丁夢(mèng)雨,康啟越,張釋義,趙繁榮,張海峰,楊 敏,胡建英*
全國(guó)23個(gè)城市水源水中鄰苯二甲酸酯代謝物濃度調(diào)查
丁夢(mèng)雨1,康啟越1,張釋義1,趙繁榮1,張海峰2,楊 敏2,胡建英1*
(1.北京大學(xué)城市與環(huán)境學(xué)院,地表過(guò)程分析與模擬教育部重點(diǎn)實(shí)驗(yàn)室,北京 100871;2.中國(guó)科學(xué)院生態(tài)環(huán)境研究中心,環(huán)境水質(zhì)學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100085)
采用UPLC-MS/MS 方法對(duì)中國(guó) 23 個(gè)城市的90個(gè)自來(lái)水廠(chǎng)141個(gè)水源水樣中5 種常用PAEs的8種代謝產(chǎn)物進(jìn)行檢測(cè).結(jié)果發(fā)現(xiàn),所有自來(lái)水水源水中均檢出了MPAEs,鄰苯二甲酸單正丁酯(MnBP)檢出濃度最高,為74.7ng/L.水源水中鄰苯二甲酸單乙酯(MEP),鄰苯二甲酸單異丁酯(MiBP)和MnBP濃度與鄰苯二甲酸二乙酯(DEP),鄰苯二甲酸二異丁酯(DiBP)和鄰苯二甲酸二正丁酯(DnBP)濃度分別呈顯著相關(guān),表明兩者可能是同源.鄰苯二甲酸二(2-乙基己基)酯(DEHP)二級(jí)代謝產(chǎn)物所占DEHP一級(jí)、二級(jí)代謝產(chǎn)物濃度和 (∑DEHP)為4.0% ± 5.6%,和天然水體中DEHP的微生物降解結(jié)果類(lèi)似,水源水中的MPAEs可能來(lái)自PAEs在自然水體中的微生物降解.
鄰苯二甲酸雙酯(PAEs);鄰苯二甲酸單酯(MPAEs);飲用水水源水
鄰苯二甲酸酯(PAEs)是一種被廣泛使用的增塑劑,多用于PVC塑料、化妝品和兒童玩具等產(chǎn)品中[1]. PAEs和高分子材料以非共價(jià)鍵相連,因此容易釋放到環(huán)境中[2],國(guó)內(nèi)外眾多研究表明水源水中廣泛存在PAEs[3-10].據(jù)報(bào)道,我國(guó)2016年鄰苯二甲酸酯類(lèi)增塑劑生產(chǎn)量為200萬(wàn)t,占全部增塑劑產(chǎn)量的60%[11].我國(guó)制定了鄰苯二甲酸二丁酯(DBP)和鄰苯二甲酸二(2-乙基己基)酯(DEHP)的地表水環(huán)境標(biāo)準(zhǔn)限值分別為3μg/L和8μg/L[12].
作為一種典型的內(nèi)分泌干擾物,PAEs能導(dǎo)致精液質(zhì)量下降、精子凋亡、自然流產(chǎn)、兒童肥胖、過(guò)敏癥狀、哮喘、高血壓、注意力表現(xiàn)差和DNA損傷等[13-17].PAEs在體內(nèi)快速代謝為鄰苯二甲酸單酯(MPAEs),且其毒性被認(rèn)為主要是由MPAEs造成的[18].動(dòng)物實(shí)驗(yàn)表明暴露MPAEs會(huì)引起多種毒性,如鄰苯二甲酸單(2-乙基己基)酯(MEHP)能抑制人類(lèi)絨毛外滋養(yǎng)細(xì)胞侵蝕[19],降低卵母細(xì)胞的發(fā)育能力[20]、導(dǎo)致排卵停止[21]、誘導(dǎo)免疫系統(tǒng)細(xì)胞凋亡[22]等.此外,鄰苯二甲酸單正丁酯(MnBP)還能損害人類(lèi)精子的功能[23].
