• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A NEW CONJUGATE GRADIENT METHOD WITH STRONGLY GLOBAL CONVERGENCE AND SUFFICIENT DESCENT CONDITION

    2017-04-12 14:31:39DONGXiaoliangHEYuboKONGXiangyuLIWeijun
    數(shù)學(xué)雜志 2017年2期
    關(guān)鍵詞:翔宇共軛收斂性

    DONG Xiao-liang,HE Yu-bo,KONG Xiang-yu,LI Wei-jun

    (1.School of Mathematics and Information,Beifang University of Nationalities, Yinchuan,710021,China)

    (2.Department of Mathematics and Application Mathematics,Huaihua University, Huaihua,418008,China)

    (3.Network Information Technology Center,Beifang University of Nationalities, Yinchuan,710021,China)

    A NEW CONJUGATE GRADIENT METHOD WITH STRONGLY GLOBAL CONVERGENCE AND SUFFICIENT DESCENT CONDITION

    DONG Xiao-liang1,HE Yu-bo2,KONG Xiang-yu1,LI Wei-jun3

    (1.School of Mathematics and Information,Beifang University of Nationalities, Yinchuan,710021,China)

    (2.Department of Mathematics and Application Mathematics,Huaihua University, Huaihua,418008,China)

    (3.Network Information Technology Center,Beifang University of Nationalities, Yinchuan,710021,China)

    In this paper,we study the WYL conjugate gradient method for unconstrained optimization problems.By making use of the modified iterative scheme,the suffi cient descent conditions are satisfi ed at each iteration independent of the line search used.Also,by removing the original restriction on the parameter of the Wolfe conditions,we establish the strongly global convergence property for the general function.Numerical results illustrate that our method is effi cient for the test problems.

    conjugate gradient method;suffi cient descent condition;strongly global convergence;Wolfe line search

    1 Introduction

    Consider the following unconstrained optimization problem

    where f:Rn→ R is a smooth and nonlinear function,and its gradient gk= ▽f(xk)is available.The conjugate gradient(CG)methods represent an important class of unconstrained optimization algorithms with strong local and global convergence properties and modest memory requirements.

    The iterative formula of the CG method is given by

    In(1.2),dkis a search direction updated by

    and the steplength αk> 0 is commonly chosen to satisfy certain line search conditions. Among them,the so-called Wolfe conditions have attracted special attention in the convergence analyses and the implementations of CG methods,requiring that

    where 0 < ρ < σ < 1 are often imposed on the line search.

    The well-known formulas βkare Fletcher-Reeves,Hestenes–Stiefel,Polak-Ribi`ere-Polyak and Dai-Yuan formulas,which are specified by

    Little is known concerning global convergence of the HS method for nonconvex minimization problems.However,the HS method,which resembles the PRP method in practical computation and is often recommended due to its superior numerical properties.

    Recently,various modifications of the HS method received growing interests,in which suffi cient descent condition is important in the convergence analysis of CG method.

    Hager and Zhang[2]proposed the CG DESCENT method and proved its convergence with the Wolfe search.Based on the MBFGS method[3],Zhang[4]and Dai[5]introduced modified HZ methods with the Armijo search fornonconvex objective functions.Zhang,Zhou and Li[6]proposed a three·term modifi ed PRP method,in which the property ?dTkgk= ‖gk‖2always holds without any line searches.To seek the CG direction that is closest to the direction of the scaled memoryless BFGS method,Dai and Kou[7]proposed a family of CGOPT methods.Yu et al.[8,9]proposed several modified spectral CG methods.For further study on the some recent advances,we may refer to[10–15].

    In this paper,we willcontinue to study the HS-type method.One feature ofour method is that our method guarantee suffi cient descent condition and strongly global convergence.

    The rest of this paper is organized as follows.In the next section,the new method is presented formally.Meanwhile,we prove the proposed method possesses suffi cient descentand strongly global convergence properties with the Wolfe line search.In Section 4,we report numerical comparisons with existing methods by using some test problems.

    2 A New CG Method and Its Properties

    Recently,Wei,Yao and Huang[16]proposed the MHS,WYL and MLS methods,in which the parameters βkare given by

    The globalconvergence ofthese methodswith the strong Wolfe line search was proved for cases that the parameter σ in(1.5)is constrained torespectively.Furthermore,with the same restriction on the parameter σ,these methods above possessed the suffi cient descent condition.

