夏云清 唐華平 譚青 朱廣輝
摘? ?要:針對(duì)混動(dòng)電動(dòng)輪自卸車(HMDT)電制動(dòng)勵(lì)磁控制非線性和負(fù)載干擾較大的時(shí)變不確定性,對(duì)整車穩(wěn)定性特別是電池壽命的影響,提出一種反饋精確線性化控制與滑??刂葡嘟Y(jié)合的非線性變結(jié)構(gòu)控制(NVSC)勵(lì)磁控制策略.建立電制動(dòng)勵(lì)磁控制SISO二階非線性模型,對(duì)模型精確線性化處理;應(yīng)用滑模變結(jié)構(gòu)控制設(shè)計(jì)了轉(zhuǎn)速閉環(huán)勵(lì)磁控制器,考慮礦山惡劣工況下為了削弱系統(tǒng)抖振、保證車速和制動(dòng)電流穩(wěn)定,設(shè)計(jì)了Luenberger負(fù)載干擾狀態(tài)觀測(cè)器.MATLAB仿真與實(shí)驗(yàn)結(jié)果表明:NVSC控制器相比PID控制除了具有動(dòng)態(tài)性能好、響應(yīng)快等優(yōu)點(diǎn)外,在負(fù)載干擾波動(dòng)下,電機(jī)轉(zhuǎn)速和制動(dòng)回饋電流保持穩(wěn)定,系統(tǒng)魯棒性好,保證了HMDT電池壽命和整車穩(wěn)定.
關(guān)鍵詞:混動(dòng)電動(dòng)輪自卸車;勵(lì)磁控制;非線性變結(jié)構(gòu)控制;狀態(tài)觀測(cè)器
中圖分類號(hào):TP 13? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A
Nonlinear Variable Structure Excitation Control for Electric Brake
of Hybrid Motor Dump Truck
XIA Yunqing1,2,TANG Huaping1?覮,TAN Qing1,ZHU Guanghui2
(1. School of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;
2. Xiangtan Electric Machinery Co Ltd,Xiangtan 411101,China )
Abstract: As the uncertainty of the nonlinearity and load disturbance of the electric brake excitation control of Hybrid Motor Dump Truck (HMDT) impacts on vehicle stability, especially on battery life, a nonlinear variable structure excitation control strategy with feedback precision linearization control and sliding mode control was proposed. This paper established the Simple Input Simple Output(SISO) second-order nonlinear model of electric brake excitation control, and the nonlinear problem was transformed into a linear problem by the precise linearization of the nonlinear model. Then, the speed closed-loop excitation controller was designed with sliding mode variable structure control. At the same time, in order to weaken the system buffeting, ensure system stability under the bad working condition of the mine, and ensure stable speed and braking current, the Luenberger load disturbance state observer was designed. MATLAB simulation results show that, compared with PID controller, NVSC controller has the advantages of dynamic performance and quick response. Under load disturbance fluctuation, the motor speed and braking feedback current are stable and the system is robust, which guarantees the battery life and HMDT stability.
Keywords:Hybrid Motor Dump Truck(HMDT);excitation control;Nonlinear Variable Structure Control(NVSC);state observer
大噸位(≮100T)混合動(dòng)力電動(dòng)輪自卸車(hybrid motor dump truck,HMDT)在國(guó)內(nèi)外屬于新型車型,不同于電制動(dòng)回饋能量由制動(dòng)電阻消耗的傳統(tǒng)電動(dòng)輪自卸車,HMDT的電制動(dòng)回饋電流為車載電池系統(tǒng)充電,電池系統(tǒng)再適時(shí)為車輛提供補(bǔ)充功率,并以此循環(huán). 一般電制動(dòng)勵(lì)磁控制是指對(duì)制動(dòng)工況下?tīng)恳妱?dòng)機(jī)的勵(lì)磁進(jìn)行閉環(huán)調(diào)節(jié),并保證車輛有足夠的制動(dòng)力和制動(dòng)過(guò)程平緩,限制制動(dòng)電流以保護(hù)牽引電動(dòng)機(jī)并實(shí)現(xiàn)對(duì)車速的理想控制[1-3].
