we assume that zn+m+s=0, then it follows from (9) that

    has a nonzero solution. Next,using the same argument as Subcase 1.2,we deduce that s ≥k+l.

    Subcase 2.2S1∩S2= ?and S1∩S3= ?. Without loss of generality, we may assume that S1∩S2={v1,v2,··· ,vM1}, where vi=zi(1 ≤i ≤M1). Let M3=m ?M1, and set

    If M3≥1, then set zn+i=vM1+i(1 ≤i ≤M3). In the subcase, (9) may be rewritten:

    where 0 ≤M3≤m ?1. Using the argument of Subcase 2.1, we deduce that s ≥k+l.

    Subcase 2.3S1∩S2= ?and S1∩S3?. Without loss of generality, we may assume that S1∩S3={v1,v2,··· ,vM2}, where vi=wi(1 ≤i ≤M2). Let M4=m ?M2, and set

    If M4≥1, then set ws+i=vM2+i(1 ≤i ≤M4). In the subcase, (9) may be rewritten that

    where 0 ≤M4≤m ?1. Using the argument of Subcase 2.1, we deduce that s ≥k+l.

    Subcase 2.4S1∩and S1∩S3Without loss of generality, we may assume that S1∩S2= {v1,v2,··· ,vM1}, S1∩S3= {w1,w2,··· ,wM2}, where vi= zi(1 ≤i ≤M1)and wi=vM1+i(1 ≤i ≤M2). Set M5=m ?M2?M1, and set

    If M5≥1, then set zn+i=vM1+M2+i(1 ≤i ≤M5). In the subcase, (9) may be rewritten that

    where 0 ≤M5≤m ?2. Using the argument of Subcase 2.1, we deduce that s ≥k+l.

    This completes the proof of Lemma 3.

    §3. Proof of Theorem 1

    At first we show that F is normal in the set D= {z ∈D : h(z). Suppose that F is not normal at z0∈D. We may assume that D =?and h(z0)=1. By Lemma 1, there exist fn∈F, zn→z0and ρn→0+such that gn(ξ)=+ρnξ) converges locally spherically uniformly in C to a nonconstant zero-free meromorphic function g(ξ), all of whose poles have order at least l.

    We claim that g(k)?1 has at most k+l ?1 distinct zeros. Suppose that g(k)?1 has k+l distinct zeros ξj(1 ≤j ≤k+l). Obviously, we have1. Then by

    uniformly in compact subsets of C disjoint from the poles of g. And by Hurwitzs theorem, for n sufficiently large, there exist points ξn,j→ξj(j = 1,2,··· ,k +l) , such that P(f)(zn+ρnξn,j) = h(zn+ρnξn,j). However, P(f)(z)?h(z) has at most k+l ?1 distinct zeros in D and zn+ρnξn,j→z0, which is a contradiction, and proves our claim.

    However, by Lemma 2, we know that g is a rational function. But this contradicts Lemma 3. This contradiction shows that F is normal in.

    We now prove that F is normal at{z :h(z)=0}. Making standard normalizations,we may assume that h(z)=zmb(z) (z ∈?), where m ≥1, b(0)=1 and h(z)0 for 0<|z|<1. Let

    Suppose not. Then by Lemma 1, there exist Fn∈F∞, zn→0 and ρn→0+such that gn(ξ)=ρ?knFn(zn+ρnξ)converges locally spherically uniformly in C to a nonconstant zero-free meromorphic function g(ξ).

    Next we distinguish two cases.

    Case 1There is a subsequence of zn/ρn, we still denote as zn/ρn, such that zn/ρn→α,where α is a finite complex number. Let ?g(ξ)=g(ξ ?α), then uniformly in compact subsets of C disjoint from the poles oObviously,0, and the pole of ?g at ξ =0 has order at least m. Now

    uniformly in compact subsets of C disjoint from the polesand all of the poles of G have multiplicity at least l. Since ?g has a pole of order at least m at ξ = 0, then G(0)0, and noting that

    For

    uniformly in compact subsets of C. And

    That is

    So

    uniformly in compact subsets of C disjoint from the poles of G.

