• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    C3: Consensus Cancer Driver Gene Caller

    2019-10-22 08:51:52ChenYuZhuChiZhouYunQinChenAiZongShenZongMingGuoZhaoYiYangXiangYunYeShenQuJiaWeiQiLiu2
    Genomics,Proteomics & Bioinformatics 2019年3期

    Chen-Yu Zhu, Chi Zhou, Yun-Qin Chen, Ai-Zong Shen,Zong-Ming Guo, Zhao-Yi Yang, Xiang-Yun Ye*,Shen Qu*, Jia Wei*, Qi Liu2,*,j

    1 Department of Endocrinology & Metabolism, Shanghai Tenth People’s Hospital, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China

    2 Department of Ophthalmology, Ninghai First Hospital, Ninghai 315600, China

    3 R&D Information, Innovation Center China, AstraZeneca, Shanghai 201203, China

    4 Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200240, China

    5 Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230036, China

    KEYWORDS Somatic mutation;Cancer driver genes;Consensus;Data integration;Web server

    Abstract Next-generation sequencing has allowed identification of millions of somatic mutations in human cancer cells.A key challenge in interpreting cancer genomes is to distinguish drivers of cancer development among available genetic mutations.To address this issue,we present the first webbased application, consensus cancer driver gene caller (C3), to identify the consensus driver genes using six different complementary strategies, i.e., frequency-based, machine learning-based, functional bias-based,clustering-based,statistics model-based,and network-based strategies.This application allows users to specify customized operations when calling driver genes, and provides solid statistical evaluations and interpretable visualizations on the integration results.C3 is implemented in Python and is freely available for public use at http://drivergene.rwebox.com/c3.

    Introduction

    Figure 1 Guideline of C3 web server

    The continued advancement of next-generation sequencing(NGS)technology has allowed for the sequencing of large sets of cancer samples for somatic mutation discovery [1,2]. However,one of the main challenges in interpreting the cancer genomes is to efficiently distinguish the driver mutations from the passenger mutations.Driver mutations are causally implicated in oncogenes and positively selected along the lineage of cancer development under the specific microenvironment conditions in vivo, whereas passenger mutations do not confer clonal growth advantages and are thus irrelevant to tumor development [3]. To address this issue, various methods have been proposed to identify driver genes based on distinctive assumptions and strategies [4-16]. Intuitively, all these driver gene identification strategies exhibit the biased signals of positive selection exploited by corresponding mechanisms at varied degrees. Several studies have been reported on benchmarking these methods with consensus cancer driver genes derived from individual model [8,17,18]. Collin et al. [8] proposed an evaluation framework to benchmark several existing models based on several measurements including precision, consistency, and mean log fold change (MLFC). Matan et al.[17] also benchmarked the available methods by using measurements such as precision and recall. Eduard et al. [18] classified four subtypes of driver gene calling methods at a subgene resolution. Denis et al. [19] provided the most comprehensive benchmarking of 21 driver gene prediction methods and proposed a Borda-based integration approach ConsensusDriver.

    Despite these efforts,the available tools are often challenging for biologists or clinicians to carry out the related analysis directly,given the technical hurdles ranging from setting up the software to tuning parameters.A web-based user-friendly consensus driver gene prediction with intuitive visualization of the consensus mutation calling is needed.Here,we present the first web server-based consensus cancer driver gene caller(C3)platform to derive the consensus mutation calling results [4-17],using six state-of-the-arts and complementary prediction strategies. These include frequency-based (MutSigCV) [6],machine learning-based (20/20+) [8], functional bias-based(OncodriveFM) [10], clustering-based (OncodriveCLUST)[11], statistics model-based (DrGaP) [5], and network-based(MUFFINN) [7]. Various calling evaluation and visualization strategies are incorporated in C3as follows. (1) C3provides a solid evaluation of the consensus mutation calling results with Top-N-Precision and Top-N-nDCG [20]. (2) C3provides an efficient integration strategy to derive the consensus results by Robust Rank Aggregation (RRA) [21] and statistical model-based intersection visualization [22]. (3) Circos plots are presented in C3to visualize the consensus mutation calling results [22,23].