而HMDT的電制動(dòng)勵(lì)磁控制系統(tǒng)還需考慮過(guò)大的充電電流引起電池過(guò)熱,影響電池壽命[4],由于電動(dòng)輪自卸車噸位大,電制動(dòng)功率相差6~7倍的變化與礦山3%~18%坡道的變化等惡劣工況,都會(huì)引起負(fù)載干擾較大的時(shí)變不確定性,HMDT電制動(dòng)勵(lì)磁控制系統(tǒng)如果不能及時(shí)響應(yīng)和抑制突增干擾,極易引起制動(dòng)電流(充電電流)過(guò)載.
h(x) = x1? ?(8)
求李括號(hào)adr-1f? ? g來(lái)檢驗(yàn)系統(tǒng)是否滿足精確線性化條件,因該系統(tǒng)為二階系統(tǒng),需求李括號(hào)adf g.
函數(shù)g(x)的雅可比矩陣:
可得到李括號(hào)adf g:
D = [g,adf g]? ? ? (12)
矩陣D的行列式:
det D = [k3(x1 - w*) + k4x2 - k5]2? ? ?(13)
上式中k3、k4和k5均不等于0,又因系統(tǒng)定義域Ω內(nèi)電機(jī)角速度w≠0,即x1 - w*≠0,det D≠0,可知矩陣D在定義域Ω上的秩n = 2,且其秩n等于系統(tǒng)階數(shù),則向量場(chǎng){g(x),adf g(x)}滿足對(duì)合性要求,因此系統(tǒng)滿足所有精確線性化條件.
通過(guò)微分幾何反饋精確線性化設(shè)計(jì)方法,利用李導(dǎo)數(shù)構(gòu)造一個(gè)微分同胚z = ?準(zhǔn)(x)和反饋?zhàn)儞Qv = Lf nh(x) + Lg dfn-1h(x)u,使非線性系統(tǒng)(5)化為完全線性可控的布魯諾夫斯基標(biāo)準(zhǔn)型.
Lf 2h(x) = k1 x1 + k2 x2 + kL? ? ?(15)
Lg Lf h(x) = k3(x1 - w*) + k4x2 + k5? ? ? (16)
由式(13)可知,Lg Lf h(x)≠0,則原系統(tǒng)控制量
通過(guò)反饋精確性化處理,原系統(tǒng)(5)的控制量可以通過(guò)反饋?zhàn)儞Q得到的線性系統(tǒng)(14)的新控制量表示,可通過(guò)對(duì)線性系統(tǒng)(14)進(jìn)行滑模變結(jié)構(gòu)控制設(shè)計(jì),最終求取原系統(tǒng)的控制律.
2.3? ?滑模變結(jié)構(gòu)控制器設(shè)計(jì)
滑模變結(jié)構(gòu)控制對(duì)系統(tǒng)外界干擾和參數(shù)攝動(dòng)具有強(qiáng)魯棒性,但滑??刂迫秉c(diǎn)是系統(tǒng)在切換面附近的振蕩運(yùn)動(dòng)會(huì)引起抖振[18].本文通過(guò)設(shè)計(jì)干擾觀測(cè)器來(lái)準(zhǔn)確測(cè)量負(fù)載干擾,保證系統(tǒng)穩(wěn)定,實(shí)現(xiàn)魯棒控制;同時(shí)減小系統(tǒng)切換增益,相當(dāng)于低通濾波器來(lái)消除系統(tǒng)抖振.
2.3.1? ?控制律設(shè)計(jì)
對(duì)于線性可控型系統(tǒng)(14),取線性切換函數(shù):
u = c1 z1 + c2 z2? ? ? (18)
取有效減小抖振現(xiàn)象的指數(shù)趨近律:
式中:Q > 0;k > 0.
將上述代入式(17)可知原電制動(dòng)勵(lì)磁控制非線性滑模變結(jié)構(gòu)系統(tǒng)的控制律:
因此,通過(guò)調(diào)節(jié)控制增益Q、k可以保證變結(jié)構(gòu)控制的快速性及有效削弱系統(tǒng)抖振.
2.3.2? ?負(fù)載干擾狀態(tài)觀測(cè)器設(shè)計(jì)
由式(21)知,電制動(dòng)勵(lì)磁控制滑模變結(jié)構(gòu)系統(tǒng)控制律中包含無(wú)法測(cè)量的負(fù)載干擾TL,再加上礦山惡劣工況,負(fù)載干擾TL變化更無(wú)規(guī)律,嚴(yán)重影響控制系統(tǒng)的穩(wěn)定,需設(shè)計(jì)負(fù)載干擾狀態(tài)觀測(cè)器來(lái)實(shí)時(shí)測(cè)量TL大小.