PAEs通過(guò)人體代謝產(chǎn)生的MPAEs最終通過(guò)生活污水排入自然水體,因此水體中可能殘留這些代謝產(chǎn)物.此外,自然水體中的微生物也能降解PAEs而生成MPAEs[24],目前已在河流、湖泊、海水、生活廢水等水環(huán)境中檢出MPAEs[9,24-27],但是未有文獻(xiàn)報(bào)道水源水中是否存在MPAEs.由于飲用水是人類(lèi)暴露污染物質(zhì)的一個(gè)主要途徑之一,考慮到MPAEs的毒性,所以有必要對(duì)全國(guó)水源水中MPAEs的濃度進(jìn)行全面的調(diào)查,獲得其濃度水平及其空間分布.
本研究對(duì)我國(guó)23個(gè)城市的90個(gè)自來(lái)水廠(chǎng)水源水中5種常用PAEs(DMP, DEP, DiBP, DnBP和DEHP)的8種代謝產(chǎn)物(MMP, MEP, MiBP, MnBP, MEHP, MEHHP, MEOHP和MECPP)進(jìn)行了監(jiān)測(cè),研究了其時(shí)空變化.為了比較,同時(shí)檢測(cè)了水源水中上述5種PAEs的濃度水平.水源水中均檢出MPAEs,這一結(jié)果為我國(guó)水源地MPAEs的風(fēng)險(xiǎn)評(píng)估提供暴露信息.
2015年5月~2018年1月于全國(guó)23個(gè)城市的90個(gè)自來(lái)水廠(chǎng)水源地采集141個(gè)水源水樣品,采樣點(diǎn)分布如圖1所示,采樣情況見(jiàn)表1.為了去除余氯,采樣時(shí)在水樣中添加L-抗壞血酸.
圖1 全國(guó)自來(lái)水廠(chǎng)水源水中PAEs (a)和MPAEs (b)濃度空間分布
表1 采樣城市、時(shí)間及其不同城市的PAEs和MPAEs總濃度水平
續(xù)表1
5種PAEs,包括鄰苯二甲酸二甲酯(DMP),鄰苯二甲酸二乙酯(DEP),鄰苯二甲酸二異丁酯(DiBP), DnBP和DEHP的標(biāo)準(zhǔn)品和氘代同位素內(nèi)標(biāo)均購(gòu)于Labor Dr. Ehrenstorfer (Augsburg,德國(guó)), 8種MPAEs標(biāo)樣:鄰苯二甲酸單甲酯(MMP),鄰苯二甲酸單乙酯(MEP),鄰苯二甲酸單異丁酯(MiBP),MnBP, MEHP購(gòu)買(mǎi)自AccuStandard (New Haven, CT,美國(guó)),鄰苯二甲酸單(2-乙基-5-羥基己基)酯(MEHHP)和鄰苯二甲酸單(2-乙基-5-羰基己基)酯(MEOHP)購(gòu)于TRC (Toronto, 加拿大),鄰苯二甲酸單(2-乙基-5-羧基戊基)酯(MECPP)購(gòu)于Cambridge Isotope Laboratories (Andover, MA,美國(guó)).6種同位素取代的內(nèi)標(biāo)MMP-13C4, MEP-13C4,MnBP-13C4, MEHP-13C4, MEHHP-13C4和MECPP-13C4均購(gòu)于劍橋同位素實(shí)驗(yàn)室(Andover, MA,美國(guó)).
