• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Theoretical investigation of shock stand-offdistance for non-equilibrium flows over spheres

    2018-05-17 10:06:16HuSHENChihYungWEN
    CHINESE JOURNAL OF AERONAUTICS 2018年5期

    Hu SHEN,Chih-Yung WEN

    aExtreme Computing Research Center,Computer Electrical and Mathematical Science and Engineering Division,King Abdullah University of Science and Technology,Thuwal 23955-6900,Saudi Arabia

    bDepartment of Mechanical Engineering,The Hong Kong Polytechnic University,Kowloon 999077,Hong Kong Special Administrative Region,China

    1.Introduction

    When a supersonic/hypersonic flow over a blunt body like a sphere,a detached bow shock forms around the body,and the level of the non-equilibrium of the flow is measured by the following dimensionless reaction rate parameter,1where α is the dissociation fraction,D the diameter of the sphere,u the velocity;and the subscripts ‘∞” and‘s”means the corresponding quantities at freestream and immediately behind the shock,respectively.Depending on the value of Ω,the flow can be categorized into nearly frozen flow(Ω ? 1),nearly equilibrium flow(Ω ?1),and nonequilibrium flow(otherwise).The distance between the bow shock and the stagnation point of the nose was referred to as the Shock Stand-off Distance(SSD).The SSD is much smaller than the size of the tested model,and hence experimental measurement admits large errors.Generally speaking,if there is no significant dissociation in the free stream,a larger free stream kinetic energy leads a smaller SSD,due to a higher level of vibrational excitation and chemical dissociation.But an increased SSD is observed in high enthalpy shock tunnels under the same free stream velocity and this phenomenon is attributed to the inevitable free stream dissociation in such facilities.2,3In order to understand the physics behind,it is crucial to explore the effects of the important flow parameters through theoretical analysis.Olivier et al.2first gave an estimation of the effect of free stream dissociation on SSD,but no quantitative solution was provided.

    For frozen flows,Lobb4performed extensive experiments on the SSD for spheres of various diameters using a schlieren photography technique and derived the following correlation

    where Δ is the SSD,ρ density,L a constant with a value of 0.41 for spheres.For dissociating flows,the accuracy of Lobb’s correlation is significantly degraded.5,6

    which implies the SSD is independent of all parameters other than L.Meanwhile,the equilibrium-side solution is given by

    which implies the importance of the density ratio ρs/ρe(note that the subscript ‘e” denotes the corresponding quantities at fully equilibrium states).This simple correlation is well validated by experiments,5,7CFD results8,9and a quasi-oned imensional model.10However,it relies on the semiempirical parameter L measured by experiments,and therefore cannot completely reveal the embedded physics.

    Based on a differential analysis of the governing conservation equations,Olivier11proposed the following analytic solution for the SSD in frozen and equilibrium flows:

    In view of the discussions above,the present study has two aims:(A)to derive a comprehensive analytic solution for the whole non-equilibrium flow regime without using the semiempirical parameter L;(B)to investigate the effect of two fundamental flow parameters,namely the frees tream kinetic energy,and the freestream dissociating level,on the SSD using a simple Ideal Dissociating Gas(IDG)model.13,14

    2.Analytic solution for shock stand-off distance

    Consider the control volume ΔV in the stagnation region between the shock and the body,as shown in Fig.1.The rate at which mass enters the control volume from the left-hand side is equal to ρ∞u∞b or ρ∞u∞b2,depending on whether the flow is two-dimensional or axisymmetric,respectively.Meanwhile,the rate at which mass leaves the control volume through the right-hand side is equal to

    where uτis the tangential velocity(i.e.,the component of velocity normal to the ray from the center of curvature),R is the radius of the sphere and dr is the differential element of the radius.Consequently,the mass balance is given as

    and

    for two-dimensional and axisymmetric flows,respectively.The integral terms in Eqs.(1)and(2)can be approximated using the average value,i.e.,

    and

    Furthermore,let only the flow region very close to the stagnation streamline be considered.Therefore,the following approximations can be applied:

    As a result,the solution method is restricted to this area since only the stand-off distance at the stagnation point is of interest and Eqs.(1)and(2)can be re-written as

    and

    with solutions

    and

    respectively,where

    Substituting Eq.(11)into Eq.(9)yields the following simple solution for SSD in axisymmetric flow:

    Obviously,the parameter χ is the measurement of the product of density and the tangential velocity gradient.Eqs.(8)and(12)imply that the dimensionless SSD is inversely proportional to χ.The above derivations using integral analyses are obviously more succinct than Olivier’s correlation derived from the differential analyses.Comparing Eqs.(8)and(12),the SSD for a cylinder exhibits the same qualitative behavior as that for a sphere.However,the tangential velocity gradient for a cylinder is smaller than that for a sphere,12and thus the SSD is more than twice that of a sphere.The following derivation will be focused on the SSD for spheres.