    Method

    General workflow of C3

    C3accepts mutation annotation format (MAF) [24] file as input. The MAF file is annotated from variant calling format(VCF)[25]file,which can be acquired by using variant calling tool like Mutect on the NGS data.A schematic representation of the C3workflow is shown in Figure 1A. The selected programs, including 20/20+, MutSigCV, OncodriveFM, OncodriveCLUST, DrGaP, and MUFFINN (Figure 1A and B;File S1 Part 1), run in the Ubuntu sever 16.04 system. Then all preprocessed input mutation data are processed in C3to obtain candidate driver genes list for each strategy separately.We use SuperExactTest model to evaluate the statistical significance of the intersection of individual calling results using all the protein-coding gene as a whole background gene set. In addition, based on each discrepant driver gene list, a rank ensemble method,RobustRankAggreg,is used to obtain a consensus driver gene list. Four databases including the Cancer Gene Census (CGC) [26], Integrative Onco Genomics (IntOGen) [10], Network of Cancer Genes (NCG) [27], and Online Mendelian Inheritance in Man(OMIM)[28]are used to annotate the predicted driver genes.Two evaluation measurements,i.e., the Top-N-Precision and Top-N-nDCG, are applied to evaluate the calling performance.Finally,the KEGG[29]pathway and Gene Ontology analyses are also performed on the consensus driver genes for comprehensive annotations.

    Performance measurement

    Previously, Collin et al. proposed a novel measurement of mean log fold change between the observed and desired theoretical P values [8]. Matan et al. [17] and Eduard et al. [18]applied measurements of precision and recall.Denis et al.also applied precision, recall, and F1 score [19] (File S1 Part 1). In our study,we applied the Top-N-Precision(using CGC data as a reference driver gene set[26])and Top-N-nDCG(using IntOGen as a reference ranking driver gene set[30])to facilitate the quantitative comparison and evaluation,focusing on the top n performance of the ranking results.

    Precision

    We evaluated the precision performance among the results acquired by the previous strategies based on the top 100 genes with respect to CGC cancer database through Equation (1).The average precision can measure a general predicting ability of individual methods among the pan-cancer cohort samples.We calculate the precision scores for each of 27 cancer types,and the SUM (precision) represents the sum of respective precision score of 27 cancer types (Equation (2)).

    Top-n-precision

    nDCG

    Meanwhile, normalized discounted cumulative gain (nDCG)was applied to measure the ranking quality of the results using the IntOGen as a reference cancer driver gene set.Weight of a reference gene

    Figure 2 General framework of C3 web application

    Here,n represents the number of top predicted genes;i represents the rank of predicted genes;CGnrepresents cumulative weight of top n predicted genes; DCGnrepresents CGnmultiplied by a discount factori(i >1); IDCGnrepresents a DCGnunder the ideal condition, that is, the rank of predicted genes is exactly the same as that in the reference dataset. Top-N-nDCG represents normalized DCGnand measures the ranking performance of predicted genes.

    To obtain the Top-N-nDCG, firstly, we download IntOGen cancer driver gene set (URL: https://www.intogen.org/) [31]and assign a weight for each reference driver gene in IntOGen based on their proportion of driver mutation counts[30](Version 2014.12)calculated according to Equation(3).Specifically,the total number of cancer driver genes in IntOGen is 459.The weights of the predicted driver genes overlapping with the benchmark IntOGen dataset are calculated according to Equation (4). The weights of the predicted genes that are not available at the benchmark IntOGen dataset are set to 0. The Top-N-nDCG can be calculated through Equations(5)-(8)[20].

    Rank aggregation

    The RRA algorithm[21]is applied to obtain a consensus driver gene list, which aggregates the ranking driver genes predicted by individual tools. Comparing with the original RankAggreg algorithm[32],the RRA algorithm has three advantages:(1)it deals with incomplete rankings, which is common in practice,(2) it performs robustly with tolerance to the data noise, and(3) it is fast to be integrated for interactive data analysis.