    The above discussion prompts naturally us to raise the following question:

    Is it possible to modify the direction of the MHS method in a suitable way,thereby enlarging its suffi cient descent properties and ensuring the globalconvergence for the general functions?

    By taking the theoreticaladvantage ofthe MHS method into consideration,we give another method to guarantee suffi cient descent condition,in which strongly globalconvergence is satisfied.With our choices,the additionalrestriction on the parameter σ in(1.5)can be removed.The direction dkin our method is given by where ε1> 0 is a constant.

    In(2.2),the parameters βkDHSand ?kare chosen as

    where λ > 1 and ε1> 0 are two given constants.

    For convenience,we call our method(2.2)as DHS method in later part of this paper and formally state the steps of this method as follows.

    Algorithm 2.1(DHS method)

    Step 1Choosing constants λ > 1, ε1> 0 and ε > 0.Select an initial point x1∈ Rn, set k=1.

    Step 2Test a criterion for stopping the iterations.If ‖gk‖ < ε,then stop,otherwise calculate dkby(2.2).

    Step 3Determine the steplength by the Wolfe conditions.

    Step 4Calculate the new iterate by xk+1=xk+ αkdk,set k=k+1 and goto Step 2.

    The descent property is an indispensable factor in the convergence analysis of CG method.More exactly,if there exists a constant c1> 0 such that

    holds for all k ∈ N,then the so-called suffi cient descent condition holds.

    Property(2.5)is guaranteed in our method,as proved in the following lemma.

    Lemma 2.1Let{xk}and{dk}be generated by the DHS method.Then the direction dksatisfies the suffi cient descent condition(2.5),which is independent of any line search.

    ProofFor k=1,it follows that dT1g1= ?‖g1‖2.Now we mainly consider the case where

    is satisfied.It follows from(2.2)that

    Then the conclusion holds by letting c1=1 ? λ?1.

    3 Convergence Analysis

    In this section,we prove the global convergence of the proposed CG method.We need the following assumptions,which are generally assumed in the literature.

    Assumption 3.1

    Boundedness Assumption:the levelset defined by ? ={x ∈ Rn|f(x) ≤ f(x1)}with x1to be the initialpoint,is bounded;

    Lipschitz Assumption:in some neighborhood ?0of ?,the objective function f is continuously differentiable,and its gradient g is Lipschitz continuous,namely,there exist a constant L > 0 such that

    Theorem 3.1Suppose that Assumption 3.1 holds.Let{xk}and{dk}be generated by Algorithm 2.1.Then there exists a constant c such that

    ProofSince d1= ?g1,the result obviously holds for k=1.

    If k > 1,it suffi ce to consider the case whereholds. It follows form the definition βkDHSin(2.3)and the Cauchy inequality that

    Also,we can estimate the upper bound for|?k|,presented by

    Combining this with(3.3)yields

    The conclusion of the following theorem,called the Zoutendijk condition,is often used to prove globalconvergence of nonlinear CG method.

    Theorem 3.2(see[17])Suppose that Assumption 3.1 holds.Consider the general CG method,where dkis a descent direction and αksatisfies the Wolfe conditions.Then we have

    we complete the proof.

    For the generalfunction,we can develop a strongly globalconvergence result as follows.

    Theorem 3.3Suppose that Assumption 3.1 holds.Let{xk}be generated by Algorithm

    2.1.Then

    ProofThe bound for||dk||in(3.2)coupled with(2.5)indicates that

    Equation(3.7)leads to(3.6).

    4 Numerical Experiments

    In this section,we provide the implementation detailof the new methods to verify the numericalperformance.Our tests problems come form Mor′e[18].

    We stop the iteration if the inequality||gk|| ≤ 10?6is satisfied.We use “F”to denote the numbers of iteration exceed 2000.All algorithms use exactly the same implementation of the strong Wolfe conditions with ρ =10?3,σ =0.5.The parameters in(2.2)are specified by ε1=10?12,μ =10.

    In order to rank the CG methods,we subsequently use the method of Dai and Ni[19] to compare the performance of our methods with that of the other methods in[16].

    First,we compute the total number of the function and its gradient evaluations by the formula Ntotal=N F+m ? N G,where m=5.

    Second,for all our two methods,we evaluate their effi ciency with respect to the WYL method in the following way.For each problem i,compute the ratio

    and the geometric mean of these ratios over all the test problems,where S denotes the set of the problems and|S|the number of elements in S.