    Since P(f)(z)?h(z) has at most k+l ?1 distinct zeros in D, as discussed as the above,we get that G(k)(ξ)?ξmhas at most k+l ?1 distinct zeros in C. However, by Lemma 2 and Lemma 3, G(ξ)≡C, where C is a constant. Then we have Gn(ξ)=fn(ρnξ)C, and

    uniformly in compact subsets of C disjoint from the poles of G.

    Recall {fn} is normal in, but not normal at z = 0, and since, we can deduce that there exist εn→0, such that fn(εn) = ∞, where |εn| = min{|f?1n(∞)|}. We claim that εn/ρn→∞. Otherwise, suppose that εn/ρn→α. Then

    A contradiction. Then εn/ρn→∞.

    It is easy to get that P?(Qn)(z)?zmb(εnz)has at most k+l ?1 distinct zeros in C. Obviously,Qn(0. It follows from the above that {Qn} is normal inSince Qnis holomorphic in ?, and0, by the Maximum Principle Theorem, it is easy to obtain that {Qn} is normal in ?, then {Qn} is normal in C.

    Next, there exist a subsequence of Qn, we still denote as Qn, such that Qn(z) converges locally spherically uniformly in C to a meromorphic function Q(z) or ∞. Since Qn0 and Qn(0) = Gn(0)(ρn/εn)k+m→0, we get Q(z)0 by Hurwitzs theorem. But Qn(1) = ∞, so Q(1)=∞, a contradiction.

    Case 2 There exist a subsequence of zn/ρn, we still denote as zn/ρn, such that zn/ρn→∞. By simple calculation,

    where

    Note that all of the poles of gnhave order at least l at the point zn+that is ξ?zn/ρn, and zn/ρn→∞. By gnconverging locally spherically uniformly in C to g, we see that all of the poles of g have multiplicity at least l. So we have

    Note that

    disjoint from the poles of g(ξ) and

    So

    uniformly in compact subsets of C disjoint from the poles of g.

    Thus,we proved that F∞is normal at z =0. It remains to prove that F is normal at z =0.Since F∞is normal at z =0 and F(0)=∞for each , F ∈F∞there exist 0<δ <1 such that|F(z)|≥1 for each F ∈F∞and each z ∈?(0,δ). And0, hence 1/f is analytic in ?(0,δ)for all f ∈F. Therefore, for all f ∈F, we have

    By the Maximum Principle and Montels Theorem, F is normal at z =0. Thus F is normal in D.

    This completes the proof of Theorem 1.