    Intersection visualization and evaluation with SuperExactTest and Circos

    We applied SuperExactTest [22] and Circos [23] to organize our visualization results.The former is a scalable visualization tool to illustrate high-order relationships among multi sets beyond Venn diagrams [33]. It evaluates the overlap of each of tools and presents a circular plot illustrating all possible intersections with statistical methods. The latter visualizes the predicted driver gene sets intuitively(Figure 1C and D;File S1 Part 5).

    Implementation

    As Figure 2 shows,C3web application accepts MAF[24]file or a modified micro-MAF file(Table S1)as the input.After users select driver gene calling strategies and parameters,C3runs as the back-end Ubuntu 16.04 system (with python-2.7, R-3.3.4 and MATLAB Runtime 2014). When the job is successfullyfinished, users will be notified through email including a‘‘Request ID”. At the ‘‘Recent Request” page, users can preview and obtain candidate driver gene list by querying the‘‘Request ID”. The output is directly viewable on the website and is available to downloaded for further analyses. The data submitted by every user are kept private. If there are any questions, users can visit the ‘‘Help” page for a detailed guidance.

    Table 1 Number of tested tumor samples and mutations

    Figure 3 Comparison of cancer driver gene calling performance using Consensus and the six individual strategies on 27 cancer datasets

    Detailed information of the test datasets

    We test the stability of C3web application by selecting tumor datasets collected from The Cancer Genome Atlas(TCGA)[2]databases.Initially,the whole dataset includes 34 cancer types with 7724 samples and 729,235 mutations, curated from the published whole-exome sequencing or whole-genome sequencing studies which are also used by TUSON[9]and Collin study[8]. Since some tools (such as MutSigCV and DrGaP) need additional cohort mutation information, we removed 7 cancer types with 290 samples and 5164 mutations through data preprocessing.Finally,we curated 27 cancer types with 7434 samples and 724,071 mutations for the final analysis, which constitute the updated comprehensive test datasets finally for driver gene calling (Table 1 and File S1 Part 2).

    Performance of C3

    We benchmarked the performance of the consensus results comparing with each alternative. As shown in Figure 3, the integration results of C3application outperformed other methods evaluated with Top-N-Precision and Top-N-nDCG,revealing its superiority in driver genes prediction (File S1 Part 4).

    C3also helps to identify reliable potential driver genes by SuperExactTest intersection between different driver gene calling strategies with reference to CGC and literature review.Detailed results are shown in Table S2 and Table S3.

    In summary, although there exists a high discrepancy among different driver gene identification strategies, the intersection by individual strategies not only identifies the most reliable driver genes, but also helps to find potential novel driver genes that are not well-characterized.

    Future developments

    Currently C3has some limitations and warrants future updates. (1) C3is currently deployed on the Ali Cloud server,which requires a lot of memory and space to process the data.Any variant file exceeding 40,000 records may fail when running DrGaP. Since the Random Forest Model 20/20+occupies too much CPU resources, it also takes a long time(>3 h for sample of 50,000 mutations with 8 cores of Intel Xeon E5-2643 3.3 GHz) to run a whole pipeline of C3.Future optimizations are required to accelerate C3.(2)Current version of C3only supports the GRCH37 reference genome,and a new version of the reference genome such as GRCH38 will be added in the next version. (3) One potential application of C3is to identify the target driver genes for drug discovery.However, the computationally predicted drivers should not be over-interpreted without additional experimental evidence.

    Availability

    C3 is freely available for public use at http://drivergene.rwebox.com/c3.

    Authors’ contributions

    QL, JW, XY, and SQ conceived the project. CYZ, CZ, YC,and ZG designed the platform. CYZ, AS, and ZY analyzed the data. QL, YC, CZ, and CYZ wrote the manuscript. All authors read and approved the final manuscript.

    Competing interests

    The authors declare that they have no competing interests.