    Finally,we present the rtotalin the Table 4.2:

    [1]Dai Y H,Yuan Y X.Nonlinear conjugate gradient methods[M].Shanghai:Shanghai Science and Technology Press,2000.

    [2]Hager WW,Zhang H C.A new conjugate gradient method with guaranteed descent and an effi cient line search[J].SIAM J.Optim.,2005,16(1):170–192.

    [3]Li D H,Fukushima M.A modified BFGS method and its global convergence in nonconvex minimizationp[J].J.Comput.Appl.Math.,2001,129(1):15–35.

    [4]Zhang L,Zhou W J.On the global convergence of Hager–Zhang conjugate gradient with Armijo line search[J].Math.Numer.Sin.,2008,28(5):840–845.

    [5]Dai Z F,Wen F H.Global convergence of a modifi ed Hestenes–Stiefel nonlinear conjugate gradient method with Armijo line search[J].Numer.Algor.,2012,59(1):79–93.

    [6]Zhang L,Zhou W J,Li D H.A descent modified Polak–Ribi`ere–Polyak conjugate gradient method and its global convergence[J].IMA J.Numer.Anal.,2006,26(4):629–640.

    [7]Dai Y H,Kou C X.A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search[J].SIAM J.Optim.,2013,23(1):296–320.

    [8]Yu G H,Guan L T,Chen WF.Spectralconjugate gradient methods with suffi cient descent property for large-scale unconstrained optimization[J].Optim.Meth.Softw.,2008,23(2):275–293.

    [9]Yu G H.New descent nonlinear conjugate gradient methods for large–scale unconstrained optimization,Tech.Rep.Department of scientific computation and computer applications[D].Guangzhou: Sun Yat-Sen University,2005.

    [10]Dong X,Liu H,He Y,Yang X.Amodifi ed Hestenes–Stiefelconjugate gradient method with suffi cient descent condition and conjugac condition[J].J.Comp.Appl.Math.,2015,281:239–249.

    [11]Dong X,Liu H,Xu Y,Yang X.Some nonlinear conjugate gradient methods with suffi cient descent condition and global convergence[J].Optim.Lett.,2015,9(7):1421–1432.

    [12]Dong X.Comment on“A new three-term conjugate gradient method for unconstrained problem”[J]. Numer.Algorithms,2016,72(1):173–179.

    [13]Dong X,Liu H,He Y.A self–adjusting conjugate gradient method with suffi cient descent condition and conjugacy condition[J].J.Optim.Theory Appl.,2015,165(1):225–241.

    [14]Dong X,Li C,He Y,Yu G.Arelaxed two–stage multi–spllting algorithm for bi–obstacle problems[J]. J.Math.,2011,31(2):323–330.

    [15]He Y,Dong X.On the convergence of Levenberg–Marquardt method for nonlinear inequalities[J]. J.Math.,2012,32(1):25–34.

    [16]Yao S W,Wei Z X,Huang H.Anote about WYL’s conjugate gradient method and its applications[J]. Appl.Math.Comput.,2007,191(2):381–388.

    [17]Wolfe,P.Convergence conditions for ascent methods[J].SIAM Rev.,1969,11(2):226–235

    [18]Mor′e J J,Garbow B S,Hillstrom K E.Testing unconstrained optimization software[J].ACM Trans. Math.Softw.,1981,7(1):17–41.

    [19]Dai Y H,Ni Q.Testing diff erent conjugate gradient methods for large-scale unconstrained optimization[J].J.Comput.Math.,2003,21(3):311–320.

    一類新的具有充分下降條件和強(qiáng)收斂性的共軛梯度法

    董曉亮1,2,何郁波3,孔翔宇1, 李衛(wèi)軍1
    (1.北方民族大學(xué)數(shù)學(xué)與信息學(xué)院, 寧夏 銀川 750021)
    (2.懷化學(xué)院數(shù)學(xué)與應(yīng)用數(shù)學(xué)系, 湖南 懷化 418008)
    (3.北方民族大學(xué)網(wǎng)絡(luò)信息技術(shù)中心, 寧夏 銀川 750021)

    本文研究了求解無約束優(yōu)化問題的WYL共軛梯度法.利用修正迭代格式,得到了算法在每步迭代能產(chǎn)生不依賴于搜索條件的充分下降方向. 同時(shí), 在原算法中關(guān)于Wolfe條件中參數(shù)去掉的情況下, 獲得了本文算法是強(qiáng)收斂的.數(shù)值實(shí)驗(yàn)說明本文算法可以有效求解測(cè)試問題.