電機(jī)的轉(zhuǎn)速和轉(zhuǎn)矩可通過(guò)傳感器測(cè)量,即可設(shè)計(jì)Luenberger全狀態(tài)觀測(cè)器間接重構(gòu)負(fù)載干擾TL.
車輛在礦山運(yùn)行速度較慢,大部分為低頻負(fù)載,可認(rèn)為負(fù)載干擾TL變化較慢,即
同時(shí),也要考慮負(fù)載變化較快的工況.根據(jù)統(tǒng)計(jì),負(fù)載干擾TL可按線性或周期性變化,有dTL /dt=常數(shù)或ωLsinωL t,ωL是負(fù)載變化的角頻率,可實(shí)際測(cè)量,然后可按負(fù)載干擾TL變化較慢一樣處理.
根據(jù)公式(1),又有:
綜合式(22)和(23),有如下線性定常系統(tǒng):
系統(tǒng)的狀態(tài)變量X = [w? TL ]T,輸入變量u = TM,輸出變量y = w,其中A = -B? ?-J -1? 0? ? ? 0,B = [J -1? 0]T,C = [1? ?0]T.
由于(C,AC)的秩等于2,即系統(tǒng)的(A,C)完全能觀,則設(shè)計(jì)的全狀態(tài)干擾觀測(cè)器存在,且可以任意觀測(cè)器極點(diǎn)配置[19].
可建立干擾狀態(tài)觀測(cè)器模型:
式 中:為狀態(tài)x的重構(gòu);Ke為觀測(cè)器的增益矩陣;e是觀測(cè)器系統(tǒng)誤差.選取觀測(cè)器的極點(diǎn)(λ1,λ1),可求出合適的矩陣Ke使誤差向量e(t)能以足夠快的速度趨近于原點(diǎn),從而實(shí)現(xiàn)狀態(tài)x到重構(gòu).
因?yàn)橄到y(tǒng)的階數(shù)較低,可采用直接代入法來(lái)求解矩陣Ke[20],將矩陣直接代入期望的特征多項(xiàng)式,見(jiàn)式(27),通過(guò)對(duì)式中λ的同次冪系數(shù)的比較,可求解矩陣Ke.
λI - (A - KeC) = (λ - λ1)(λ - λ2)? ? (27)
通過(guò)矩陣Ke可得到負(fù)載干擾TL的重構(gòu)L,再把實(shí)時(shí)測(cè)量的不確定負(fù)載干擾L代入系統(tǒng)控制律式(21)中,系統(tǒng)可及時(shí)響應(yīng)干擾.這種帶干擾狀態(tài)觀測(cè)器的非線性滑模變結(jié)構(gòu)系統(tǒng)避免了負(fù)載干擾對(duì)系統(tǒng)的影響,可減小趨近律控制增益幅值,進(jìn)一步削弱系統(tǒng)抖振,保證系統(tǒng)具有良好的控制效果和很強(qiáng)的魯棒性.
3? ?仿真與實(shí)驗(yàn)
為了驗(yàn)證本文所設(shè)計(jì)的電制動(dòng)NVSC勵(lì)磁控制系統(tǒng)的正確性,以某型號(hào)礦用自卸車為研究對(duì)象,先在MATLAB/Simulink中進(jìn)行HMDT電制動(dòng)勵(lì)磁控制仿真,再依托某礦車整車廠搭建了實(shí)物實(shí)驗(yàn)平臺(tái),實(shí)驗(yàn)平臺(tái)采用的是TMS320F28335主控芯片,采用電機(jī)對(duì)拖的方式來(lái)模擬電制動(dòng)的負(fù)載,采用鈦酸鋰電池作為儲(chǔ)能裝置.電機(jī)及系統(tǒng)仿真參數(shù)如表1所示. 搭建的系統(tǒng)仿真模型如圖2所示,搭建的實(shí)驗(yàn)平臺(tái)如圖3所示,其控制系統(tǒng)如圖4所示.