    两性午夜刺激爽爽歪歪视频在线观看| 欧美日韩黄片免| 嫩草影院入口| 熟妇人妻久久中文字幕3abv| 午夜福利免费观看在线| 日日夜夜操网爽| 国产精品一区二区三区四区久久| 国产高清videossex| 国产一区二区在线观看日韩 | 国产三级在线视频| 桃色一区二区三区在线观看| 国产爱豆传媒在线观看| 久久久国产成人免费| 成人av一区二区三区在线看| 1024手机看黄色片| 久久久久久九九精品二区国产| 熟女人妻精品中文字幕| 成年免费大片在线观看| 性欧美人与动物交配| 中文在线观看免费www的网站| 亚洲欧洲精品一区二区精品久久久| 亚洲av成人一区二区三| 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 久久精品综合一区二区三区| 日韩欧美在线乱码| 在线观看美女被高潮喷水网站 | 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 成人国产综合亚洲| 中国美女看黄片| 色老头精品视频在线观看| 亚洲精华国产精华精| 久久精品91蜜桃| 日韩有码中文字幕| 神马国产精品三级电影在线观看| 亚洲一区高清亚洲精品| 亚洲国产看品久久| 在线播放国产精品三级| 精品乱码久久久久久99久播| 国产午夜福利久久久久久| 99国产极品粉嫩在线观看| 国内精品美女久久久久久| 久久久久免费精品人妻一区二区| 亚洲精品乱码久久久v下载方式 | xxxwww97欧美| 岛国视频午夜一区免费看| 亚洲国产日韩欧美精品在线观看 | 久久精品影院6| 无限看片的www在线观看| a级毛片在线看网站| 麻豆久久精品国产亚洲av| 热99re8久久精品国产| 巨乳人妻的诱惑在线观看| 看免费av毛片| 美女被艹到高潮喷水动态| 性欧美人与动物交配| 俺也久久电影网| 偷拍熟女少妇极品色| 久久亚洲精品不卡| 日韩精品青青久久久久久| 久久香蕉精品热| 狂野欧美激情性xxxx| 99热只有精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 美女cb高潮喷水在线观看 | 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 日日干狠狠操夜夜爽| 国产午夜福利久久久久久| 久久久国产成人精品二区| 99热只有精品国产| 国产成+人综合+亚洲专区| 亚洲精品久久国产高清桃花| www.自偷自拍.com| 丰满人妻熟妇乱又伦精品不卡| 女生性感内裤真人,穿戴方法视频| 亚洲最大成人中文| 男人和女人高潮做爰伦理| 欧美av亚洲av综合av国产av| 黑人欧美特级aaaaaa片| 我要搜黄色片| 我的老师免费观看完整版| 91麻豆av在线| 久久精品影院6| 精品福利观看| 狂野欧美白嫩少妇大欣赏| 国产高清激情床上av| 亚洲人成电影免费在线| 亚洲av五月六月丁香网| 99久久国产精品久久久| 日韩欧美一区二区三区在线观看| 色综合婷婷激情| 男插女下体视频免费在线播放| 2021天堂中文幕一二区在线观| 国产又黄又爽又无遮挡在线| 国产伦人伦偷精品视频| 国产高潮美女av| 国产精品 欧美亚洲| 久久中文字幕人妻熟女| av在线蜜桃| 法律面前人人平等表现在哪些方面| 国产亚洲欧美在线一区二区| 在线a可以看的网站| 欧美黄色淫秽网站| 久久精品影院6| 99视频精品全部免费 在线 | 亚洲 欧美 日韩 在线 免费| 老司机午夜福利在线观看视频| 国产高清视频在线观看网站| 色老头精品视频在线观看| 日本撒尿小便嘘嘘汇集6| 天堂动漫精品| 亚洲专区国产一区二区| 亚洲一区高清亚洲精品| 色综合站精品国产| 动漫黄色视频在线观看| 亚洲国产中文字幕在线视频| 精品国产乱码久久久久久男人| 亚洲成人久久性| 