    共軛梯度法;充分下降條件;強(qiáng)收斂性;Wolfe搜索

    90C30;65K10

    O224

    tion:90C30;65K10

    A < class="emphasis_bold">Article ID:0255-7797(2017)02-0231-08

    0255-7797(2017)02-0231-08

    ?Received date:2014-05-02 Accepted date:2015-03-16

    Foundation item:Supported by National Natural Science Foundation of China(11601012; 11661002);Ningxia Natural Science Foundation(NZ13095;NZ16093);Scientifl c Research Foundation of the Higher Education Institutions of Ningxia(NGY2016134);Beifang University of Nationalities Foundation(2016SXKY06;2014XBZ09;2014XBZ01;2013XYZ028).

    Biography:Dong Xiaoliang(1981–),male,born at Lingwu,Ningxia,lecturer,major in nonlinear optimization.

    猜你喜歡
    翔宇共軛收斂性
    我愛冬天
    小讀者之友(2022年4期)2022-05-20 13:19:36
    一個(gè)帶重啟步的改進(jìn)PRP型譜共軛梯度法
    一個(gè)改進(jìn)的WYL型三項(xiàng)共軛梯度法
    A Brief Analysis of the Principles of Calligraphy Criticism
    劉軍、葉翔宇、周博作品
    Lp-混合陣列的Lr收斂性
    巧用共軛妙解題
    一種自適應(yīng)Dai-Liao共軛梯度法
    END隨機(jī)變量序列Sung型加權(quán)和的矩完全收斂性
    行為ND隨機(jī)變量陣列加權(quán)和的完全收斂性
    久久久久国产网址| 亚洲av在线观看美女高潮| 青春草国产在线视频| 国产精品蜜桃在线观看| 日本黄色片子视频| 乱人伦中国视频| 91精品一卡2卡3卡4卡| 亚洲欧美一区二区三区黑人 | 我要看黄色一级片免费的| 妹子高潮喷水视频| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 少妇人妻久久综合中文| 一区二区三区四区激情视频| 亚洲精品第二区| 黄色欧美视频在线观看| 永久免费av网站大全| 国产精品国产三级国产av玫瑰| 99久久综合免费| 久热久热在线精品观看| 国产成人一区二区在线| 亚洲天堂av无毛| 我要看日韩黄色一级片| 国产视频内射| 成人午夜精彩视频在线观看| 91久久精品电影网| 国产精品欧美亚洲77777| 日韩亚洲欧美综合| 男人添女人高潮全过程视频| 精品人妻偷拍中文字幕| 一级毛片电影观看| 欧美3d第一页| 亚洲,欧美,日韩| 久久久午夜欧美精品| 夫妻午夜视频| 三级国产精品片| 成人午夜精彩视频在线观看| 国产精品偷伦视频观看了| 亚洲精品国产色婷婷电影| 国产淫片久久久久久久久| 乱码一卡2卡4卡精品| 免费av不卡在线播放| 久久久久精品久久久久真实原创| 在线观看免费高清a一片| 久久精品久久久久久久性| kizo精华| 黄片无遮挡物在线观看| 国产黄片视频在线免费观看| 亚洲精品中文字幕在线视频 | 久久久久视频综合| 久久久久网色| 日韩欧美一区视频在线观看 | 性色av一级| a级片在线免费高清观看视频| 日韩一本色道免费dvd| 国产国拍精品亚洲av在线观看| 最近手机中文字幕大全| 少妇精品久久久久久久| 久久99一区二区三区| 精品午夜福利在线看| 99久久精品国产国产毛片| tube8黄色片| 九九在线视频观看精品| 