    To determine the SSD for spheres using Eq.(9)or(12),the tangential velocity gradient must be solved.At the point immediately behind the shock,the velocity gradient can be determined from the conserved tangential velocity component across the shock,i.e.,

    Meanwhile,from the momentum equation in the tangential direction at the body,we have15

    where p is the pressure.Utilizing the approximation of velocity in Eq.(5)and assuming a Newtonian pressure distribution over the surface,i.e.,,Eq.(14)can be written as

    From Eqs.(5)and(15),we can get the solution of tangential velocity gradient as

    Following Olivier,11an assumption is made here that the tangential velocity gradient pro file varies linearly with distance between the body and shock wave.For frozen flows and fully equilibrium flows,the density in the stagnant region can be treated constant and the expression of χ can be simply written as

    whereρavgis the average density along the stagnant line which is equal to ρsand ρefor frozen flows and fully equilibrium flows,respectively.For hypervelocity frozen air flows,ρs/ρb=1 and ρs/ρ∞=6.Hence,Eqs.(9)and (12)yield SSDs of~Δ=0.38 and 0.40,respectively.Both solutions are in good agreement with there sultsobtained from Lob b’s approximation and Olivier’s model,i.e.,0.41 and0.40,respectively.TheSSDof~Δ=0.38derived by the morerigorous Eq.(9)is slightly less than Lobb’s approximation and Olivier’s model.Nevertheless,it is interesting to note that for the frozen nitrogen flows,Hornung1derived a value for SSD of~Δ=0.39 which is also slightly less than that given by Lobb’s approximation.Moreover,~Δ calculated from Eqs.(9)and(12)has only a weak dependence on ρs/ρ∞for hypersonic frozen flows which is consistent with that first reported by Olivier.11When free stream Mach number Ma∞→∞,the value of ρs/ρ∞depends on the value of γ(adiabatic index).In order to compare the present model with Oliver’s model11,the dimensionless SSDs for different gases are listed in Table1.It is observed that the present model is not as sensiti veto ρs/ρ∞as Olivier’s model.For large value of ρs/ρ∞,the present theory agrees well with Olivier’s theory.But for the monoa to mic gas flow(γ=5/3,ρs/ρ∞=4.0),the difference between the two theories is more obvious.

    The values of ρ/ρ∞for non-equilibrium and fully equilibrium flows are larger than that for frozen flows,and the solutions obtained from Eqs.(9)and(12),respectively,tend to converge.Therefore,only the concise correlation Eq.(12)is employed in the following calculations.Eqs.(12)and(17)show that the density ratio ρs/ρbplays an important role in determining the SSD in non-equilibrium dissociating flows,which is consistent with the observations of Wen and Hornung5and Olivier,11respectively.

    Table 1Dimensionless SSDof frozen flows for gases with different values of ρs/ρ∞.

    Table 1Dimensionless SSDof frozen flows for gases with different values of ρs/ρ∞.

    Model Dimensionless SSD(~Δ)CO2(ρs/ρ∞=7.67)Ideal dissociating gas(ρs/ρ∞=7.0)Present,Eq.(9)Monoatomic gas(ρs/ρ∞=4.0)0.38 0.38 0.38 Present,Eq.(12)0.40 0.41 0.40 Olivier110.38 0.44 0.39

    Table 2Dimensionless SSD(~Δ)of fully equilibrium flows for gases with different values of ρs/ρbprovided with ρs/ρ∞=6.0.

    3.Correlation between shock stand-off distance and reaction rate parameter

    Eqs.(10)and(12)imply that if ρs/ρ∞is known,the SSD can be determined from the average value ofNote that,the tangential velocity gradient is already solved in the last section.On the other hand,the generalized reaction rate parameter,i.e.,can be rewritten as

    where y denotes the horizontal direction.In other words,the reaction rate parameter is governed by the spatial gradient of the density immediately behind the shock.As a result,the SSD can be correlated with the generalized reaction rate parameter by means of the density pro file between the shock and the body.

    3.1.A correlation using exponential density pro file

    Wen and Hornung5used a piecewise linear function to approximate the density pro file.They pointed out that the use of a piecewise linear function to approximate the density pro file between the shock and the body results in an overestimation of the average density,and hence an underestimation of the SSD.This error can be reduced by replacing the piecewise linear function with the following exponential function:

    where λ ranges from zero to infinity.As shown,Eq.(19)is a monotonic function for ρ with respect to λ and the density reduces to ρs(frozen flows)and ρe(fully equilibrium flows)when λ =0 and ∞,respectively.In other words,every flow regime within the range of the frozen flow to the fully equilibrium flow is represented by a specific value of λ between 0 and∞.

    Using Eq.(19),the density ratio between the shock and the body and the product of density and tangential velocity gradient and can be given as

    and

    respectively.From Eq.(19),we can easily verify that

    which represents the dimensionless density gradient right after the shock.Clearly,an explicit correlation is no longer possible.But the following uniform implicit correlation can be derived

    3.2.Comparison and discussion

    Eq.(23)shows that the correlation betweenanddepends on the values of ρs/ρ∞and ρs/ρe,respectively.Fig.2 shows the variation ofwith~Ω as a function of ρs/ρegiven a constant ρs/ρ∞=6.Notably,the physical significance ofis the ratio between the energy absorption rate by chemistry and the input rate of free stream kinetic energy.5For small,no chemical reaction occurs in the flow and thus the scaled SSD remains constant.However,asincreases,the amount of energy absorbed by vibrational excitations and chemical reactions also increases.As a result,the average density increases,while~Δ decreases.As expected for the non-equilibrium regime,using exponential density approach gives a higher value of SSD than Wen and Hornung’s correlation5using linear density approach.