日本在线视频免费播放| 亚洲欧美一区二区三区黑人| 此物有八面人人有两片| 亚洲欧美日韩高清在线视频| 最近最新免费中文字幕在线| 亚洲真实伦在线观看| 成人一区二区视频在线观看| 一边摸一边抽搐一进一小说| 美女午夜性视频免费| 久久精品亚洲精品国产色婷小说| 国产真实乱freesex| 日韩欧美三级三区| 一级黄色大片毛片| 成人亚洲精品av一区二区| 免费大片18禁| 男女午夜视频在线观看| 日韩欧美在线乱码| 亚洲成人久久爱视频| 十八禁网站免费在线| 精品国产亚洲在线| 国产又黄又爽又无遮挡在线| 久久天躁狠狠躁夜夜2o2o| 两个人的视频大全免费| 免费av毛片视频| 国产伦精品一区二区三区视频9 | 一区二区三区国产精品乱码| 观看免费一级毛片| 精品欧美国产一区二区三| 老汉色av国产亚洲站长工具| 麻豆久久精品国产亚洲av| 99精品在免费线老司机午夜| 精品一区二区三区视频在线 | 97碰自拍视频| 亚洲国产欧美网| 两人在一起打扑克的视频| 噜噜噜噜噜久久久久久91| 91字幕亚洲| 日本五十路高清| 午夜视频精品福利| 动漫黄色视频在线观看| 亚洲中文字幕日韩| 麻豆成人av在线观看| 99视频精品全部免费 在线 | 国产免费av片在线观看野外av| 熟妇人妻久久中文字幕3abv| 精品久久蜜臀av无| 啪啪无遮挡十八禁网站| 国产精品久久久久久精品电影| 国产视频一区二区在线看| 国产精品一区二区免费欧美| 香蕉国产在线看| 久久久久久国产a免费观看| 伊人久久大香线蕉亚洲五| netflix在线观看网站| 国产69精品久久久久777片 | 精品国内亚洲2022精品成人| 18禁黄网站禁片午夜丰满| 国产精品爽爽va在线观看网站| 久久人人精品亚洲av| 国产伦一二天堂av在线观看| 国产单亲对白刺激| 亚洲av熟女| 九九久久精品国产亚洲av麻豆 | ponron亚洲| 欧美日本视频| 99热这里只有精品一区 | 国产成人一区二区三区免费视频网站| 亚洲av电影在线进入| 色在线成人网| 黄色成人免费大全| 夜夜躁狠狠躁天天躁| 国产麻豆成人av免费视频| 久久中文字幕一级| 中文字幕人成人乱码亚洲影| 国产精品1区2区在线观看.| 亚洲天堂国产精品一区在线| 精品一区二区三区视频在线 | www日本黄色视频网| 黄色日韩在线| 日韩大尺度精品在线看网址| x7x7x7水蜜桃| 亚洲av熟女| 日本精品一区二区三区蜜桃| 亚洲专区中文字幕在线| 特级一级黄色大片| 黄色丝袜av网址大全| 一本一本综合久久| or卡值多少钱| av欧美777| 不卡一级毛片| 国产成+人综合+亚洲专区| 高清在线国产一区| 欧美日韩福利视频一区二区| 久久中文字幕一级| 免费av毛片视频| 久久精品人妻少妇| 成人高潮视频无遮挡免费网站| 中文字幕最新亚洲高清| 国产美女午夜福利| 亚洲精品中文字幕一二三四区| 国产91精品成人一区二区三区| 国产精品综合久久久久久久免费| www国产在线视频色| 少妇裸体淫交视频免费看高清| 他把我摸到了高潮在线观看| 国产乱人视频| 国产乱人伦免费视频| 人妻丰满熟妇av一区二区三区| 成年免费大片在线观看| 18美女黄网站色大片免费观看| 视频区欧美日本亚洲| 久久久成人免费电影| 好男人电影高清在线观看| 亚洲av五月六月丁香网| 窝窝影院91人妻| 欧美成人免费av一区二区三区| 久久久色成人| 男女之事视频高清在线观看| 亚洲av美国av| 久久久国产欧美日韩av| 国产亚洲精品久久久久久毛片| 国产激情偷乱视频一区二区| 亚洲精品乱码久久久v下载方式 | 国产精品精品国产色婷婷| 国产欧美日韩一区二区三| 一进一出抽搐gif免费好疼| 亚洲国产中文字幕在线视频| 国产一区二区三区在线臀色熟女| 一级a爱片免费观看的视频| 熟女电影av网| 成人永久免费在线观看视频| 99视频精品全部免费 在线 | 99热6这里只有精品| 在线看三级毛片| 精品日产1卡2卡| 男女那种视频在线观看| 欧美日韩国产亚洲二区| 99国产极品粉嫩在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产日本99.