甲醇和乙腈(LC/MS級(jí)),正己烷(農(nóng)藥級(jí))均購(gòu)于費(fèi)希爾化工(New Jersey,美國(guó)).乙醚(農(nóng)藥級(jí))購(gòu)于霍尼韋爾實(shí)驗(yàn)室,氫氧化銨(28%)來(lái)自阿爾法伊薩爾(Heysham,英國(guó)),甲酸(HPLC級(jí))和乙酸(HPLC級(jí))來(lái)自迪克瑪技術(shù)公司(California,美國(guó)),超純水經(jīng)Milli-Q超純水裝置(Millipore,Bedford,MA,USA)制備(電導(dǎo)率>18.2MΩ·cm).所用材料包括HLB固相萃取柱(200mg/6CC,Waters,美國(guó)),MAX固相萃取柱(150mg/6CC,Waters,美國(guó)),0.45μm玻璃纖維濾膜(Waters,美國(guó)).
用預(yù)先在450℃烘焙4h的玻璃纖維濾膜過(guò)濾水源水后,取1L用來(lái)分析PAEs,加入5種PAEs同位素內(nèi)標(biāo)各125ng,用事先活化過(guò)的Waters HLB固相萃取柱進(jìn)行富集.HLB固相萃取柱活化條件為10mL乙醚,5mL甲醇,5mL超純水活化,流速控制在5~10mL/min.水樣全部通過(guò)后,用高純氮?dú)饬鞔蹈蒆LB柱,然后用5mL乙醚:甲醇(/95:5)溶液進(jìn)行洗脫.最后洗脫液用高純氮?dú)獯抵两珊笕苡?.5mL正己烷.
取0.5L用來(lái)分析MPAEs,加入6種同位素內(nèi)標(biāo)各12.5ng,用Waters MAX固相萃取柱進(jìn)行富集.MAX固相萃取柱依次用10mL甲醇預(yù)淋洗,5mL超純水活化,水樣全部通過(guò)后,用5mL超純水、5mL 5%氫氧化銨和5mL甲醇淋洗MAX柱,用5mL甲酸:甲醇(/5:95)溶液進(jìn)行洗脫.洗脫液用高純氮?dú)獯抵两珊笕苡?.5mL甲醇.樣本進(jìn)入儀器定量分析前保存于-20℃[24].由于PAEs在環(huán)境中無(wú)處不在,為了消除過(guò)程空白,前處理過(guò)程中沒(méi)有使用塑料或橡膠容器;整個(gè)實(shí)驗(yàn)過(guò)程中使用了農(nóng)藥級(jí)或LC-MS級(jí)的有機(jī)溶劑,高純度氮?dú)?>99.999%),所使用玻璃器皿在馬弗爐中400℃烘烤4h以上.
本研究采用美國(guó)安捷倫科技有限公司的Agilent 6890N氣相色譜-5975C質(zhì)譜聯(lián)用儀器對(duì)PAEs進(jìn)行分析.采用Waters ACQUITY UPLCTM儀器(Waters, Milford, MA,美國(guó))與 Waters Micromass串聯(lián)四級(jí)桿質(zhì)譜聯(lián)用儀對(duì)MPAEs進(jìn)行分析.具體分析條件和參數(shù)采用本實(shí)驗(yàn)室之前報(bào)道過(guò)的方法[24].
本研究中對(duì)于樣品中目標(biāo)物質(zhì)的定性主要依據(jù):(1)與標(biāo)樣相比保留時(shí)間相差在2%以?xún)?nèi);(2)與標(biāo)樣相比,2個(gè)選擇離子峰面積之比相差在20%以?xún)?nèi).目標(biāo)物質(zhì)的定量選用豐度最高及背景干擾最小的MRM 選擇離子,同時(shí)用內(nèi)標(biāo)校正前處理和基質(zhì)干擾引起的損失,并用以消除儀器波動(dòng)的影響.為了評(píng)估空白和基質(zhì)效應(yīng),每一組樣品跟隨1個(gè)過(guò)程空白,2個(gè)基質(zhì)加標(biāo)樣品作為質(zhì)量控制. DMP, DEP, DiBP, DnBP和DEHP的檢出限分別為5, 2, 3, 7和8ng/L,5種物質(zhì)的回收率分別為101、102、94、97和71%. MMP, MEP, MiBP, MnBP, MEHP, MEOHP, MEHHP和MECPP的檢出限分別為3, 0.6, 1, 2, 3, 0.01, 0.01和0.01ng/L,10種物質(zhì)的回收率為82%、84%、89%、94%、95%、84%、85%和96%.