    Acknowledgments

    This work was supported by the National Major Research and Innovation Program of China (Grant Nos. 2017YFC0908500 and 2016YFC1303205),National Natural Science Foundation of China (Grant No. 61572361), Shanghai Rising-Star Program (Grant No. 16QA1403900), Shanghai Natural Science Foundation Program (Grant No. 17ZR1449400), and Fundamental Research Funds for the Central Universities (Grant No. 1501219106), China.

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2018.10.004.

    黄色日韩在线| 蜜桃亚洲精品一区二区三区| 国产高清有码在线观看视频| 色综合亚洲欧美另类图片| 国产视频一区二区在线看| 成人一区二区视频在线观看| 亚洲成a人片在线一区二区| 岛国在线免费视频观看| 欧美黑人欧美精品刺激| 人人妻人人澡欧美一区二区| 亚洲精品一卡2卡三卡4卡5卡| 午夜日韩欧美国产| 国内精品久久久久久久电影| 性插视频无遮挡在线免费观看| 老熟妇仑乱视频hdxx| 久久久久久久久中文| 久久草成人影院| 中国美女看黄片| 日本精品一区二区三区蜜桃| 又粗又爽又猛毛片免费看| 特级一级黄色大片| 久久精品国产亚洲av天美| 午夜精品在线福利| 亚洲性夜色夜夜综合| 午夜福利18| 一个人看的www免费观看视频| av在线老鸭窝| 99热6这里只有精品| 亚洲国产精品成人综合色| 美女高潮喷水抽搐中文字幕| 男人舔奶头视频| 老熟妇乱子伦视频在线观看| 日韩欧美国产在线观看| 国产成人aa在线观看| 岛国在线免费视频观看| 色吧在线观看| 婷婷精品国产亚洲av在线| 欧美人与善性xxx| 国产大屁股一区二区在线视频| 一进一出抽搐动态| 欧美zozozo另类| 长腿黑丝高跟| 搡老岳熟女国产| 亚洲第一区二区三区不卡| av在线亚洲专区| 老师上课跳d突然被开到最大视频| 狂野欧美白嫩少妇大欣赏| 99国产精品一区二区蜜桃av| 国产精品一区二区三区四区久久| 无遮挡黄片免费观看| 全区人妻精品视频| 国产亚洲精品av在线| av黄色大香蕉| 久久精品国产亚洲网站| 少妇猛男粗大的猛烈进出视频 | 亚洲av中文av极速乱 | 偷拍熟女少妇极品色| 91麻豆精品激情在线观看国产| 国产精品久久久久久亚洲av鲁大| 白带黄色成豆腐渣| 99久久精品一区二区三区| 亚洲男人的天堂狠狠| 国产成人aa在线观看| 免费搜索国产男女视频| 国国产精品蜜臀av免费| 国产精品av视频在线免费观看| 亚洲专区中文字幕在线| 一个人看的www免费观看视频| 真人做人爱边吃奶动态| 久久精品国产亚洲av天美| 无人区码免费观看不卡| 一区二区三区免费毛片| or卡值多少钱| 99热只有精品国产| 国产真实伦视频高清在线观看 | 性插视频无遮挡在线免费观看| a级毛片免费高清观看在线播放| 国产蜜桃级精品一区二区三区| 男人舔奶头视频| 国产精品亚洲一级av第二区| 国产午夜精品论理片| 国产色婷婷99| 日韩精品中文字幕看吧| 国产精品综合久久久久久久免费| 国产午夜精品久久久久久一区二区三区 | 在线免费十八禁| 亚洲久久久久久中文字幕| 观看免费一级毛片| 国产综合懂色| 日本三级黄在线观看| 中文字幕av在线有码专区| 悠悠久久av| 国产高潮美女av| 一区二区三区激情视频| 搡老岳熟女国产| 欧美一区二区精品小视频在线| 