李冬輝 劉玲玲 姚樂樂
摘? ?要:提出了一種高升壓DC/DC(簡稱HS)變換器,它利用一種特殊的結(jié)構(gòu)來實(shí)現(xiàn)升壓,這種升壓結(jié)構(gòu)是由兩個(gè)電感、一個(gè)電容和兩個(gè)二極管構(gòu)成.將這種特殊的升壓結(jié)構(gòu)和雙開關(guān)升壓直流變換器相結(jié)合,就構(gòu)成了HS變換器,通過電感電容充放電來實(shí)現(xiàn)升壓功能.另外,本文還提出了(Repeated HS,Re-HS)和(Generalized? HS,G-HS)變換器.分析了HS變換器在CCM模式下的電壓增益,并對其電壓增益、開關(guān)應(yīng)力以及電流尖波進(jìn)行了深入研究,并與其他電路進(jìn)行了比較,對比分析驗(yàn)證了HS變換器具有高電壓增益、低電壓應(yīng)力和低電流尖波的特點(diǎn).通過搭建HS變換器的實(shí)際電路,驗(yàn)證了所提拓?fù)涞恼_性.
關(guān)鍵詞:高升壓;HS變換器;升壓結(jié)構(gòu);電壓增益;開關(guān)應(yīng)力;電流尖波
中圖分類號:TM131.3? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
Research of High Step-up DC/DC Converters
LI? Donghui,LIU? Lingling?覮,YAO Lele
(College of Electrical Automation and Information Engineering,Tianjin University,Tianjin 300072,China)
Abstract:A High Step-up DC/DC (HS) converter was proposed. It steps up the voltage by using a special structure, and the boost structure is composed of two inductors, a capacitor and two diodes. Combing the special boost structure with the double-switch boost DC converter, HS converter is obtained, which depends mainly on charging and discharging of the inductors and capacitors to realize the step-up function. In addition, Repeated HS (Re-HS) and Generalized HS (G-HS) converters were proposed. The voltage gain of the Continuous Conduction Mode (CCM) for HS converter was analyzed. The voltage gain, voltage stress and ripple current of HS converter was deeply studied and compared with other converters. The comparative analysis shows that the HS converter has the characteristics of high voltage gain, low voltage stress, and low current ripple. By building the actual circuit of the HS converter, the correctness of the proposed topology is verified.
Key words: high step-up;HS converter;boost structure;voltage gain;switching stress;current ripple
近年來,隨著高壓直流開關(guān)電源的應(yīng)用,升壓型DC/DC變換器在許多工業(yè)領(lǐng)域內(nèi)越來越受歡迎. DC/DC變換器分為隔離型和非隔離型變換器. 與非隔離型變換器相比,隔離型變換器更容易實(shí)現(xiàn)升壓,然而隔離型變換器開關(guān)浪涌能量損失大,體積和重量相對較大,這些都增加了直流變換器的成本,所以非隔離型變換器越來越受到研究者的青睞[1].
基本的非隔離型變換器主要有Buck[2]、Boost[3-6]、Buck-Boost[7-9]、Cuk[10]、Zeta [10]和Sepic[10]變換器.上述變換器中,Buck和Buck-Boost變換器可以降壓,Boost、Buck-Boost、Cuk、Zeta和Sepic變換器可以實(shí)現(xiàn)升壓. 不過,Boost、Buck-Boost、Cuk、Zeta和Sepic變換器,只有當(dāng)占空比為極大值時(shí),它的電壓增益才可以達(dá)到最大.然而,由于電子元器件的限制,占空比通常不超過0.9,因此,直流升壓變換器需要更高的電壓轉(zhuǎn)換增益[11-15].
文獻(xiàn)[16]提出了升壓型變換器,可以實(shí)現(xiàn)較高的電壓轉(zhuǎn)換增益.與其他的變換器相比,它有較少的開關(guān),然而輸出電壓為負(fù),這在應(yīng)用中是不利的. 文獻(xiàn)[17-18]分別提出了分割電感式升壓變換器和高增益升壓開關(guān)型變換器. 然而,它們開關(guān)較多,增加了控制的難度,并降低了工作效率.
目前,經(jīng)典的非隔離型DC/DC拓?fù)浣Y(jié)構(gòu)有幾種先進(jìn)的電路拓?fù)浣Y(jié)構(gòu),如Switched-capacitor Boost(SC-Boost)、Switched-inductor Boost(SL-Boost)[19]、Asymmetrical Hybrid Switched- inductor converter(AH-SLC)和Symmetrical Hybrid Switched-inductor converter (SH-SLC)[20]變換器. 雖然SL-Boost、SC-Boost、AH-SLC和SH-SLC變換器可以實(shí)現(xiàn)比較高的電壓增益,但仍然有限,并不能滿足許多行業(yè)的需求.