    As described above,the scaled SSD is dependent on ρs/ρ∞and ρs/ρe.For an ideal dissociating gas with no frees tream dissociation,ρs/ρ∞is equal to 7.For CO2withis equal to 7.67.Fig.3 plotsandversusfor different values of ρs/ρ∞.It is seen that whilehas a very weak dependence on ρs/ρ∞,has a strong dependence on ρs/ρ∞.For a constant~Ω,when ρs/ρ∞increases,decrease significantly,but~Δ almost remains the same.In other words,is a more universal dimensionless parameter thanin estimating the SSD.

    4.Analytic solution for stand-off distance of nitrogen flows using ideal dissociating gas model

    4.1.Basic equations

    The analytic solutions derived in the previous section are not restricted to any specific gas model,and show thatdetermined by both ρs/ρ∞and ρs/ρe.However,in experimental and simulation studies,the free stream condition is usually expressed in terms of free stream values of ρ∞,u∞,T∞and α∞(T∞is the free stream temperature).Wen and Hornung5qualitatively described the effect of free stream kinetic energy on the scaled SSD~Δ.However,no quantitative relation was derived.Thus,in the present study,the simple IDG model is used to quantify the effects of the main flow parameters on the scaled SSD analytically,for the illustrative case of nitrogen flows.The analysis is also suitable for other pure dissociating diatomic gases and can be extended to multi-component gases by using the approach proposed by Olivier and Gartz.16

    The boundary conditions on the shock wave can be determined by enforcing the conservation of energy,momentum,mass and dissociation fraction across the shock,i.e.,

    where his the specific enthalpy.In general,the equation of state for a mixture of molecular and atomic nitrogen is given as

    where Mis the molecular weight of N2,Tis the temperature and Ruis the universal gas constant.Meanwhile,the specific enthalpy for an IDG is given by

    where θdis the characteristic dissociating temperature for nitrogen and has a value of 113200 K.The boundary condition for h at the shock is then expressed as follows:

    where the velocity component normal to the shock is neglected in the shock layer.

    Utilizing the state equation and the definition of enthalpy,the temperature immediately behind the shock can be obtained from Eq.(27)with αs=α∞as

    From equilibrium theory of Lighthill,14the equilibrium dissociation fraction αecan be determined as

    Here,ρdis the characteristic dissociation density,and was reported by Lighthill14to have a value of 1.3×105kg/m3for nitrogen.

    To solve αe,ρeand Tefrom Eq.(30),two more equations are required.The first equation can be derived by enforcing the conservation of the total enthalpy,i.e.,

    Meanwhile,the second equation can be derived directly from the state equation,i.e.,

    From Eqs.(30)–(32), αe, ρeand Tecan all be solved.Although explicit solutions are impossible,they nevertheless demonstrate the roles of the dimensionless parameters T∞/θd,ρd/ρ∞,μ and α∞in determining the shock stand-off position.Notably,T∞and α∞can be very different from the real flight conditions in a free-piston shock tunnels.

    4.2.Effects of μ and α∞on SSD

    In the following discussions,ρs/ρ∞and ρs/ρeare derived from(29)and(30)–(32),respectively.Then they are used as the inputs of the correlation ofand

    Fig.4 shows the variation ofwithas a function of μ givenand α∞=0.It is seen that the scaled SSDdepends very weakly on μ on the frozen side(~Ω?1).However,reduces significantly with increasing μ on the equilibrium side(~Ω?1).When μ=0.15(u∞=3175 m/s),~Δ on the frozen side and equilibrium side are almost equal.It indicates that when the free stream velocity of nitrogen flow is smaller than 3175 m/s,the dissociating reactions in the flow can be neglected.Notably,although when the freestream velocity decreases to around 3.2 km/s,the dissociation is very weak,the vibrational excitation may decrease a few percentages of(see Houwing et al.17).When μ increases to 1 and beyond,the correspondingcurves are approximately superimposed.From the physics perspective,for nearly frozen flow,no chemical reaction occurs to increase the average density.As a consequence,~Δ is effectively independent of~Ω and remains almost constant.For non-equilibrium and nearly equilibrium flows,the amount of energy absorbed by chemical dissociation increases with increasing the freestream kinetic energy parameter μ.As a result,ρe/ρsincreases and~Δ decreases.For the particular case of μ=1.0,the freestream kinetic energy is equal to the specific dissociation energy of the gas and the amount of energy absorbed by chemical dissociation reaches to the upper limit.Consequently, ρe/ρsno longer increases even when μ increases,and~Δ reaches its minimum value.Overall,Fig.4 infers that the change in the scaled SSDis due primarily to the energy absorption caused by chemical reactions.