在线天堂最新版资源| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 在线国产一区二区在线| 啦啦啦韩国在线观看视频| 尤物成人国产欧美一区二区三区| 亚洲av不卡在线观看| 内地一区二区视频在线| 成年女人毛片免费观看观看9| 亚洲人成伊人成综合网2020| 亚洲国产色片| 国产精品一区www在线观看 | 草草在线视频免费看| 自拍偷自拍亚洲精品老妇| 欧美区成人在线视频| 少妇熟女aⅴ在线视频| 国产伦在线观看视频一区| 欧美高清成人免费视频www| 亚洲人成网站高清观看| 国产熟女欧美一区二区| 黄色女人牲交| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清专用| 亚洲天堂国产精品一区在线| 又黄又爽又免费观看的视频| 亚洲美女黄片视频| 亚洲国产欧美人成| 午夜免费激情av| 国产精品久久电影中文字幕| 真人做人爱边吃奶动态| 色综合色国产| 亚洲无线观看免费| 欧美xxxx性猛交bbbb| 99久国产av精品| 国产精品一区二区免费欧美| 国产精品亚洲美女久久久| 免费看光身美女| 国产在线精品亚洲第一网站| 午夜福利成人在线免费观看| 桃色一区二区三区在线观看| 可以在线观看的亚洲视频| 天天躁日日操中文字幕| 日日干狠狠操夜夜爽| 超碰av人人做人人爽久久| 淫秽高清视频在线观看| АⅤ资源中文在线天堂| 99热只有精品国产| 99热网站在线观看| www.色视频.com| 亚洲美女视频黄频| 最新中文字幕久久久久| 欧美zozozo另类| а√天堂www在线а√下载| 美女xxoo啪啪120秒动态图| 色综合站精品国产| 精品久久国产蜜桃| 亚洲内射少妇av| 尾随美女入室| 国产av麻豆久久久久久久| 成人综合一区亚洲| 天堂网av新在线| 精品一区二区三区av网在线观看| 精品人妻一区二区三区麻豆 | 亚洲内射少妇av| 变态另类丝袜制服| 有码 亚洲区| 国产一区二区在线av高清观看| 哪里可以看免费的av片| 国产高清视频在线观看网站| 久久久久久久久大av| 丰满的人妻完整版| 亚洲精品国产成人久久av| 国产麻豆成人av免费视频| 亚洲精华国产精华精| 91久久精品国产一区二区成人| 嫩草影院精品99| or卡值多少钱| 99九九线精品视频在线观看视频| 露出奶头的视频| 免费看美女性在线毛片视频| 国产精品免费一区二区三区在线| 99热网站在线观看| 国产精品一及| 免费av毛片视频| 国产精品久久久久久精品电影| www.色视频.com| 我的女老师完整版在线观看| 免费看美女性在线毛片视频| 在线播放国产精品三级| 尤物成人国产欧美一区二区三区| 久久精品国产鲁丝片午夜精品 | 最好的美女福利视频网| 国产精品福利在线免费观看| 精品久久久久久,| 美女免费视频网站| 中文字幕熟女人妻在线| 给我免费播放毛片高清在线观看| 国内精品久久久久精免费| 两个人的视频大全免费| 91久久精品国产一区二区三区| 日韩欧美精品免费久久| 亚洲国产色片| 成人鲁丝片一二三区免费| 中国美白少妇内射xxxbb| 精品人妻视频免费看| 制服丝袜大香蕉在线| 久久天躁狠狠躁夜夜2o2o| 久久九九热精品免费| 精品久久久久久久久久免费视频| 精品不卡国产一区二区三区| 黄色女人牲交| 精品欧美国产一区二区三| 午夜精品一区二区三区免费看| 国产伦一二天堂av在线观看| 搞女人的毛片| 99视频精品全部免费 在线| 一区二区三区激情视频| 国产三级中文精品| 久久精品国产自在天天线| 黄色女人牲交| 久久久午夜欧美精品| 18禁黄网站禁片免费观看直播| 亚洲国产欧洲综合997久久,| 少妇人妻一区二区三区视频| 一级a爱片免费观看的视频| 午夜福利在线观看免费完整高清在 | 国产成年人精品一区二区| or卡值多少钱| 亚洲五月天丁香| 能在线免费观看的黄片| 一级av片app| 日韩大尺度精品在线看网址| 国产成人一区二区在线| 小说图片视频综合网站| 一进一出抽搐gif免费好疼| 搡老岳熟女国产| 五月玫瑰六月丁香| 我要搜黄色片| 春色校园在线视频观看| 在线看三级毛片| 黄色丝袜av网址大全| 国产伦精品一区二区三区四那| 99久久久亚洲精品蜜臀av| 精华霜和精华液先用哪个| 国产精品一区二区三区四区久久| 偷拍熟女少妇极品色| 亚洲va在线va天堂va国产| 国产日本99.