故本文提出了一種高升壓DC/DC(簡稱HS)變換器,它是將特殊的升壓結(jié)構(gòu)與雙開關(guān)直流變換器結(jié)合,這種特殊的升壓結(jié)構(gòu)是由兩個(gè)電感、一個(gè)電容和兩個(gè)二極管構(gòu)成.另外,本文還提出了(Repeated HS,Re-HS)和(Generalized? HS,G-HS)變換器.HS變換器在性能上具有以下優(yōu)勢:1)比已存在的升壓變換器電壓增益更高;2)具有更低的電壓應(yīng)力,提高了電路的轉(zhuǎn)換效率;3)具有更低的電流尖波,降低了輸出電壓紋波.
1? ?HS變換器的工作模式
本文提出了一種高升壓DC/DC變換器:HS變換器,它的拓?fù)浣Y(jié)構(gòu)如圖1所示(L1 = L2 = L3 = L4 = L,C1 = C2).
HS變換器在CCM模式下的工作情況如圖3所示(圖中實(shí)線部分表示電路處于工作狀態(tài),虛線部分表示電路不工作). 圖3(a)是開關(guān)導(dǎo)通時(shí)的等效電路圖,在Ton時(shí)間段內(nèi),直流電源給L1、L2、L3、L4、C1 和C2充電,輸出電容給負(fù)載供電;圖3(b)是開關(guān)關(guān)斷時(shí)的等效電路圖,在Toff時(shí)間段內(nèi),直流電源、L1、L2、L3、L4、C1 和C2給負(fù)載供電.
1)在圖3(a)中,開關(guān)S1、S2在t0-t1時(shí)間段內(nèi)導(dǎo)通, L1、L2、L3、L4、C1 和C2的電壓是:
VL1 = VL2 = VL3 = VL4 = VC1 = VC2 = Vi? ? ? ?(1)
2)在圖3(b)中,開關(guān)S1、S2在t1-t2時(shí)間段內(nèi)關(guān)斷, L1、L2、L3和L4的電壓是:
根據(jù)電感L1、L2、L3和L4的電壓在一個(gè)周期內(nèi)充放電相等,可以得到下面的公式:
根據(jù)圖2和等式(3),HS變換器在CCM模式下的輸出電壓為:
在CCM模式下的電壓增益為:
這里D1 = 1 - D.
2? ?Re-HS和G-HS變換器
在HS變換器的基礎(chǔ)上提出了Re-HS和G-HS變換器,其中Re-HS變換器增加了4個(gè)二極管、2個(gè)電感和2個(gè)電容,它的的拓?fù)浣Y(jié)構(gòu)如圖4所示(L1 = L2 = L3 = L4 = L5 = L6 = L,C1 = C2 = C3 = C4).
1)開關(guān)S1、S2在t0 - t1時(shí)間段內(nèi)導(dǎo)通, L1、L2、L3、 L4、L5、L6、C1、C2、C3和C4的電壓是:
VL1 = VL2 = VL3 = VL4 = VL5 = VL6 =
VC1 = VC2 = VC3 = VC4 = Vi? ? ? ?(6)
2)開關(guān)S1、S2在t1 - t2時(shí)間段內(nèi)關(guān)斷, L1、L2、L3、 L4、L5和L6的電壓是:
根據(jù)電感L1、L2、L3、 L4、L5和L6的電壓在一個(gè)周期內(nèi)充放電相等,可以得到下面的公式:
根據(jù)圖2和等式(8),Re-HS變換器在CCM模式下的輸出電壓為:
Re-HS變換器在CCM模式下的電壓增益為:
G-HS變換器的拓?fù)浣Y(jié)構(gòu)如圖5所示(L1 = L2 =… =Ln-1 = L,C1 = …= Cn-2).
同理得,G-HS變換器在CCM模式下的電壓增益為:
3? ?對HS變換器的理論分析
3.1? ?電壓增益對比分析
SH-SLC變換器的電壓增益為[20]:
AH-SLC變換器的電壓增益為[20]:
SL-Boost變換器的電壓增益為[20]:
HS、SL-Boost、SH-SLC和AH-SLC變換器的電壓增益如圖6所示.通過圖6可看出,HS變換器的電壓增益明顯高于SL-Boost、AH-SLC和SH-LDC變換器,所以本文提出的HS變換器具有更高的電壓增益.