    The solution shown in Fig.4 is based on α∞=0 which is the case for the ballistic range experiment.18However,in the high enthalpy free-piston shock tunnel tests,19,20the freestream dissociation level is not zero anymore.Using the IDG model,we can quantitatively estimate the in fluence of freestream dissociation level on the SSD.Belouaggadia et al.12investigated the effect of the freestream dissociation level,α∞,on the shock stand-off distance for the cases of frozen flows and fully equilibrium flows.In the present study,the effect of α∞onis investigated over the entire non-equilibrium flow regime.As shown in Fig.5,α∞has only a weak effect onfor the case of nearly frozen flows,which is the case presented by Belouaggadia,et al..12In addition,it is seenincreases significantly with increasing α∞for moderate values of μ,but is insensitive to α∞at larger values of μ.When α∞=0.3 and μ =0.4,the SSD is even larger than that of α∞=0 and μ=0.3.It means the two opposite acting effects,decrease of the SSD by high freestream kinetic effects and increase of the SSD by free stream dissociation,may even cancel each other.2This finding is reasonable since in higher α∞flows,dissociating chemical reactions occur less readily due to the absence of educts,and hence the density change is less obvious than that in the case of flows with low α∞.When μ is sufficiently large(e.g.,μ=1),dissociation anyway takes place easily,for α∞ranging from 0 to 0.3,and hence no change ofcurve occurs.In general,the curves presented in Fig.5 imply that the effects of possible freestream dissociation in high-enthalpy wind tunnels must be considered,particularly for the case of moderate μ.

    5.Conclusions

    A comprehensive analytical solution has been derived to calculate the SSD and to correlate the SSD of hypervelocity nonequilibrium flows with the average density between the shock and the body without the need for any specific gas model or empirical parameters.Furthermore,using an exponential function to approach the density distribution between the shock and the body,the scaled SSD~Δ has been correlated with the reaction rate parameterIn general,the results have shown that:

    (1)the correlation curve is strongly dependent on ρs/ρe,but is only weakly dependent on ρs/ρ∞.

    Acknowledgements

    This study was co-supported by the Research Grants Council of Hong Kong,China(No.C5010-14E)and the National Natural Science Foundation of China(No.11372265).

    References

    1.Hornung HG.Non-equilibrium dissociating nitrogen flow over spheres and circular cylinders.J Fluid Mech 1972;53:149–76.

    2.Olivier H,Walpot L,Merri field J,Molina R.On the phenomenon of the shock stand-off distance in hypersonic,high enthalpy facilities.In:Jiang Z,editor.Proceedings of the first international conference on high temperature gas dynamics;2012 Oct 15–17;Beijing,China.Beijing:Institute of Mechanics,Chinese Academy of Sciences;2012.p.92–100.

    3.Hashimoto T,Komuro T,Sato K,Itoh K.Experimental investigation of shock stand-off distance on spheres in hypersonic nozzle flows.In:Hannemann K,Seiler F,editors.Shock waves.Heidelberg:Springer;2009.p.961–6.

    4.Lobb RK.Experimental measurement of shock detachment distance on spheres fired in air at hypervelocities.In:Nelson WC,editor.The high temperature aspects ofhypersonic lf ow.Oxford:Pergamon Press;1964.p.519–27.

    5.Wen CY,Hornung HG.Non-equilibrium dissociating flow over spheres.J Fluid Mech 1995;299:389–405.

    6.Nonaka S,Mizuno H,Takayama K,Park C.Measurement of shock standoff distance for sphere in ballistic range.J Thermophys Heat Transf 2000;14(2):225–9.

    7.Sarma GSR.Physico-chemical modelling in hypersonic flow simulation.Prog Aerosp Sci 2000;36(3–4):281–349.

    8.Gerdroodbary MB,Hosseinalipour SM.Numerical simulation of hypersonic flow over highly blunted cones with spike.Acta Astronaut 2010;67(1–2):180–93.

    9.Shen H,Wen CY,Massimi HS.Application of CE/SE method to study hypersonic non-equilibrium flows over spheres.Reston:AIAA;2014.Report No.:AIAA-2014-2509.

    10.Chen S,Sun Q.A quasi-one-dimensional model for hypersonic reactive flow along the stagnation streamline.Chin J Aeronaut 2016;29(6):1517–26.

    11.Olivier H.A theoretical model for the shock stand-off distance in frozen and equilibrium flow.J Fluid Mech 2000;413:345–53.

    12.Belouaggadia N,Olivier H,Brun R.Numerical and theoretical study of the shock stand-off distance in non-equilibrium flows.J Fluid Mech 2008;607:167–97.

    13.Freeman NC.Non-equilibrium flow of an ideal dissociating gas.J Fluid Mech 1958;4(4):407–25.

    14.Lighthill MJ.Dynamics of a dissociating gas—Part I:Equilibrium flow.J Fluid Mech 1957;2(1):1–32.

    15.Anderson JD.Hypersonic and high-temperature gas dynamics.2nd ed.Reston:AIAA;2006.p.311.

    16.Olivier H,Gartz R.Extension of Lighthill’s gas model for multicomponent air.5th European conference for aeronautics and space sciences;2013.p.1–8.

    17.Houwing AFP,Nonaka S,Mizuno H,Takayama K.Effects of vibrational relaxation on now shock standoff distance for nonequilibrium flows.AIAA J 2000;38(9):1760–3.

    18.Nonaka S,Mizuno H,Takayama K.Ballistic range measurement of shock shapes in intermediate hypersonic range.Reston:AIAA;1999.Report No.:AIAA-1999-1025.