免费观看| 级片在线观看| av在线亚洲专区| 成人特级黄色片久久久久久久| 国产男靠女视频免费网站| 久久精品国产清高在天天线| 中文字幕熟女人妻在线| 91久久精品国产一区二区成人| 欧美成人性av电影在线观看| 最新在线观看一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产伦精品一区二区三区四那| 亚洲欧美日韩东京热| 一级黄色大片毛片| 国产高清激情床上av| 床上黄色一级片| 日韩欧美免费精品| 亚洲欧美日韩卡通动漫| 国内精品久久久久久久电影| 久久精品国产鲁丝片午夜精品 | 免费av毛片视频| 国产一区二区在线av高清观看| 欧美日韩乱码在线| 国产亚洲av嫩草精品影院| x7x7x7水蜜桃| 日韩欧美在线二视频| 精品国内亚洲2022精品成人| 欧美激情国产日韩精品一区| av天堂在线播放| 深夜精品福利| 久久中文看片网| 亚洲av日韩精品久久久久久密| 欧美成人a在线观看| 人妻少妇偷人精品九色| 国产久久久一区二区三区| 午夜久久久久精精品| 看片在线看免费视频| 亚洲色图av天堂| 大型黄色视频在线免费观看| 99九九线精品视频在线观看视频| 精品久久国产蜜桃| 日韩av在线大香蕉| 欧美色视频一区免费| 免费看av在线观看网站| 亚洲人成网站高清观看| 亚洲,欧美,日韩| 永久网站在线| 黄片wwwwww| 国产国拍精品亚洲av在线观看| 日日干狠狠操夜夜爽| 成人av在线播放网站| 欧美高清性xxxxhd video| 真人做人爱边吃奶动态| 国产黄片美女视频| 黄色女人牲交| bbb黄色大片| 久久精品国产亚洲av涩爱 | 动漫黄色视频在线观看| 熟女电影av网| 欧美一区二区国产精品久久精品| 夜夜夜夜夜久久久久| 国语自产精品视频在线第100页| 欧美精品国产亚洲| 成年女人毛片免费观看观看9| 国产精品国产高清国产av| 色综合亚洲欧美另类图片| 欧美性猛交黑人性爽| 91久久精品电影网| 黄片wwwwww| 欧美性感艳星| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 亚洲人成网站在线播放欧美日韩| 国产精品一区二区三区四区久久| 亚洲人与动物交配视频| 亚洲,欧美,日韩| 在线观看一区二区三区| 中亚洲国语对白在线视频| 国产在视频线在精品| 欧美三级亚洲精品| 有码 亚洲区| 亚洲成a人片在线一区二区| 日韩国内少妇激情av| 亚洲18禁久久av| 男插女下体视频免费在线播放| 99热这里只有是精品50| 色哟哟哟哟哟哟| 天堂√8在线中文| 人妻少妇偷人精品九色| 99精品在免费线老司机午夜| 一进一出抽搐gif免费好疼| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品久久久com| 亚洲在线自拍视频| 999久久久精品免费观看国产| 亚洲av美国av| 能在线免费观看的黄片| 中文字幕av在线有码专区| 亚洲精品亚洲一区二区| 一夜夜www| 中文在线观看免费www的网站| 午夜影院日韩av| 好男人在线观看高清免费视频| 亚洲国产日韩欧美精品在线观看| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 亚洲av五月六月丁香网| 精品午夜福利在线看| 蜜桃亚洲精品一区二区三区| 1000部很黄的大片| 色播亚洲综合网| 99热这里只有精品一区| 成人一区二区视频在线观看| 全区人妻精品视频| 