由表2可見(jiàn),全國(guó)141個(gè)自來(lái)水廠(chǎng)水源水水樣中的DiBP, DEHP, DMP, DnBP和DEP5檢出率分別為91.5%, 87.9%, 87.2%, 84.4%和81.6%.其中DnBP濃度最高,平均濃度為(425.1±1225)ng/L (
表2 全國(guó)水源水中檢出的鄰苯二甲酸酯及其代謝物的檢出率和濃度水平
注:LOD為檢出限.
由表2可見(jiàn),水源水中MEHP, MnBP, MiBP, MMP和MEP這5種一級(jí)代謝產(chǎn)物的檢出率分別為94.3%, 92.9%, 88.7%, 88.7%和58.2%,其中MnBP濃度最高,平均濃度為(74.7±372)ng/L.每種一級(jí)代謝產(chǎn)物的濃度都低于所對(duì)應(yīng)的PAEs.水源水中MMP和MiBP濃度符合對(duì)數(shù)正態(tài)分布(>0.05),幾何平均濃度分別為(6.01±4.12)ng/L和(4.47±4.27)ng/L.使用ProUCL軟件對(duì)其余3種物質(zhì)的濃度數(shù)據(jù)處理后進(jìn)行對(duì)數(shù)正態(tài)分布檢驗(yàn),MEP和MEHP的濃度符合對(duì)數(shù)正態(tài)分布(>0.05),幾何平均濃度分別為(0.720±6.25)ng/L和(10.1±2.41)ng/L.水源水中五種MPAEs濃度均高于加拿大海水濃度(MMP:0.42~20.1ng/L; MEP: 4.41~38.8ng/L; MnBP: 50.9~107.8ng/L; MEHP: 45.5~57.2ng/L)[25];除MEHP外,其余物質(zhì)的濃度均高于日本Tama河流水體濃度(MnBP:
PAEs在人體內(nèi)能夠很快代謝成為MPAEs, 因此MPAEs會(huì)通過(guò)生活污水的排放進(jìn)入水環(huán)境中;另外,在自然水體中也會(huì)通過(guò)微生物降解生成MPAEs.為了進(jìn)一步探究MPAEs的可能來(lái)源,研究了水源水中PAEs和MPAEs濃度相關(guān)性,其中DEP和MEP (=0.52,<0.01), DiBP和MiBP(=0.68,<0.01), DnBP和MnBP(=0.85,<0.01)均顯著正相關(guān)(圖2a-c).表明這3種MPAEs可能來(lái)自生活污水的排放或者是微生物降解產(chǎn)物.考慮到水源地得到嚴(yán)格保護(hù),所以PAEs在自然水體中的微生物降解可能是MPAEs的重要來(lái)源.結(jié)合前面二次代謝物占∑DEHP的比例結(jié)果,推測(cè)水源水中MPAEs的來(lái)源可能是環(huán)境中PAEs的生物降解.
MPAEs是PAEs的生物活性物質(zhì),且已有動(dòng)物實(shí)驗(yàn)表明,低濃度MEHP (20~1000nmol/L)會(huì)影響牛卵母細(xì)胞的發(fā)育,20nM MEHP能夠降低卵母細(xì)胞的發(fā)育能力[20]; MEHP能影響線(xiàn)粒體膜電位,促進(jìn)活性氧的產(chǎn)生和半胱天冬酶的激活,在環(huán)境濃度下誘導(dǎo)免疫系統(tǒng)細(xì)胞凋亡[22].因此人群可能通過(guò)飲用水途徑暴露這些具有潛在生殖和免疫毒性的PAEs代謝產(chǎn)物而引起潛在健康風(fēng)險(xiǎn).