[7]? ? 譚建豪,章兢. 基于遺傳算法的154T電動(dòng)車牽引勵(lì)磁PID控制器的設(shè)計(jì)[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2007,34(1): 33—37.
TAN J H,ZHANG J. Design of towing excitation PID controllers for 154T motor dump trucks based on genetic algorithms[J]. Journal of Hunan University (Natural Sciences),2007,34(1):33—37. (In Chinese)
[8]? ? ABLAY G. Variable structure controllers for unstable processes[J]. Journal of Process Control,2015,32:10—15.
[9]? ? CUI M,LIU W,LIU H,et al. Extended state observer-based adaptive sliding mode control of differential-driving mobile robot with uncertainties[J]. Nonlinear Dynamics,2016,83(1/2):667—683.
[10]? 王鎮(zhèn)道,張樂(lè),彭子舜. 基于PSO優(yōu)化算法的模糊PID勵(lì)磁控制器設(shè)計(jì)[J]. 湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(8):106—109.
WANG Z D,ZHANG L,PENG Z S. Design of fuzzy PID excitation control based on PSO optimization algorithm[J]. Journal of Hunan University(Natural Sciences), 2017, 44(8): 106—109. (In Chinese)
[11]? SAADAOUI O,KHLAIEF A,ABASSI M,et al. A sliding-mode observer for high-performance sensorless control of PMSM with initial rotor position detection[J]. International Journal of Control,2017,90 (2):377—392.
[12]? ABEYWARDANA D B W,HREDZAK B,AGELIDIS V G. A fixed-frequency sliding mode controller for a boost-inverter-based battery-supercapacitor hybrid energy storage system[J]. IEEE Transactions on Power Electronics,2016,32(1):668—680.
[13]? 許敘遙,林 輝. 基于動(dòng)態(tài)滑模控制的永磁同步電機(jī)位置速度一體化設(shè)計(jì)[J]. 電工技術(shù)學(xué)報(bào),2014,29(5):77—84.
XU X Y,LIN H. Integrated design for permanent magnet synchronous motor servo systems based on dynamic sliding mode control[J]. Journal of Electrotechnics,2014,29(5):77—84. (In Chinese)
[14]? 崔家瑞,高江峰,張波,等. 永磁同步電機(jī)滑模變結(jié)構(gòu)魯棒控制[J]. 電機(jī)與控制學(xué)報(bào),2016,20(5):84—90.
CUI J R,GAO J F,ZHANG B,et al. Robust control of synchronous motor based on sliding mode variable structure[J]. Electric Machines and Control,2016,20(5):84—90. (In Chinese)
[15] BOLDEA I,TUTELEA L,SERBAN I. Variable speed electric generators and their control: an emerging technology[J]. Journal of Electrical Engineering,2002,l (3):20—28.
[16]? AHMED A A ,AHMAD R B,YAHYA A,et al. Variable structure system with sliding mode controller[J]. Procedia Engineering ,2013,53 (7):441—452.
[17]? 曹玲芝,謝曉磊,任菊萍. 基于非線性滑模面的永磁同步電機(jī)變結(jié)構(gòu)控制[J]. 微電機(jī),2015,48(3):48—53.
CAO L Z,XIE X L,REN J P. Sliding mode variable structure control of permanent magnet synchronous machine based on nonlinear sliding surface[J]. Micromotor,2015,48(3):48—53.(In Chinese)
[18]? OLIVIER H,VINCENT A,BERNARD B. Lyapunov stability and performance analysis of the implicit discrete sliding mode control[J]. IEEE Transactions on Automatic Control,2016,61 (10): 3016—3030.
[19]? 李政,胡廣大,崔家瑞,等. 永磁同步電機(jī)調(diào)速系統(tǒng)的積分型滑模變結(jié)構(gòu)控制[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2014,34(3):431—438.
LI Z,HU G D,CUI J R,et al. Sliding-mode variable structure control with integral action for permanent magnet synchronous motor[J]. Proceedings of the CSEE,2014,34(3):431—438.(In Chinese)
[20]? 程鵬,王艷東. 現(xiàn)代控制理論基礎(chǔ)[M]. 北京:北京航空航天大學(xué)出版社,2010:59-76.
CHENG P,WANG Y D. Foundation of modern control theory[M]. Beijing: Beihang University Press,2010:59-76. (In Chinese)