免费观看| 日本一二三区视频观看| 69av精品久久久久久| 淫秽高清视频在线观看| 免费电影在线观看免费观看| 一级a爱片免费观看的视频| 又粗又爽又猛毛片免费看| 亚洲电影在线观看av| 成年版毛片免费区| 国产成+人综合+亚洲专区| 村上凉子中文字幕在线| 长腿黑丝高跟| 免费看十八禁软件| 午夜激情欧美在线| 国产成人啪精品午夜网站| 中文字幕久久专区| 亚洲专区字幕在线| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 久久国产乱子伦精品免费另类| 久久欧美精品欧美久久欧美| 午夜视频精品福利| 色哟哟哟哟哟哟| 熟女电影av网| 在线观看66精品国产| 婷婷亚洲欧美| www日本在线高清视频| 久久精品国产综合久久久| 国产伦精品一区二区三区四那| 精品一区二区三区av网在线观看| 黄色丝袜av网址大全| www.精华液| 校园春色视频在线观看| 精品久久蜜臀av无| 在线看三级毛片| 久久这里只有精品19| 欧美日韩一级在线毛片| 成年人黄色毛片网站| 亚洲精品久久国产高清桃花| 99久久无色码亚洲精品果冻| 91在线精品国自产拍蜜月 | 男女下面进入的视频免费午夜| 国产成人系列免费观看| 亚洲美女黄片视频| 最好的美女福利视频网| 波多野结衣高清无吗| 男人舔奶头视频| 伊人久久大香线蕉亚洲五| 国内少妇人妻偷人精品xxx网站 | 国产黄色小视频在线观看| 亚洲九九香蕉| 一个人免费在线观看电影 | 久久久久久久久免费视频了| 制服人妻中文乱码| 久久久久久久久久黄片| 91麻豆精品激情在线观看国产| 国内揄拍国产精品人妻在线| 国产精品香港三级国产av潘金莲| 一a级毛片在线观看| av欧美777| 国产成人系列免费观看| 国产三级在线视频| 波多野结衣高清无吗| 日韩人妻高清精品专区| 免费在线观看影片大全网站| 麻豆成人av在线观看| 一个人看的www免费观看视频| 国产精品乱码一区二三区的特点| 91九色精品人成在线观看| 亚洲中文日韩欧美视频| 国产精品野战在线观看| 啦啦啦韩国在线观看视频| 精品一区二区三区av网在线观看| 国产人伦9x9x在线观看| 色尼玛亚洲综合影院| 熟女少妇亚洲综合色aaa.| 国产成人欧美在线观看| 久久久久性生活片| 在线免费观看不下载黄p国产 | 国产精品国产高清国产av| 国产午夜福利久久久久久| 成人永久免费在线观看视频| 丁香六月欧美| 99国产精品99久久久久| 国产av麻豆久久久久久久| 啦啦啦韩国在线观看视频| 精品一区二区三区av网在线观看| 九色国产91popny在线| 国产人伦9x9x在线观看| 男女那种视频在线观看| 日日摸夜夜添夜夜添小说| netflix在线观看网站| 国内精品一区二区在线观看| 免费av不卡在线播放| 国产一级毛片七仙女欲春2| 日韩免费av在线播放| 日本与韩国留学比较| 日韩 欧美 亚洲 中文字幕| 草草在线视频免费看| 亚洲av免费在线观看| 久久久久久国产a免费观看| 久久中文字幕一级| 一个人观看的视频www高清免费观看 | 1024香蕉在线观看| 亚洲熟妇熟女久久| 亚洲性夜色夜夜综合| 免费人成视频x8x8入口观看| 国产亚洲精品久久久com| x7x7x7水蜜桃| 法律面前人人平等表现在哪些方面| 两个人看的免费小视频| 中文字幕av在线有码专区| 欧美精品啪啪一区二区三区| 全区人妻精品视频| 久久久久亚洲av毛片大全| 国产一区二区在线观看日韩 | 小蜜桃在线观看免费完整版高清| 