    19.Wen CY.Hypervelocity flow over spheres[dissertation].Pasadena:California Institute of Technology;1994.142–58.

    20.Belouaggadia N,Hashimoto T,Nonaka S,Takayama K,Brun R.Shock detachment distance on blunt bodies in nonequilibrium flow.AIAA J 2007;45(6):1424–9.

    日韩欧美三级三区| av专区在线播放| 亚洲国产精品成人综合色| 欧美日韩精品成人综合77777| 国产伦理片在线播放av一区 | 亚洲四区av| 久久久成人免费电影| 免费看光身美女| 美女高潮的动态| 偷拍熟女少妇极品色| 免费观看a级毛片全部| 伊人久久精品亚洲午夜| 精品久久久久久成人av| 成人无遮挡网站| АⅤ资源中文在线天堂| 亚洲精品自拍成人| www.av在线官网国产| 老师上课跳d突然被开到最大视频| 美女内射精品一级片tv| 亚洲国产欧洲综合997久久,| 久久久午夜欧美精品| 国产精品一区二区三区四区免费观看| 欧美高清性xxxxhd video| 99riav亚洲国产免费| 国产一区二区亚洲精品在线观看| 国产精品久久久久久亚洲av鲁大| 国产亚洲精品av在线| 久久精品久久久久久久性| 国产成人a∨麻豆精品| 哪里可以看免费的av片| 免费看a级黄色片| 国产精品国产高清国产av| 老女人水多毛片| 久久久色成人| 老熟妇乱子伦视频在线观看| 国产麻豆成人av免费视频| 国产成人福利小说| 国产精品.久久久| 国内少妇人妻偷人精品xxx网站| 色综合亚洲欧美另类图片| 精品久久久久久久人妻蜜臀av| 丝袜美腿在线中文| 美女脱内裤让男人舔精品视频 | 伊人久久精品亚洲午夜| 国产av一区在线观看免费| 欧美丝袜亚洲另类| 在线观看美女被高潮喷水网站| 男人舔女人下体高潮全视频| 亚洲精品日韩在线中文字幕 | 亚洲图色成人| 亚洲av二区三区四区| 自拍偷自拍亚洲精品老妇| 有码 亚洲区| 日韩高清综合在线| av黄色大香蕉| 人人妻人人澡人人爽人人夜夜 | 不卡视频在线观看欧美| 男人舔女人下体高潮全视频| 18禁在线无遮挡免费观看视频| 蜜桃亚洲精品一区二区三区| 亚洲欧美日韩东京热| 久久久午夜欧美精品| 亚洲国产欧洲综合997久久,| 精品人妻熟女av久视频| 国产午夜精品一二区理论片| av天堂在线播放| 九色成人免费人妻av| 美女cb高潮喷水在线观看| 亚洲av不卡在线观看| 免费av观看视频| 国内少妇人妻偷人精品xxx网站| 国产高清视频在线观看网站| 精品一区二区三区视频在线| 色视频www国产| 最近中文字幕高清免费大全6| 国产精品伦人一区二区| av在线天堂中文字幕| 中国国产av一级| 亚洲欧洲国产日韩| 国产精品国产三级国产av玫瑰| 精品久久国产蜜桃| 欧美zozozo另类| 在线观看午夜福利视频| 亚洲国产精品成人久久小说 | 天堂网av新在线| 可以在线观看毛片的网站| 国产伦一二天堂av在线观看| 老女人水多毛片| 免费在线观看成人毛片| 亚洲精华国产精华液的使用体验 | 非洲黑人性xxxx精品又粗又长| 成人午夜精彩视频在线观看| 人人妻人人澡欧美一区二区| 99国产精品一区二区蜜桃av| 中文字幕人妻熟人妻熟丝袜美| 插逼视频在线观看| 搡女人真爽免费视频火全软件| 久久韩国三级中文字幕| 女的被弄到高潮叫床怎么办| 在线a可以看的网站| 搡女人真爽免费视频火全软件| 99久久无色码亚洲精品果冻| 午夜久久久久精精品| 日本成人三级电影网站| 99久久精品热视频| 国产精华一区二区三区| 欧美潮喷喷水| ponron亚洲| 亚洲精品粉嫩美女一区| 国产日本99.免费观看| 日韩欧美在线乱码| 久久国产乱子免费精品| 天天躁日日操中文字幕| 国产在线精品亚洲第一网站| 在线观看av片永久免费下载| 国产视频首页在线观看| 女人被狂操c到高潮| 亚洲丝袜综合中文字幕| 国产亚洲5aaaaa淫片| 亚洲精品国产成人久久av| 国产精品美女特级片免费视频播放器| 亚洲欧美成人精品一区二区| av免费观看日本| 久久亚洲精品不卡| 最近手机中文字幕大全| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 日韩av在线大香蕉| 亚洲婷婷狠狠爱综合网| 午夜福利视频1000在线观看| 欧美日韩乱码在线| 日韩大尺度精品在线看网址| 成人美女网站在线观看视频| 国产毛片a区久久久久| 日产精品乱码卡一卡2卡三| 久久精品久久久久久噜噜老黄 | 又黄又爽又刺激的免费视频.