3.2? ?開關(guān)電壓應(yīng)力對比分析
當(dāng)開關(guān)S1和S2關(guān)斷時(shí),HS變換器開關(guān)S1的電壓應(yīng)力是:
VS1 = 2Vi + VL1 + VL2? ? ? (15)
HS變換器開關(guān)S2的電壓應(yīng)力是:
VS2 = 2Vi + VL3 + VL4? ? ? (16)
HS變換器S1和S2的電壓應(yīng)力為:
SL-Boost變換器的電壓應(yīng)力為[20]:
VS = GVi? ? ?(18)
SH-SLC變換器的電壓應(yīng)力為[20]:
AH-SLC變換器S1和S2的電壓應(yīng)力為[20]:
直流變換器的電壓應(yīng)力如圖7(與公式(17)~(21)一致)所示. 通過圖7,可以看出,本文提出的HS變換器的電壓應(yīng)力與SH-SLC變換器的電壓應(yīng)力相同,并明顯比AH-SLC和SL-Boost變換器的低,這改善了電路的工作效率.
3.3? ?HS變換器的電流尖波對比分析
電感峰值電流的表達(dá)式可以表示為:
Ipeak-L = (1+ Ki)IL∝IL? ? ? (22)
式中:Ki是電流尖波參數(shù).由于尖波電流與電感電流成正比,故電感電流越小,尖波電流越小,輸出電壓紋波越小.
HS變換器在一個(gè)周期的平均電感電流與輸出電流的比值IL /Io的表達(dá)式:
SL-Boost變換器IL /Io為[20]:
AH-SLC變換器IL /Io為[20]:
SH-SLC變換器IL /Io為[20]:
直流變換器的平均電感電流與輸出電流比值如圖8(與公式(23)~(26)一致)所示,通過圖8,可以看出HS變換器的IL /Io明顯低于SL-Boost、AH-SLC和SH-SLC變換器,故電感電流尖波較SL-Boost、AH-SLC和SH-SLC變換器更小,這增加了輸出電壓的穩(wěn)定性.
3.4? ?HS變換器二極管的電壓應(yīng)力
當(dāng)開關(guān)S1和S2關(guān)斷時(shí),HS變換器二極管D1的電壓應(yīng)力是:
VD1 = VL2 + VC1? ? ? ?(27)
二極管D2的電壓應(yīng)力為:
VD2 = VL1 + VC1? ? ? ?(28)
二極管D3的電壓應(yīng)力是:
VD3 = VL4 + VC2? ? ? ?(29)
二極管D4的電壓應(yīng)力為:
VD4 = VL3 + VC2? ? ? ?(30)
聯(lián)立公式(2)(5)(27)(28)(29)和(30),得到二極管D1、D2、D3和D4的電壓應(yīng)力為:
VD1 = VD2 = VD3 = VD4 =? Vi? ? ?(31)
當(dāng)開關(guān)S1和S2關(guān)斷時(shí),HS變換器二極管S1和Do的電壓應(yīng)力是:
VDo = Vi + Vo? ? ? ?(32)
聯(lián)立公式(5)和(31),二極管Do的電壓應(yīng)力是:
VDo = (G + 1)Vi? ? ? ?(33)
4? ?實(shí)驗(yàn)結(jié)果
為了驗(yàn)證HS變換器拓?fù)涞恼_性,以HS變換器為例,搭建了其電路實(shí)驗(yàn)平臺,電路參數(shù)如表1所示.
圖9為HS變換器開關(guān)S1和S2的驅(qū)動信號,頻率為24 kHz.當(dāng)Vi = 5 V時(shí),HS變換器的實(shí)驗(yàn)波形如圖10所示. 由圖10可知:當(dāng)輸入電壓為5 V(D=0.5)時(shí),輸出電壓約為30.5 V,理想值為35 V. 二極管D1、D2、D3和D4的電壓應(yīng)力如圖11所示,四個(gè)二極管在電路拓?fù)渲械奈恢脤ΨQ,故它們的電壓應(yīng)力相同,實(shí)驗(yàn)中電壓應(yīng)力約8.5 V,理論分析值為10 V.二極管Do的電壓應(yīng)力如圖12所示,電壓應(yīng)力約為35 V,理論值為40 V. 開關(guān)S1和S2的電壓應(yīng)力如圖13所示,實(shí)驗(yàn)值約為18.5 V,理論分析值為20 V.電容C1和C2電壓實(shí)驗(yàn)圖如圖14所示,從圖14可看出電容在開關(guān)導(dǎo)通和關(guān)斷過程中的充放電過程.