亚洲va日本ⅴa欧美va伊人久久| 三级男女做爰猛烈吃奶摸视频| 999精品在线视频| 精品久久久久久,| 免费电影在线观看免费观看| or卡值多少钱| 精品99又大又爽又粗少妇毛片 | 成人高潮视频无遮挡免费网站| 天天躁狠狠躁夜夜躁狠狠躁| 日本a在线网址| 亚洲国产精品久久男人天堂| 高潮久久久久久久久久久不卡| 国产免费男女视频| 日本黄色视频三级网站网址| 无遮挡黄片免费观看| 亚洲精品美女久久久久99蜜臀| 亚洲欧美一区二区三区黑人| 久久久色成人| 成人三级做爰电影| 窝窝影院91人妻| h日本视频在线播放| 日韩人妻高清精品专区| 久久精品aⅴ一区二区三区四区| 久久久国产精品麻豆| 18美女黄网站色大片免费观看| 免费在线观看成人毛片| 亚洲av片天天在线观看| 色综合亚洲欧美另类图片| 欧美色欧美亚洲另类二区| 色老头精品视频在线观看| 国产主播在线观看一区二区| 免费人成视频x8x8入口观看| svipshipincom国产片| 亚洲中文字幕日韩| 哪里可以看免费的av片| 亚洲人成伊人成综合网2020| 亚洲国产精品合色在线| 久久精品影院6| 在线观看午夜福利视频| 日本免费a在线| 国产精品美女特级片免费视频播放器 | 国产高清videossex| 亚洲一区二区三区不卡视频| 12—13女人毛片做爰片一| 久久这里只有精品中国| 一个人免费在线观看的高清视频| 桃红色精品国产亚洲av| 成人三级做爰电影| 黑人操中国人逼视频| 人妻夜夜爽99麻豆av| 在线永久观看黄色视频| 国产黄色小视频在线观看| 亚洲人与动物交配视频| 黑人欧美特级aaaaaa片| 国产黄片美女视频| 在线视频色国产色| 欧美性猛交黑人性爽| 好男人在线观看高清免费视频| 久久伊人香网站| 两性午夜刺激爽爽歪歪视频在线观看| 大型黄色视频在线免费观看| 99精品欧美一区二区三区四区| 国产精品 国内视频| 精品久久蜜臀av无| 99久久99久久久精品蜜桃| 人妻夜夜爽99麻豆av| 宅男免费午夜| a级毛片在线看网站| 老司机福利观看| 国产午夜精品论理片| 又粗又爽又猛毛片免费看| 十八禁网站免费在线| a在线观看视频网站| 国产成人啪精品午夜网站| 老司机深夜福利视频在线观看| 国产黄a三级三级三级人| 欧美在线一区亚洲| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 国产精品久久久久久亚洲av鲁大| 亚洲熟妇熟女久久| tocl精华| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 香蕉av资源在线| 男女视频在线观看网站免费| 色综合欧美亚洲国产小说| 超碰成人久久| 亚洲欧美日韩无卡精品| 精品国产乱码久久久久久男人| 亚洲欧美激情综合另类| 国产亚洲精品综合一区在线观看| 伊人久久大香线蕉亚洲五| 亚洲国产欧美人成| 可以在线观看的亚洲视频| 日日夜夜操网爽| 国产爱豆传媒在线观看| 久久香蕉国产精品| 国产精品美女特级片免费视频播放器 | 色综合婷婷激情| 99国产极品粉嫩在线观看| 嫩草影院精品99| 日本撒尿小便嘘嘘汇集6| 在线观看舔阴道视频| 国产男靠女视频免费网站| 国产精品女同一区二区软件 | 欧美日韩乱码在线| 精品久久蜜臀av无| 国产精品国产高清国产av| 在线观看一区二区三区| 99久久无色码亚洲精品果冻| 国产精品 欧美亚洲| 精品不卡国产一区二区三区| 宅男免费午夜| 真人一进一出gif抽搐免费| 国产av麻豆久久久久久久| 97碰自拍视频| 免费看美女性在线毛片视频| 亚洲欧美精品综合久久99| 欧美日韩精品网址| 午夜免费观看网址| 久久午夜亚洲精品久久| 美女被艹到高潮喷水动态| 波多野结衣高清无吗| 国产伦人伦偷精品视频| 午夜成年电影在线免费观看| 