| 可以在线观看毛片的网站| 久久鲁丝午夜福利片| 久久久久久久久久成人| 此物有八面人人有两片| 又粗又爽又猛毛片免费看| av又黄又爽大尺度在线免费看 | 爱豆传媒免费全集在线观看| 国产精品精品国产色婷婷| 最近手机中文字幕大全| 亚洲成人久久爱视频| 女的被弄到高潮叫床怎么办| 中文字幕久久专区| 亚洲在久久综合| 夫妻性生交免费视频一级片| 一进一出抽搐gif免费好疼| 久久精品夜夜夜夜夜久久蜜豆| 色哟哟·www| 久久久精品欧美日韩精品| 日本av手机在线免费观看| 最近的中文字幕免费完整| 欧美人与善性xxx| 日韩精品有码人妻一区| 好男人在线观看高清免费视频| av专区在线播放| av在线观看视频网站免费| 成人午夜高清在线视频| 国产成人a区在线观看| 国产女主播在线喷水免费视频网站 | 久久精品国产99精品国产亚洲性色| 国产成人freesex在线| 欧美日韩精品成人综合77777| 精品久久久久久久末码| 国产欧美日韩精品一区二区| 亚洲成人精品中文字幕电影| 美女内射精品一级片tv| 欧美一级a爱片免费观看看| 国产女主播在线喷水免费视频网站 | 欧美不卡视频在线免费观看| 99久久中文字幕三级久久日本| 久久国内精品自在自线图片| 久久亚洲国产成人精品v| 在线观看一区二区三区| 精品欧美国产一区二区三| 国内精品久久久久精免费| 天天躁夜夜躁狠狠久久av| 淫秽高清视频在线观看| 国产在视频线在精品| 亚洲一区二区三区色噜噜| 亚洲欧洲日产国产| 欧美成人免费av一区二区三区| 亚洲av二区三区四区| 国产成人精品婷婷| 国产v大片淫在线免费观看| 美女脱内裤让男人舔精品视频 | 国产在视频线在精品| 国产精品综合久久久久久久免费| av在线播放精品| 中文在线观看免费www的网站| 亚洲欧美精品自产自拍| 午夜亚洲福利在线播放| 亚洲av成人精品一区久久| 91午夜精品亚洲一区二区三区| 一级毛片久久久久久久久女| 男女那种视频在线观看| 国产午夜精品久久久久久一区二区三区| 99国产精品一区二区蜜桃av| 成人午夜精彩视频在线观看| 色吧在线观看| 免费看av在线观看网站| 亚洲av中文字字幕乱码综合| 少妇熟女aⅴ在线视频| 免费av不卡在线播放| 国产高潮美女av| 国产精品,欧美在线| 69av精品久久久久久| 中出人妻视频一区二区| 日本三级黄在线观看| 精品国内亚洲2022精品成人| 黄片wwwwww| 亚洲最大成人手机在线| 99久久九九国产精品国产免费| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 国产av在哪里看| 久久午夜福利片| 天堂av国产一区二区熟女人妻| 18禁黄网站禁片免费观看直播| 久久久久九九精品影院| 日本熟妇午夜| 久久久久久久午夜电影| 国产又黄又爽又无遮挡在线| 18禁黄网站禁片免费观看直播| 久久国内精品自在自线图片| 网址你懂的国产日韩在线| 亚洲内射少妇av| 国产v大片淫在线免费观看| 国内精品美女久久久久久| 综合色丁香网| av专区在线播放| 男女做爰动态图高潮gif福利片| 国产人妻一区二区三区在| 亚洲国产精品合色在线| 久久久久久久午夜电影| 亚洲在线观看片| 亚洲自拍偷在线| 免费观看的影片在线观看| 中国美白少妇内射xxxbb| 亚洲av男天堂| 晚上一个人看的免费电影| 人妻夜夜爽99麻豆av| 丝袜美腿在线中文| 伦精品一区二区三区| 精品午夜福利在线看| 亚洲av成人av| 中文字幕免费在线视频6| 一区二区三区高清视频在线| 久久久久九九精品影院| 看十八女毛片水多多多| 青青草视频在线视频观看| 亚洲在线自拍视频| 亚洲欧洲国产日韩| 国产69精品久久久久777片| 在线观看66精品国产| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 国产一区二区在线观看日韩| 国产日本99.免费观看| 高清午夜精品一区二区三区 | 伦理电影大哥的女人| 男女边吃奶边做爰视频| 国产色爽女视频免费观看| 国产极品天堂在线| 亚洲四区av| 尾随美女入室| 神马国产精品三级电影在线观看| 日韩制服骚丝袜av| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人爽人人片va| 99在线视频只有这里精品首页| 又爽又黄无遮挡网站| 黄色欧美视频在线观看| 国产 一区 欧美 日韩| 成人午夜精彩视频在线观看| 尾随美女入室| av.