在线观看三级黄色| 少妇 在线观看| 午夜视频国产福利| 高清黄色对白视频在线免费看 | 天美传媒精品一区二区| 久热这里只有精品99| 欧美成人精品欧美一级黄| 国产乱人偷精品视频| 男人添女人高潮全过程视频| 十八禁网站网址无遮挡 | 一边亲一边摸免费视频| 最近2019中文字幕mv第一页| 欧美激情国产日韩精品一区| 极品人妻少妇av视频| 国产成人a∨麻豆精品| 免费黄网站久久成人精品| 久久女婷五月综合色啪小说| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| 成人美女网站在线观看视频| 交换朋友夫妻互换小说| 一级二级三级毛片免费看| 三级国产精品片| 亚洲久久久国产精品| 国产熟女午夜一区二区三区 | 热re99久久精品国产66热6| 国产精品99久久久久久久久| 日本午夜av视频| 成人漫画全彩无遮挡| 国产乱来视频区| 亚洲在久久综合| 26uuu在线亚洲综合色| 毛片一级片免费看久久久久| 一级爰片在线观看| 这个男人来自地球电影免费观看 | 午夜激情福利司机影院| 亚洲国产精品999| 午夜av观看不卡| 国产黄片视频在线免费观看| tube8黄色片| 日韩欧美 国产精品| 成人二区视频| h视频一区二区三区| 全区人妻精品视频| 少妇被粗大猛烈的视频| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 91久久精品电影网| 啦啦啦中文免费视频观看日本| 中文字幕制服av| 亚洲成色77777| 亚洲综合色惰| 少妇人妻精品综合一区二区| av有码第一页| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 久久久久久久久久久丰满| 男人添女人高潮全过程视频| 黄色视频在线播放观看不卡| 精品久久久精品久久久| 在线观看www视频免费| 久久久久久久亚洲中文字幕| 国产精品一区二区在线观看99| 亚洲精品日韩av片在线观看| 亚洲自偷自拍三级| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 丝袜喷水一区| 久久久久国产网址| 欧美日韩视频精品一区| 久久久精品94久久精品| 国产片特级美女逼逼视频| 在线观看免费视频网站a站| 蜜臀久久99精品久久宅男| 久久精品久久精品一区二区三区| 国产成人精品一,二区| 两个人的视频大全免费| 免费观看性生交大片5| 老熟女久久久| 中文天堂在线官网| 国产成人a∨麻豆精品| 99热这里只有是精品50| 免费高清在线观看视频在线观看| 最后的刺客免费高清国语| 美女中出高潮动态图| 亚洲精品久久久久久婷婷小说| 91在线精品国自产拍蜜月| 十八禁高潮呻吟视频 | 大片免费播放器 马上看| 日本91视频免费播放| 国产女主播在线喷水免费视频网站| 国产亚洲最大av| 国产一级毛片在线| 午夜福利网站1000一区二区三区| 精品少妇久久久久久888优播| 乱人伦中国视频| 永久免费av网站大全| 天堂8中文在线网| 亚洲不卡免费看| 在线看a的网站| 亚洲精品国产成人久久av| 久久久久久久大尺度免费视频| 高清午夜精品一区二区三区| 午夜久久久在线观看| 韩国av在线不卡| 久久久久国产网址| 国产男人的电影天堂91| 成年av动漫网址| 制服丝袜香蕉在线| 中文字幕av电影在线播放| 久久久久久久亚洲中文字幕| 成人黄色视频免费在线看| 国模一区二区三区四区视频| 两个人免费观看高清视频 | 伊人久久国产一区二区| 汤姆久久久久久久影院中文字幕| 啦啦啦视频在线资源免费观看| 亚洲国产毛片av蜜桃av| 黄片无遮挡物在线观看| 曰老女人黄片| av天堂中文字幕网| 一级毛片久久久久久久久女| 久久精品熟女亚洲av麻豆精品| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 国产日韩欧美视频二区| 久久国产精品大桥未久av | 国产精品一区二区三区四区免费观看| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产亚洲网站| 亚洲av日韩在线播放| 成人特级av手机在线观看| 