由圖1(b)所見(jiàn),山東濱州水源水中五種單酯(MMP, MEP, MiBP, MnBP和MEHP)的總濃度(∑MPAEs)最高,為995ng/L,保定其次(560ng/L),哈爾濱的總濃度最低(12.8ng/L).同樣,濱州采集的地下水樣本中∑MPAEs濃度高達(dá)1712ng/L,特別是MnBP,濃度為1703ng/L,這與濱州地下水中高濃度DnBP的檢出情況相似.從全國(guó)分布來(lái)看,除深圳之外,PAEs和MPAEs的分布情況相似.通過(guò)對(duì)城市之間PAEs和MPAEs的相關(guān)性研究發(fā)現(xiàn),除MEHP和DEHP外,MMP和DMP(=0.69,<0.01),MEP和DEP (=0.81,<0.01),MiBP和DiBP(=0.58,<0.01). MnBP和DnBP(=0.93,<0.01)均顯著相關(guān),進(jìn)一步表明MPAEs的空間分布與PAEs的空間分布類(lèi)似.
對(duì)哈爾濱、濟(jì)南、蘭州、南京、天津、無(wú)錫和株洲這7個(gè)城市的水源水分豐水期(5~10月)和枯水期(12月~次年3月)進(jìn)行采樣,MPAEs濃度季節(jié)性變化如圖3所示.通??菟谖廴疚餄舛缺徽J(rèn)為高于豐水期的.對(duì)于MPAEs,天津枯水期∑MPAEs高于豐水期,但是其他城市豐水期∑MPAEs濃度和枯水期的相仿.這可能和水源類(lèi)型有關(guān),天津是水庫(kù)水水源,而其他城市是河流水水源.
圖3 水源水中MPAEs濃度的季節(jié)變化
枯水期:12月-次年3月;豐水期:5月-10月
3.1 全國(guó)自來(lái)水廠(chǎng)水源水141個(gè)樣本中都檢出了MPAEs, MnBP濃度最高,算術(shù)均值為74.7ng/L,水源水中MPAEs風(fēng)險(xiǎn)有待進(jìn)一步評(píng)估.
3.2 水源水中MEP, MiBP和MnBP濃度與DEP, DiBP和DnBP濃度分別呈顯著相關(guān),表明兩者可能是同源.
3.3 DEHP二級(jí)代謝產(chǎn)物所占∑DEHP比例較低,認(rèn)為水源水中的MPAEs,其可能來(lái)自PAEs的微生物降解.
3.4 對(duì)于天津水庫(kù)性水源,枯水期水源水MPAEs濃度遠(yuǎn)高于豐水期,而其他6個(gè)以河流作為水源的城市,其濃度不受季節(jié)變化.
[1] Wen Z, Huang X, Gao D, et al. Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China [J]. Environmental Science and Pollution Research, 2017,25(8):1-11.
[2] Schettler T. Human exposure to phthalates via consumer products [J]. International Journal of Andrology, 2006,29(1):134-139.
[3] Liu X, Shi J, Bo T, et al. Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009~2012 [J]. Environmental Pollution, 2014,184:262-270.
[4] Loraine G A, Pettigrove M E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California [J]. Environmental Science & Technology, 2006,40(3):687-695.
[5] Mackintosh C E, Maldonado J A, Ikonomou M G, et al. Sorption of Phthalate Esters and PCBs in a Marine Ecosystem [J]. Environmental Science & Technology, 2006,40(11):3481-3488.
[6] Net S, Dumoulin D, El-Osmani R, et al. Case study of PAHs, Me-PAHs, PCBs,Phthalates and pesticides contamination in the Somme River water, France [J]. International Journal of Environmental Research, 2014,8(4):1159-1170.
[7] Selvaraj K K, Sundaramoorthy G, Ravichandran P K, et al. Phthalate esters in water and sediments of the Kaveri River, India: environmental levels and ecotoxicological evaluations [J]. Environmental Geochemistry and Health, 2015,37(1):83-96.