在线天堂| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 99久久精品国产国产毛片| 蜜桃亚洲精品一区二区三区| 亚洲精华国产精华液的使用体验 | 高清毛片免费看| 国产乱人视频| 一本久久精品| 国产精品不卡视频一区二区| 免费电影在线观看免费观看| 中文字幕制服av| 国产精品久久久久久亚洲av鲁大| 久久午夜亚洲精品久久| 天天一区二区日本电影三级| 精品久久久久久久久av| av黄色大香蕉| 国产高清激情床上av| 人妻少妇偷人精品九色| 国产精品久久久久久久电影| 国产精品久久久久久av不卡| 特级一级黄色大片| 综合色av麻豆| 久久久精品大字幕| 99热网站在线观看| 成人亚洲精品av一区二区| 日本免费一区二区三区高清不卡| 插阴视频在线观看视频| 国产精品一区二区在线观看99 | av在线亚洲专区| 黑人高潮一二区| 国产精品久久久久久久久免| 男人舔奶头视频| 高清毛片免费观看视频网站| 黄色一级大片看看| 在线观看美女被高潮喷水网站| 波多野结衣巨乳人妻| 美女黄网站色视频| 亚洲第一电影网av| 亚洲欧美成人综合另类久久久 | 亚洲人成网站在线观看播放| 美女黄网站色视频| 乱码一卡2卡4卡精品| 婷婷色综合大香蕉| 欧美3d第一页| 亚洲av中文av极速乱| 国产精品嫩草影院av在线观看| 三级经典国产精品| 岛国在线免费视频观看| 欧美激情国产日韩精品一区| 在线观看美女被高潮喷水网站| 久久久欧美国产精品| 深夜精品福利| 国产精品av视频在线免费观看| 在线免费观看不下载黄p国产| 不卡一级毛片| 老司机影院成人| 国产精品1区2区在线观看.| 精品免费久久久久久久清纯| 日日摸夜夜添夜夜添av毛片| 淫秽高清视频在线观看| 人人妻人人看人人澡| 久久人人爽人人爽人人片va| 成人综合一区亚洲| 黑人高潮一二区| 尤物成人国产欧美一区二区三区| 亚洲av男天堂| 观看免费一级毛片| 亚州av有码| 国产av一区在线观看免费| 在线观看一区二区三区| 午夜福利成人在线免费观看| 久久精品久久久久久噜噜老黄 | 国产精品乱码一区二三区的特点| 国产国拍精品亚洲av在线观看| 久久久久久久久久久丰满| 日韩中字成人| 亚洲av电影不卡..在线观看| 一区福利在线观看| 蜜桃久久精品国产亚洲av| 美女大奶头视频| 国产69精品久久久久777片| 国产亚洲5aaaaa淫片| 久久精品国产亚洲网站| 欧美日本亚洲视频在线播放| 久久99热6这里只有精品| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 大型黄色视频在线免费观看| 51国产日韩欧美| 大型黄色视频在线免费观看| 久久精品国产亚洲网站| 久久99精品国语久久久| 久久精品国产99精品国产亚洲性色| 深夜a级毛片| 性欧美人与动物交配| av天堂在线播放| 人妻系列 视频| 国产三级中文精品| 亚洲人与动物交配视频| 日本免费一区二区三区高清不卡| 非洲黑人性xxxx精品又粗又长| 亚洲精品自拍成人| 久久精品国产亚洲网站| 哪个播放器可以免费观看大片| 色视频www国产| 日本五十路高清| 桃色一区二区三区在线观看| 亚洲自拍偷在线| 国产一级毛片在线| 黄片wwwwww| 成人亚洲精品av一区二区| 在线观看一区二区三区| av黄色大香蕉| 亚洲av成人av| 国产av麻豆久久久久久久| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 中文资源天堂在线| 日本免费a在线| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 两性午夜刺激爽爽歪歪视频在线观看| 99国产精品一区二区蜜桃av| 小说图片视频综合网站| 亚洲四区av| 亚洲一区二区三区色噜噜| av女优亚洲男人天堂| 我的老师免费观看完整版| 好男人在线观看高清免费视频| 两个人的视频大全免费| 精品无人区乱码1区二区| 99国产极品粉嫩在线观看| 少妇人妻精品综合一区二区 | 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 性欧美人与动物交配| 日本与韩国留学比较| 啦啦啦啦在线视频资源| 少妇被粗大猛烈的视频| 亚洲美女搞黄在线观看| 亚洲一级一片aⅴ在线观看| 国产大屁股一区二区在线视频| 国产精品久久久久久精品电影| 日本在线视频免费播放| 国产精品一及| 亚洲丝袜综合中文字幕| 嫩草影院精品99| 中文资源天堂在线| 亚洲av熟女| 三级男女做爰猛烈吃奶摸视频| 一本久久精品| 国产精品综合久久久久久久免费| 麻豆乱淫一区二区| 久久99蜜桃精品久久| 国产精品久久久久久久久免| 久久99热这里只有精品18| 亚洲久久久久久中文字幕| 国产蜜桃级精品一区二区三区| 久久人妻av系列| 久久中文看片网| 啦啦啦观看免费观看视频高清| 男女边吃奶边做爰视频| 国产av麻豆久久久久久久| 国产精品人妻久久久影院| 欧美高清性xxxxhd video| 日韩精品青青久久久久久| 少妇的逼好多水| 成人亚洲精品av一区二区| av国产免费在线观看| 久久久国产成人免费| 亚洲中文字幕日韩| 中文字幕精品亚洲无线码一区| 久久国产乱子免费精品| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 