成年人午夜在线观看视频| 欧美精品亚洲一区二区| av一本久久久久| 成人无遮挡网站| 晚上一个人看的免费电影| 99re6热这里在线精品视频| av播播在线观看一区| 久久久久人妻精品一区果冻| 免费在线观看成人毛片| 日韩一区二区视频免费看| av网站免费在线观看视频| 久久久国产一区二区| 大香蕉97超碰在线| 涩涩av久久男人的天堂| 精品国产一区二区三区久久久樱花| 亚洲伊人久久精品综合| 日日摸夜夜添夜夜爱| 九九爱精品视频在线观看| 伦理电影大哥的女人| av免费在线看不卡| 热99国产精品久久久久久7| 久久婷婷青草| 视频区图区小说| 水蜜桃什么品种好| 精品熟女少妇av免费看| 国产精品久久久久久av不卡| 在线精品无人区一区二区三| 国产亚洲午夜精品一区二区久久| 91成人精品电影| 如日韩欧美国产精品一区二区三区 | 国产免费又黄又爽又色| 草草在线视频免费看| 国产精品一区www在线观看| 精品酒店卫生间| 大码成人一级视频| 麻豆成人午夜福利视频| 国产精品蜜桃在线观看| 热99国产精品久久久久久7| 80岁老熟妇乱子伦牲交| 少妇人妻一区二区三区视频| 六月丁香七月| 女的被弄到高潮叫床怎么办| 成人综合一区亚洲| 大码成人一级视频| 色婷婷久久久亚洲欧美| 国产淫语在线视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品一区二区三区在线| 2018国产大陆天天弄谢| 人妻系列 视频| 久久婷婷青草| 大话2 男鬼变身卡| 亚洲av福利一区| 韩国av在线不卡| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| 丰满人妻一区二区三区视频av| 国产黄色视频一区二区在线观看| 人人妻人人看人人澡| 免费观看a级毛片全部| 国产成人a∨麻豆精品| 亚洲国产成人一精品久久久| 亚洲欧美日韩东京热| 免费播放大片免费观看视频在线观看| 亚洲高清免费不卡视频| 精品亚洲成国产av| 三级国产精品欧美在线观看| 一级片'在线观看视频| 国产成人aa在线观看| 国产精品国产av在线观看| 亚洲欧美精品专区久久| av国产精品久久久久影院| 内地一区二区视频在线| 久久女婷五月综合色啪小说| 国产精品国产三级国产av玫瑰| 曰老女人黄片| 日韩在线高清观看一区二区三区| 亚洲天堂av无毛| 欧美日韩国产mv在线观看视频| 黄色欧美视频在线观看| 亚洲精品久久久久久婷婷小说| 国内精品宾馆在线| 久久久久久久久久人人人人人人| av在线播放精品| 日韩在线高清观看一区二区三区| 一级毛片电影观看| 国产欧美日韩精品一区二区| 一级片'在线观看视频| 乱人伦中国视频| 亚洲熟女精品中文字幕| 国产日韩欧美视频二区| 亚洲av国产av综合av卡| 国产美女午夜福利| 美女大奶头黄色视频| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜爱| 尾随美女入室| 成人18禁高潮啪啪吃奶动态图 | 99久久人妻综合| 午夜av观看不卡| 久久精品夜色国产| 亚洲精品aⅴ在线观看| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 美女中出高潮动态图| 精品视频人人做人人爽| 日本-黄色视频高清免费观看| √禁漫天堂资源中文www| 寂寞人妻少妇视频99o| 少妇人妻 视频| 欧美 亚洲 国产 日韩一| 久久久欧美国产精品| 3wmmmm亚洲av在线观看| 中文字幕av电影在线播放| 亚洲av成人精品一区久久| 久久久午夜欧美精品| 久久97久久精品| 国产高清三级在线| 国内少妇人妻偷人精品xxx网站| 色视频在线一区二区三区| 高清在线视频一区二区三区| 91久久精品电影网| 综合色丁香网| 国产91av在线免费观看| 亚洲欧美一区二区三区黑人 | 久久国产精品男人的天堂亚洲 | 国产真实伦视频高清在线观看| 亚洲欧美日韩另类电影网站| 插逼视频在线观看| 国产精品免费大片| 一区二区三区乱码不卡18| 日本午夜av视频| 在线观看国产h片| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 