[8] Sibali L L, Okonkwo J O, Mccrindle R I. Determination of selected phthalate esters compounds in water and sediments by capillary gas chromatography and flame ionization detector [J]. Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 2013,48(11):1365-1377.
[9] Suzuki T, Yaguchi K, Suzuki S, et al. Monitoring of phthalic acid monoesters in river water by solid-phase extraction and GC-MS determination [J]. Environmental Science & Technology, 2001,35(18): 3757-3763.
[10] Vethaak A D, Lahr J, Schrap S M, et al. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of the Netherlands [J]. Chemosphere, 2005,59(4):511- 524.
[11] 中國(guó)產(chǎn)業(yè)信息網(wǎng).2018年中國(guó)增塑劑行業(yè)發(fā)展現(xiàn)狀及發(fā)展前景分析 [EB/OL].https://www.chyxx.com/industry/201806/653004.html,2018- 06-26/2019-03-03. China Industrial Information Network. Analysis of development status and prospect of plasticizer industry in China, 2018 [EB/OL]. https: //www.chyxx.com/industry/201806/653004.html.2018-06-26/2019-03- 03.
[12] GB 3838-2002 地表水環(huán)境質(zhì)量標(biāo)準(zhǔn) [S]. GB 3838-2002 Environmental Quality Standard for Surface Water. [S].
[13] Arbuckle T E, Davis K, Boylan K, et al. Processed data for CHMS 2007–2009: Bisphenol A, phthalates and lead and learning and behavioral problems in Canadian children 6–19years of age [J]. Data in Brief, 2016,8:784-802.
[14] Bloom M S, Whitcomb B W, Chen Z, et al. Associations between urinary phthalate concentrations and semen quality parameters in a general population [J]. Human Reproduction, 2015,30(11):2654-57.
[15] Huen K, Calafat A M, Bradman A, et al. Maternal phthalate exposure during pregnancy is associated with DNA methylation of LINE-1and Alu repetitive elements in Mexican-American children [J]. Environmental Research, 2016,148:55-62.
[16] Mu D, Gao F M, Fan Z L, et al. Levels of phthalate metabolites in urine of pregnant women and risk of clinical pregnancy loss [J]. Environmental Science & Technology, 2015,49(17):10651-10657.
[17] Wang Y X, Zeng Q, Sun Y, et al. Phthalate exposure in association with serum hormone levels, sperm DNA damage and spermatozoa apoptosis: A cross-sectional study in China [J]. Environmental Research, 2016,150:557-565.
[18] Mittermeier A, V?lkel W, Fromme H. Kinetics of the phthalate metabolites mono-2-ethylhexyl phthalate (MEHP) and mono-n-butyl phthalate (MnBP) in male subjects after a single oral dose [J]. Toxicology Letters, 2016,252:22-28.
[19] Gao F M, Hu W X, Li Y, et al. Mono-2-ethylhexyl phthalate inhibits human extravillous trophoblast invasion via the PPARγ pathway [J]. Toxicology and Applied Pharmacology, 2017,327:23-29.
[20] Kalo D, Roth Z. Low level of mono(2-ethylhexyl) phthalate reduces oocyte developmental competence in association with impaired gene expression [J]. Toxicology, 2017,377:38-48.
[21] Lovekamp-Swan T, Davis B J. Mechanisms of Phthalate Ester Toxicity in the Female Reproductive System [J]. Environmental Health Perspectives, 2002,111(2):139-145.
[22] Rosado-Berrios C A, Christian Vélez, Zayas B. Mitochondrial permeability and toxicity of diethylhexyl and monoethylhexyl phthalates on TK6human lymphoblasts cells [J]. Toxicology in Vitro, 2011,25(8):2010-2016.
[23] Xie F C, Chen X D, Weng S Q, et al. Effects of two environmental endocrine disruptors di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) on human sperm functions in vitro [J]. Reproductive Toxicology, 2019,83:1–7.