日本熟妇午夜| 禁无遮挡网站| 亚洲激情五月婷婷啪啪| 人妻久久中文字幕网| 色综合亚洲欧美另类图片| 青春草视频在线免费观看| 亚洲精品国产成人久久av| 日韩,欧美,国产一区二区三区 | 欧美另类亚洲清纯唯美| 美女黄网站色视频| 日韩欧美在线乱码| 欧美在线一区亚洲| 免费观看在线日韩| 在线免费观看不下载黄p国产| 深夜a级毛片| 尤物成人国产欧美一区二区三区| 男女边吃奶边做爰视频| 成人高潮视频无遮挡免费网站| 一本久久精品| 日日啪夜夜撸| 精品久久久久久成人av| 长腿黑丝高跟| 麻豆成人av视频| 午夜福利在线观看吧| 精品一区二区三区人妻视频| 麻豆精品久久久久久蜜桃| 精品国产三级普通话版| 日本一本二区三区精品| 激情 狠狠 欧美| 黄色配什么色好看| 禁无遮挡网站| 久久人人精品亚洲av| 国产av一区在线观看免费| 精品久久国产蜜桃| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频| 国产精品福利在线免费观看| 亚洲天堂国产精品一区在线| 欧美一区二区国产精品久久精品| 日韩,欧美,国产一区二区三区 | 黄色欧美视频在线观看| 我要搜黄色片| av.在线天堂| 日本撒尿小便嘘嘘汇集6| 美女大奶头视频| 十八禁国产超污无遮挡网站| 日韩强制内射视频| 国产精品人妻久久久久久| 国产精品女同一区二区软件| 久久久精品大字幕| 亚洲人成网站在线观看播放| 男女做爰动态图高潮gif福利片| 国产一级毛片在线| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 少妇熟女aⅴ在线视频| 日韩av在线大香蕉| 插逼视频在线观看| 国产成人影院久久av| av福利片在线观看| 天堂√8在线中文| 联通29元200g的流量卡| 精品午夜福利在线看| 午夜激情欧美在线| 亚洲一区二区三区色噜噜| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 成人午夜高清在线视频| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av| 美女cb高潮喷水在线观看| 亚洲欧美成人精品一区二区| 国产蜜桃级精品一区二区三区| 欧美成人精品欧美一级黄| 国产极品精品免费视频能看的| 国产黄片视频在线免费观看| 成人欧美大片| 亚洲国产欧美人成| 一本精品99久久精品77| 中文亚洲av片在线观看爽| 18禁在线无遮挡免费观看视频| 久久久久免费精品人妻一区二区| 国产精品免费一区二区三区在线| 日本三级黄在线观看| 少妇人妻一区二区三区视频| 可以在线观看的亚洲视频| 久久精品人妻少妇| 国产片特级美女逼逼视频| 精品人妻偷拍中文字幕| 性色avwww在线观看| 特级一级黄色大片| 69人妻影院| 在线国产一区二区在线| 亚洲国产欧美在线一区| 内射极品少妇av片p| 亚洲aⅴ乱码一区二区在线播放| 人妻夜夜爽99麻豆av| 最近的中文字幕免费完整| 国产一区二区三区av在线 | 免费看av在线观看网站| 色噜噜av男人的天堂激情| 亚洲丝袜综合中文字幕| 成人漫画全彩无遮挡| 成人特级黄色片久久久久久久| 性色avwww在线观看| 2021天堂中文幕一二区在线观| 蜜桃亚洲精品一区二区三区| 哪里可以看免费的av片| 天堂av国产一区二区熟女人妻| 天天躁日日操中文字幕| 日本黄大片高清| 国产精品蜜桃在线观看 | 国模一区二区三区四区视频| 成年女人看的毛片在线观看| 欧美成人免费av一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 看黄色毛片网站| 超碰av人人做人人爽久久| 欧美三级亚洲精品| 久99久视频精品免费| 精品国产三级普通话版| 国产成人精品一,二区 | 色综合色国产| 欧美xxxx性猛交bbbb| 成人亚洲欧美一区二区av| 桃色一区二区三区在线观看| 黄片wwwwww| 在线国产一区二区在线| 国产亚洲av嫩草精品影院| 蜜臀久久99精品久久宅男| 国产日韩欧美在线精品| 亚洲欧洲日产国产| 人体艺术视频欧美日本| 久99久视频精品免费| 日日撸夜夜添| 精品久久久久久久人妻蜜臀av| 插阴视频在线观看视频| 身体一侧抽搐| 亚洲久久久久久中文字幕| 青春草亚洲视频在线观看| 国产黄片美女视频| 麻豆乱淫一区二区| 婷婷色综合大香蕉| 人人妻人人看人人澡| 丝袜美腿在线中文| 日产精品乱码卡一卡2卡三| 天堂网av新在线| 精品午夜福利在线看| 国产精品人妻久久久久久| 国内精品宾馆在线| 熟妇人妻久久中文字幕3abv| 99久国产av精品国产电影| 国内少妇人妻偷人精品xxx网站| 中文在线观看免费www的网站| 国产高清有码在线观看视频| 精品熟女少妇av免费看| 精品99又大又爽又粗少妇毛片|