熟女人妻精品中文字幕| 99国产精品免费福利视频| 亚洲国产精品专区欧美| 久久国产亚洲av麻豆专区| 中文字幕久久专区| 高清av免费在线| 在线观看人妻少妇| 亚洲精品色激情综合| 中文在线观看免费www的网站| 亚洲国产av新网站| 久久久久久久久久久丰满| 日韩伦理黄色片| 嘟嘟电影网在线观看| 国产精品偷伦视频观看了| 免费在线观看成人毛片| av播播在线观看一区| 国产日韩欧美视频二区| 国产精品福利在线免费观看| 国产精品伦人一区二区| 国产一区二区在线观看日韩| 自线自在国产av| 3wmmmm亚洲av在线观看| 狠狠精品人妻久久久久久综合| 欧美日韩在线观看h| 少妇熟女欧美另类| 高清黄色对白视频在线免费看 | 亚洲三级黄色毛片| 亚洲欧美成人综合另类久久久| 建设人人有责人人尽责人人享有的| 国产高清不卡午夜福利| 久久久久人妻精品一区果冻| 自线自在国产av| 亚洲av欧美aⅴ国产| 日日摸夜夜添夜夜爱| 一级毛片aaaaaa免费看小| 3wmmmm亚洲av在线观看| 欧美日韩av久久| 性高湖久久久久久久久免费观看| 多毛熟女@视频| 亚洲人成网站在线播| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 亚洲欧美精品专区久久| 久久久久久久大尺度免费视频| 亚洲国产色片| 色94色欧美一区二区| 精品少妇内射三级| 高清午夜精品一区二区三区| 国产精品熟女久久久久浪| 免费观看在线日韩| 亚洲欧美中文字幕日韩二区| 亚洲一区二区三区欧美精品| 日本黄色片子视频| 少妇被粗大猛烈的视频| 国产乱人偷精品视频| 久久久久久久久大av| 日日啪夜夜爽| 777米奇影视久久| 久久狼人影院| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 日韩人妻高清精品专区| 欧美日韩国产mv在线观看视频| 午夜福利,免费看| 中国三级夫妇交换| 国产精品久久久久久久久免| 高清黄色对白视频在线免费看 | 国产成人精品福利久久| 成人漫画全彩无遮挡| 两个人免费观看高清视频 | 少妇高潮的动态图| 久久97久久精品| 欧美老熟妇乱子伦牲交| 成年女人在线观看亚洲视频| a级毛片在线看网站| 国产免费一区二区三区四区乱码| 亚洲精品日本国产第一区| 一个人看视频在线观看www免费| 久久人人爽av亚洲精品天堂| 亚洲欧美日韩东京热| 啦啦啦视频在线资源免费观看| 日韩熟女老妇一区二区性免费视频| 大片免费播放器 马上看| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说| 婷婷色麻豆天堂久久| 韩国高清视频一区二区三区| 国产欧美日韩综合在线一区二区 | 人体艺术视频欧美日本| 国产精品久久久久久精品电影小说| 久久热精品热| 国产精品一二三区在线看| 久久国产乱子免费精品| 国产乱人偷精品视频| 久久久久久久久大av| 欧美日韩亚洲高清精品| 亚洲av中文av极速乱| 亚洲欧美日韩卡通动漫| 免费看不卡的av| 黑人猛操日本美女一级片| 免费黄网站久久成人精品| 国产成人免费观看mmmm| 日韩视频在线欧美| 中国国产av一级| www.av在线官网国产| 午夜老司机福利剧场| 高清黄色对白视频在线免费看 | 精华霜和精华液先用哪个| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| 男人添女人高潮全过程视频| 久久久久久久久久久免费av| 青青草视频在线视频观看| 少妇高潮的动态图| 99久久精品国产国产毛片| 亚洲av欧美aⅴ国产| 99热这里只有是精品在线观看| 五月伊人婷婷丁香| 久久久国产欧美日韩av| 色吧在线观看| 久热这里只有精品99| 一级毛片久久久久久久久女| 人人妻人人澡人人爽人人夜夜| 国产亚洲精品久久久com| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的| 最黄视频免费看| 精品人妻一区二区三区麻豆| 亚洲自偷自拍三级| 91精品一卡2卡3卡4卡| 高清不卡的av网站| 日本-黄色视频高清免费观看| 亚洲人与动物交配视频| 久久国产乱子免费精品| 91成人精品电影| 多毛熟女@视频| 日韩在线高清观看一区二区三区| 一级a做视频免费观看| 青春草视频在线免费观看| 精品久久久噜噜| 亚洲精品自拍成人| 曰老女人黄片| 成年美女黄网站色视频大全免费 | 最近手机中文字幕大全| 国内少妇人妻偷人精品xxx网站| 欧美3d第一页| 成人国产av品久久久| 亚洲性久久影院| 大片免费播放器 马上看| 高清黄色对白视频在线免费看 | 亚洲怡红院男人天堂| 又黄又爽又刺激的免费视频.