[24] Jiang J Q, Mu D, Ding M Y, et al. Simultaneous determination of primary and secondary phthalate monoesters in the Taihu Lake: Exploration of sources [J]. Chemosphere, 2018,202:17-24.
[25] Blair J D, Ikonomou M G, Kelly B C, et al. Ultra-Trace Determination of Phthalate Ester Metabolites in Seawater, Sediments, and Biota from an Urbanized Marine Inlet by LC/ESI-MS/MS [J]. Environmental Science & Technology, 2009,43(16):6262-6268.
[26] González-Marino I, Rodil R, Barrio I, et al. Wastewater-Based Epidemiology as a New Tool for Estimating Population Exposure to Phthalate Plasticizers [J]. Environmental Science & Technology, 2017, 51(7):3902-3910.
[27] Du P, Zhu Z L, Huang H M, et al. Estimating population exposure to phthalate esters in major Chinese cities through wastewater-based epidemiology [J]. Science of The Total Environment, 2018,643: 1602-1609.
[28] 賀 濤,白小艦,陳 雋,等.飲用水源地塑化劑類(lèi)污染物環(huán)境健康風(fēng)險(xiǎn)評(píng)估[J]. 中國(guó)環(huán)境科學(xué), 2013,33(1):26-31. He T, Bai X J, Chen J, et al. Environmental health risk assessment of plasticizer contaminants in drinking water source [J]. China Environmental Science, 2013,33(1):26-31.
[29] Colacino J A, Haris T R, Schecter A. Dietary Intake Is Associated with Phthalate Body Burden in a Nationally Representative Sample [J]. Environmental Health Perspectives, 2010,118(7):998-1003.
National survey of phthalate metabolites in drinking source water of 23 cities in China.
DING Meng-yu1, KANG Qi-yue1, ZHANG Shi-yi1, ZHAO Fan-rong1, ZHANG Hai-feng2, YANG Min2, HU Jian-ying1*
(1.Laboratory for Earth Surface Proess, Ministy of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China;2.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco- Environmental Sciences, Chinese Academy of Sciences, Beijing 100085)., 2019,39(10):4205~4211
Eight metabolites of 5 PAEs were determined in 141 drinking source water samples from 90 drinking water supply plants of 23 cities in China using UPLC-MS/MS method. MPAEs were detected in all drinking source water samples, and the average concentration of mono-n-butyl phthalate (MnBP) was the highest (74.7ng/L) among target MPAEs. The concentrations of monoethyl phthalate (MEP), mono-iso-butyl phthalate (MiBP) and MnBP in source water were significantly correlated with those of diethyl phthalate (DEP), di-iso-butyl phthalate (DiBP) and di-n-butyl phthalate (DnBP), respectively, suggesting common source for MPAEs and their corresponding PAEs. The percentage of secondary metabolites relative to∑DEHP (total concentrations of primary and secondary metabolites of DEHP) (4.0% ± 5.6%) in source water was comparable to that from the microbiological degradation of DEHP in aqueous environment, suggesting that these metabolites in drinking source water were mainly from the microbiological degradation of PAEs in aqueous environment.
phthalates (PAEs);mono phthalates (MPAEs);drinking source water
X832
A
1000-6923(2019)10-4205-07
丁夢(mèng)雨(1994-),女,浙江紹興人,北京大學(xué)城市與環(huán)境學(xué)院碩士研究生,主要從事飲用水和人體中鄰苯二甲酸類(lèi)物質(zhì)的濃度調(diào)查及風(fēng)險(xiǎn)評(píng)估.
2019-03-10
科技部政府間國(guó)際科技創(chuàng)新合作項(xiàng)目(2016YFE0117800);水體污染控制與治理科技重大專(zhuān)項(xiàng)(2018ZX07502001)
* 責(zé)任作者, 教授, hujy@urban.pku.edu.cn