5? ?結(jié)? ?論
本文首先提出了高升壓DC/DC變換器:HS、Re-HS和G-HS變換器,分析了三種變換器在CCM模式下的電壓增益,并重點(diǎn)對HS變換器的電壓增益、電壓應(yīng)力以及電流尖波進(jìn)行了分析,同時(shí)與其他電路進(jìn)行了比較,證明了HS變換器具有更高的電壓增益,更低的電壓應(yīng)力和電流尖波.最后搭建了HS變換器的實(shí)際電路,實(shí)驗(yàn)驗(yàn)證了所提拓?fù)涞恼?/p>
確性.
參考文獻(xiàn)
[1]? ?LI W,HE X. Review of nonisolated high-step-up DC/DC converters? in? photovoltaic grid-connected applications[J]. IEEE Transactions on Industrial Electronics,2011,58(4):1239—1250.
[2]? SEBASTIAN J,VILLEGAS P J,NUNO F. High-efficiency and wide-band width? performance obtainable from a two-input buck converter[J]. IEEE Transactions on Power Electronics,1998,13(4):706—717.
[3]? ?TSENG K,HUAN C,SHIH W. A high step-up converter with a voltage multiplier? module for a photovoltaic system [J]. IEEE Transactions on Power Electronics,2013,28(6):3047—3057.
[4]? ?WU T,LAI Y,HUNG J,et al. Boost converter with coupled inductors and buck-boost type of active clamp [J]. IEEE Transactions on Industrial Electronics,2008,55(1):154—162.
[5]? ?WU T,LAI Y,HUNG J,et al. An improved boost converter with coupled inductors and buck-boost type of active clamp[C]//IEEE Industry Application Society Annual Meeting. 2005:639—644.
[6]? ?KAO S K,WU J H,CHENG H C. All-digital controlled boost DC-DC converter with all-digital DLL-based calibration[J]. Microelectronics Journal,2015,46:970—980.
[7]? ?BENAVIDES N D,CHAPMAN P L. Power budgeting of a multiple-input Buck-Boost converter [J]. IEEE Transactions on Power Electronics,2005,20(6):1303—1309.
[8]? SAMAVATIAN V,RADAN A. A novel low-ripple interleaved buck-boost converter with high efficiency and low oscillation for fuel-cell applications[J]. Electrical Power and Energy Systems,2014,63:446—454.
[9]? ?CU K S,MIDDLEBROOK R D. A new optimum topology switching dc-to-dc converter[C]//IEEE Power Electronics Specialists Conference. 1977:160—179.
[10] AXELROD B,BERKOVICH Y,IOINOVICI A. Hybrid switched-capacitor-Cuk/Zeta/Sepic converters in step-up mode[C]// IEEE International Symposium on Circuits and Systems. 2005:1310—1313.
[11] WAI R J,DUAN R Y. High step-up converter with coupled-inductor [J]. IEEE Transactions on Power Electronics,2005,20(5):1025—1035.
[12] MARTINEZ-SALAMERO L,VALDERRAMA -BLAVI H,GIRAL R,et al. Self-oscillating DC-to-DC switching converters with transformer characteristics [J]. IEEE Transactions on Aerospace and Electronic Systems,2005,41(2):710—716.
[13] BRYANT B,KAZIMIERCZUK M K. Voltage-loop power-stage transfer functions with MOSFET delay for boost PWM converter operating in CCM [J]. IEEE Transactions on Industrial Electronics,2007,54(1):347—353.
[14] LU D D C,CHENG D K W,LEE Y-S. A single-switch continuous-conduction-mode boost converter with reduced reverse-recovery and switching losses [J]. IEEE Transactions on Industrial Electronics,2003,50(4):767—776.
[15] ZHOU D Y,PIETKIEWICZ A. A three-switch high-voltage converter [J]. IEEE Transactions on Power Electronics,1999,14(1):177—183.
[16] ZHU M,LUO F L. Voltage-lift-type Cúk converters: topologyand analysis [J]. IET Power Electronics,2009,2(2):178—191.
[17] JIAO Y,LUO F L,BOSE B K. Voltage-lift split-inductor-type boost converters [J]. IET Power Electronics,2011,4(4):353—362.
[18] ABUTBUL O,GHERLITZ A,BERKOVICH Y,et al. Step-up switching-mode converter with high voltage gain using a switched-capacitor circuit [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications,2003,50(8):1098—1102.
[19] AXELORD B,BERKOVICH Y,IOINOVICI A. Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications,2008,55(2):687-696.
[20]? TANG Y,F(xiàn)U D J,WANG T,et al. Hybrid Switched-inductor converters for high step-up conversion [J]. IEEE Transactions on Industrial Electronics,2015,62(3):1480—1490.