国产亚洲av高清不卡| 国产精品一区二区三区四区久久| 在线观看免费午夜福利视频| 黑人操中国人逼视频| 国产一区在线观看成人免费| 欧美xxxx黑人xx丫x性爽| 亚洲在线观看片| 男人舔奶头视频| 51午夜福利影视在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产高清在线一区二区三| 床上黄色一级片| 成人鲁丝片一二三区免费| 精品福利观看| 波多野结衣高清作品| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 午夜免费观看网址| 亚洲aⅴ乱码一区二区在线播放| av黄色大香蕉| 麻豆久久精品国产亚洲av| 成在线人永久免费视频| 熟女少妇亚洲综合色aaa.| 亚洲电影在线观看av| a级毛片a级免费在线| 午夜福利成人在线免费观看| 亚洲中文字幕日韩| a级毛片a级免费在线| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 日本 欧美在线| 亚洲中文字幕日韩| 成年人黄色毛片网站| 麻豆成人av在线观看| 久久久久久久精品吃奶| 国产午夜精品论理片| 亚洲中文av在线| 国产成人av激情在线播放| 久久99热这里只有精品18| 婷婷丁香在线五月| 日本与韩国留学比较| 无人区码免费观看不卡| 国产黄片美女视频| 亚洲无线在线观看| 亚洲男人的天堂狠狠| 亚洲专区中文字幕在线| 老鸭窝网址在线观看| 少妇的逼水好多| 他把我摸到了高潮在线观看| 国内精品久久久久久久电影| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲欧美在线一区二区| 亚洲国产精品久久男人天堂| 好男人电影高清在线观看| 最近最新免费中文字幕在线| 久久久久久久久中文| 他把我摸到了高潮在线观看| xxxwww97欧美| 精品国产超薄肉色丝袜足j| 51午夜福利影视在线观看| 看免费av毛片| 精品国产三级普通话版| 久99久视频精品免费| 全区人妻精品视频| 男人和女人高潮做爰伦理| 午夜福利在线观看免费完整高清在 | 在线免费观看的www视频| 久久久久精品国产欧美久久久| 国产精品香港三级国产av潘金莲| 久久伊人香网站| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器 | 亚洲 欧美 日韩 在线 免费| av视频在线观看入口| 日韩欧美在线乱码| 88av欧美| 国产激情久久老熟女| 婷婷精品国产亚洲av在线| 黄片大片在线免费观看| 色老头精品视频在线观看| 90打野战视频偷拍视频| 91老司机精品| 男女做爰动态图高潮gif福利片| 夜夜夜夜夜久久久久| 一区二区三区高清视频在线| 国模一区二区三区四区视频 | www.999成人在线观看| 欧美中文综合在线视频| 亚洲自拍偷在线| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线美女| 欧美黑人巨大hd| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久大精品| 国产探花在线观看一区二区| 久久婷婷人人爽人人干人人爱| 性欧美人与动物交配| 又粗又爽又猛毛片免费看| 亚洲欧美日韩高清专用| 熟女电影av网| 麻豆av在线久日| 岛国在线观看网站| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜添小说| 亚洲国产欧洲综合997久久,| 色尼玛亚洲综合影院| 一a级毛片在线观看| 成年女人毛片免费观看观看9| 国产三级中文精品| 久99久视频精品免费| 身体一侧抽搐| 给我免费播放毛片高清在线观看| 国产精品98久久久久久宅男小说|