在线免费观看的www视频| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 婷婷精品国产亚洲av| 久久久成人免费电影| 最后的刺客免费高清国语| 精品99又大又爽又粗少妇毛片 | 亚洲专区中文字幕在线| 国产男人的电影天堂91| 亚洲欧美清纯卡通| 国产伦精品一区二区三区四那| 精品福利观看| 亚洲av日韩精品久久久久久密| 亚洲人成网站在线播| 亚洲专区中文字幕在线| 狠狠狠狠99中文字幕| a级一级毛片免费在线观看| 在线观看66精品国产| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 亚洲在线自拍视频| 波野结衣二区三区在线| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 亚洲四区av| 日韩欧美在线乱码| 午夜福利欧美成人| 国产欧美日韩精品亚洲av| 亚洲黑人精品在线| 热99re8久久精品国产| 成熟少妇高潮喷水视频| 看黄色毛片网站| av福利片在线观看| 国产高清视频在线播放一区| 日本与韩国留学比较| 哪里可以看免费的av片| 午夜精品在线福利| 99精品在免费线老司机午夜| 亚洲精品一区av在线观看| 亚洲av第一区精品v没综合| 欧美极品一区二区三区四区| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 在现免费观看毛片| 蜜桃亚洲精品一区二区三区| 久久久精品大字幕| 亚洲精品一区av在线观看| 麻豆成人午夜福利视频| .国产精品久久| а√天堂www在线а√下载| 久久久久久伊人网av| 少妇的逼好多水| 日韩av在线大香蕉| 精品午夜福利视频在线观看一区| 老熟妇仑乱视频hdxx| 久久亚洲真实| 日韩欧美在线乱码| 亚洲av免费在线观看| 极品教师在线视频| 亚洲电影在线观看av| 嫩草影院精品99| 日韩大尺度精品在线看网址| 精品一区二区免费观看| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 国产成人影院久久av| 国产伦一二天堂av在线观看| 日本精品一区二区三区蜜桃| 精品99又大又爽又粗少妇毛片 | 99九九线精品视频在线观看视频| av在线老鸭窝| 搡女人真爽免费视频火全软件 | 国产视频一区二区在线看| 一个人免费在线观看电影| 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品 | 日本在线视频免费播放| 日韩大尺度精品在线看网址| 美女黄网站色视频| 国产亚洲欧美98| 婷婷精品国产亚洲av在线| а√天堂www在线а√下载| 人妻丰满熟妇av一区二区三区| 久久久久久伊人网av| 男人和女人高潮做爰伦理| 免费无遮挡裸体视频| 91在线精品国自产拍蜜月| 搞女人的毛片| 成年女人永久免费观看视频| 一本精品99久久精品77| av在线观看视频网站免费| 成人av在线播放网站| 国产亚洲精品综合一区在线观看| 亚洲熟妇熟女久久| 看免费成人av毛片| 少妇人妻精品综合一区二区 | 国产老妇女一区| 亚洲精品亚洲一区二区| 久久这里只有精品中国| 国产国拍精品亚洲av在线观看| 给我免费播放毛片高清在线观看| 国产av一区在线观看免费| 99久久精品一区二区三区| 一级黄色大片毛片| or卡值多少钱| 午夜免费激情av| 精品日产1卡2卡| netflix在线观看网站| av.