| 欧美少妇被猛烈插入视频| 欧美日本中文国产一区发布| 久久国内精品自在自线图片| 亚洲精品视频女| 亚洲国产成人一精品久久久| 在线观看三级黄色| 国产精品99久久久久久久久| 亚洲综合精品二区| 亚洲一区二区三区欧美精品| 亚洲美女搞黄在线观看| 一级a做视频免费观看| 不卡视频在线观看欧美| 欧美 亚洲 国产 日韩一| 欧美亚洲 丝袜 人妻 在线| 亚洲美女搞黄在线观看| 国产精品免费大片| 看免费成人av毛片| 亚洲四区av| 日本与韩国留学比较| 久久久久久久久久久丰满| 免费久久久久久久精品成人欧美视频 | 亚洲av电影在线观看一区二区三区| 久久久久久久久久久免费av| 乱系列少妇在线播放| 精品久久久久久久久亚洲| 又黄又爽又刺激的免费视频.| 久久午夜综合久久蜜桃| 久久久久久久久久人人人人人人| a 毛片基地| 日韩中字成人| 日韩电影二区| 视频中文字幕在线观看| 久久鲁丝午夜福利片| 黄色怎么调成土黄色| 国产有黄有色有爽视频| 免费黄色在线免费观看| 日日啪夜夜撸| 久久精品久久久久久久性| 视频区图区小说| 精品一品国产午夜福利视频| 国精品久久久久久国模美| 在线看a的网站| 美女视频免费永久观看网站| xxx大片免费视频| 欧美激情国产日韩精品一区| 大香蕉97超碰在线| 欧美日韩视频精品一区| 国产免费又黄又爽又色| 啦啦啦中文免费视频观看日本| 啦啦啦在线观看免费高清www| 人人妻人人爽人人添夜夜欢视频 | 国产欧美亚洲国产| 曰老女人黄片| 国内揄拍国产精品人妻在线| 久久久精品免费免费高清| 久久6这里有精品| 午夜福利网站1000一区二区三区| 女的被弄到高潮叫床怎么办| 亚洲内射少妇av| av有码第一页| 国产精品99久久99久久久不卡 | 搡老乐熟女国产| 大陆偷拍与自拍| 麻豆精品久久久久久蜜桃| 桃花免费在线播放| 亚洲精品一二三| 最后的刺客免费高清国语| 欧美亚洲 丝袜 人妻 在线| 中文在线观看免费www的网站| 成人18禁高潮啪啪吃奶动态图 | 91午夜精品亚洲一区二区三区| 丝瓜视频免费看黄片| 91久久精品国产一区二区三区| 国产男女超爽视频在线观看| 青春草国产在线视频| 一级毛片 在线播放| 中文资源天堂在线| 2021少妇久久久久久久久久久| 亚洲熟女精品中文字幕| 免费人成在线观看视频色| 国精品久久久久久国模美| 美女大奶头黄色视频| 老熟女久久久| 99九九线精品视频在线观看视频| 全区人妻精品视频| 美女视频免费永久观看网站| 九色成人免费人妻av| 国产成人freesex在线| 亚洲精品日本国产第一区| 日韩伦理黄色片| 少妇的逼水好多| 一本久久精品| 亚洲天堂av无毛| 99久久精品一区二区三区| 王馨瑶露胸无遮挡在线观看| freevideosex欧美| 亚洲国产毛片av蜜桃av| 国精品久久久久久国模美| 一级,二级,三级黄色视频| 精品亚洲成a人片在线观看| 视频中文字幕在线观看| 中文天堂在线官网| 亚洲国产精品国产精品| 9色porny在线观看| 欧美xxⅹ黑人| 国产91av在线免费观看| 搡老乐熟女国产| 成年美女黄网站色视频大全免费 | 国产精品一区二区三区四区免费观看| 久久精品夜色国产| 97超视频在线观看视频| 人妻制服诱惑在线中文字幕| 久久精品夜色国产| 一本色道久久久久久精品综合| 不卡视频在线观看欧美| 日韩 亚洲 欧美在线| 女人精品久久久久毛片| 伦精品一区二区三区| 欧美日韩av久久| 久久久久久久久大av| 免费看光身美女| 黄色视频在线播放观看不卡| 亚洲av.av天堂| 日本黄色日本黄色录像| 少妇 在线观看| 国产欧美另类精品又又久久亚洲欧美| 黄色配什么色好看| 狂野欧美白嫩少妇大欣赏| 亚洲精品乱久久久久久|