在线天堂| 日本 av在线| 国内毛片毛片毛片毛片毛片| 亚洲国产色片| 男女那种视频在线观看| 一个人看的www免费观看视频| 最好的美女福利视频网| 99在线人妻在线中文字幕| 毛片一级片免费看久久久久 | 性欧美人与动物交配| 日韩,欧美,国产一区二区三区 | 亚洲无线观看免费| 精品一区二区免费观看| 在线观看午夜福利视频| 国产高清三级在线| 他把我摸到了高潮在线观看| 精品人妻熟女av久视频| 欧美不卡视频在线免费观看| 99热只有精品国产| 久久99热6这里只有精品| av福利片在线观看| 亚洲最大成人av| 亚洲第一电影网av| 日韩欧美国产一区二区入口| 日本 欧美在线| 赤兔流量卡办理| 国产免费av片在线观看野外av| 亚洲人与动物交配视频| 国产伦一二天堂av在线观看| 免费av毛片视频| 精品无人区乱码1区二区| 国产一级毛片七仙女欲春2| 亚洲国产精品成人综合色| 久久久久免费精品人妻一区二区| 久久久精品欧美日韩精品| 欧美日韩国产亚洲二区| 我要搜黄色片| 又黄又爽又免费观看的视频| 两个人视频免费观看高清| 免费无遮挡裸体视频| 一区二区三区免费毛片| 在线a可以看的网站| 成人无遮挡网站| 成人高潮视频无遮挡免费网站| or卡值多少钱| 窝窝影院91人妻| 麻豆国产97在线/欧美| 亚洲av不卡在线观看| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 国产爱豆传媒在线观看| 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 国产亚洲91精品色在线| 国产欧美日韩精品一区二区| 国国产精品蜜臀av免费| 日韩欧美在线乱码| 国内毛片毛片毛片毛片毛片| 两性午夜刺激爽爽歪歪视频在线观看| 91在线精品国自产拍蜜月| 成年版毛片免费区| 亚洲精品影视一区二区三区av| 国产精品1区2区在线观看.| 日韩高清综合在线| 亚洲中文字幕一区二区三区有码在线看| 成年人黄色毛片网站| 国产高潮美女av| 国内精品久久久久久久电影| 亚洲美女黄片视频| 中出人妻视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 精品午夜福利在线看| 又爽又黄a免费视频| 男女下面进入的视频免费午夜| 麻豆精品久久久久久蜜桃| 一区二区三区高清视频在线| 午夜老司机福利剧场| 欧美日韩瑟瑟在线播放| 亚洲性夜色夜夜综合| 联通29元200g的流量卡| 国产蜜桃级精品一区二区三区| 免费看日本二区| 成人国产一区最新在线观看| 精品欧美国产一区二区三| 亚洲色图av天堂| 久久6这里有精品| 亚洲成av人片在线播放无| АⅤ资源中文在线天堂| 国产精品一区二区免费欧美| 日本 av在线| 如何舔出高潮| 午夜福利18| 无人区码免费观看不卡| 欧美日韩黄片免| 亚洲av免费高清在线观看| 麻豆成人av在线观看| 在现免费观看毛片| 日韩精品青青久久久久久| 女的被弄到高潮叫床怎么办 | 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 直男gayav资源| 丰满的人妻完整版| 黄色丝袜av网址大全| 我的女老师完整版在线观看| 亚洲欧美日韩高清在线视频| 国产成人福利小说| 欧美最黄视频在线播放免费| 国产精品国产三级国产av玫瑰| 精品久久久噜噜| 长腿黑丝高跟| 国产欧美日韩精品一区二区| 天堂√8在线中文| 亚洲在线自拍视频| 亚洲熟妇熟女久久| 免费av观看视频| 欧美日韩中文字幕国产精品一区二区三区| 窝窝影院91人妻| 色综合站精品国产| 国产亚洲精品综合一区在线观看| 久久久久久大精品| 亚洲午夜理论影院| 91久久精品国产一区二区三区| 亚洲午夜理论影院| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 欧美成人性av电影在线观看| 看十八女毛片水多多多| 成年人黄色毛片网站| 午夜免费成人在线视频| 九九爱精品视频在线观看| 免费高清视频大片| 国产成人一区二区在线| 一区二区三区免费毛片| 22中文网久久字幕| 如何舔出高潮| 亚洲精品色激情综合| 亚洲中文日韩欧美视频| 69人妻影院| 成年女人看的毛片在线观看| 可以在线观看的亚洲视频| 久久久午夜欧美精品| 91精品国产九色| 久久这里只有精品中国| av在线老鸭窝| 国产一区二区激情短视频| 尾随美女入室| 最近最新免费中文字幕在线|